KR20010064846A - A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it - Google Patents

A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it Download PDF

Info

Publication number
KR20010064846A
KR20010064846A KR1019990059220A KR19990059220A KR20010064846A KR 20010064846 A KR20010064846 A KR 20010064846A KR 1019990059220 A KR1019990059220 A KR 1019990059220A KR 19990059220 A KR19990059220 A KR 19990059220A KR 20010064846 A KR20010064846 A KR 20010064846A
Authority
KR
South Korea
Prior art keywords
less
rolled steel
steel sheet
cold rolled
formability
Prior art date
Application number
KR1019990059220A
Other languages
Korean (ko)
Other versions
KR100415667B1 (en
Inventor
백승철
김성주
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0059220A priority Critical patent/KR100415667B1/en
Publication of KR20010064846A publication Critical patent/KR20010064846A/en
Application granted granted Critical
Publication of KR100415667B1 publication Critical patent/KR100415667B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing high tensile strength cold rolled steel sheets (80-90kgf/mm2) having superior impact absorbability and formability is provided to form an adequate quantity of residual austenite so that elongation rate as well as yield strength is improved, thereby it is applicable to automobile bumper requiring superior impact absorbability. CONSTITUTION: The high tensile strength cold rolled steel sheet is manufactured by (i) hot rolling a steel slab comprising C 0.10wt.%, Si 0.2-0.8wt.%, Mn 2.0-2.5wt.%, S 0.015wt.% or less, P 0.020wt.% or less, Al 0.04wt.% or less, N 0.004wt.% or less, Nb 0.01-0.05wt.%, a balance of Fe, and other inevitable impurities wherein the steel slab satisfies the following an inequality: (58.2-145.5C£%|-8.2Si£%|-14.5Mn£%|)/222< Nb£%|<(68.2-145.5C£%|-8.2Si£%|-14.5Mn£%|)/222; (ii) cold rolling the hot rolled steel sheet; (iii) continuous annealing the cold rolled steel sheet wherein the temperature range satisfies the following an inequality: 563+651C£%|+42Si£%|+18Mn £%|< annealing temperature£°C|< 870°C; (iv) rapid cooling to an austempering start temperature of 420-480deg.C at a cooling rate of 20-100deg.C/sec; (v) and then austempering to 380 to 430deg.C for 300-500deg.C.

Description

충격흡수성 및 성형성이 우수한 고강도 냉연강판 및 그 제조방법{A METHOD FOR HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING SUPERIOR IMPACT ABSORPTION PROPERTY AND FORMABILITY AND A METHOD FOR MANUFACTURING IT}High strength cold rolled steel with excellent shock absorption and formability and its manufacturing method {A METHOD FOR HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING SUPERIOR IMPACT ABSORPTION PROPERTY AND FORMABILITY AND A METHOD FOR MANUFACTURING IT}

본 발명은 자동차 범퍼 등에 적용되는 냉연강판에 관한 것으로서, 보다 상세하게는 에너지흡수성이 우수하여 자동차충돌시 자동차의 안정성을 향상시킬 수 있는 인장강도 80~90kgf/㎟ 급 고강도 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a cold rolled steel sheet applied to an automobile bumper and the like, and more particularly, to a high strength cold rolled steel sheet having a tensile strength of 80 to 90 kgf / mm 2, which improves the stability of a vehicle during an automobile crash due to its excellent energy absorption. It is about.

환경이 사회적으로 중요한 문제로 부각되면서 세계적으로 자동차 배기가스 및 연비의 규제가 강화되고 있다. 또한, 자동차의 증가와 함께 자동차사고의 빈도도 높아지면서 승객의 안전이 강조되어, 충돌 안정성에 대한 규제도 계속 강화되고있고, 이에 따라 기존의 정면충돌, 측면충돌의 평가와 함께 기존 정면충돌 대비 엄격한 기준인 오프세트 충돌 평가시험이 추가되었다.As the environment emerges as a socially important issue, regulations on automobile emissions and fuel economy are tightening around the world. In addition, as the number of automobile accidents increases with the increase of automobiles, the safety of passengers is emphasized, and regulations on collision stability continue to be strengthened. Offset crash assessment test was added.

이에 대응하여, 세계 각국의 자동차사는 가벼우면서 충돌 안전성이 우수한 자동차를 개발하고 있는데, 이를 위해서는 강도가 높은 재료를 사용하여야 한다.In response, automakers around the world are developing vehicles that are lightweight and have excellent crash safety, which requires the use of materials of high strength.

한편, 자동차의 안전성을 확보하기 위해서는, 범퍼가 우수한 에너지흡수성을 갖아야 한다. 이를 위해서는, 범퍼재료의 강도를 증가시켜야 하고, 범퍼레일용으로 충격 흡수성 및 성형성이 우수한 냉연강판의 개발이 필수적이다.On the other hand, in order to ensure the safety of the vehicle, the bumper should have excellent energy absorption. To this end, it is necessary to increase the strength of the bumper material, and it is essential to develop a cold rolled steel sheet having excellent shock absorption and formability for the bumper rail.

종래의 고강도 냉연강판은 다음과 같은 방법으로 제조되었다.The conventional high strength cold rolled steel sheet was manufactured by the following method.

첫째, 냉간압연에 의한 가공경화를 이용하는 방법으로, 냉간압연후 회복소둔을 실시하여 미재결정조직으로 강도를 증가시킴으로써, 첨가 합금의 양을 줄이고 우수한 용접성을 제공하는 것이다. 그러나, 이 방법에 의하면 연신율이 낮아져 성형성이 나빠지는 단점이 있다.First, by using the work hardening by cold rolling, by performing recovery annealing after cold rolling to increase the strength to the recrystallized structure, to reduce the amount of the additive alloy and to provide excellent weldability. However, this method has a disadvantage in that elongation is lowered and moldability is deteriorated.

둘째로 냉간압연후 소둔온도를 A1변태점 이상으로 하여 오스테나이트를 형성시킨 후, 급냉하여 오스테나이트를 마르텐사이트나 베이나이트로 변태시켜서 재료의 강도를 증가시키는 복합 조직강의 제조방법이 있다. 그러나, 이 방법에서는 열처리공정에서 냉각속도가 빨라야 하므로 제조가 어렵고 연신율이 낮은 단점이 있다.Secondly, there is a method of manufacturing a composite tissue steel in which austenite is formed at an annealing point of A 1 or more after cold rolling, and then quenched to transform austenite into martensite or bainite to increase the strength of the material. However, this method has a disadvantage in that it is difficult to manufacture and the elongation is low because the cooling rate must be fast in the heat treatment process.

셋째로 잔류 오스테나이트를 강중에 존재시켜 연신율을 증가시키는 가공유기변태강의 제조방법이 있다. 이 방법은 C: 0.2 중량% 이상(이하, "%" 라 칭함), Si: 1.5~2.5%, Al: 1.0% 이상의 원소를 다량 첨가하고, 열처리온도를 마르텐사이트 변태온도 이상에서 유지하여 오스테나이트로 탄소가 농화되어 잔류 오스테나이트를 형성시키는 것이다. 즉, 잔류 오스테나이트가 형성되면 재료의 연신율이 증가하므로 성형성이 좋아지는 장점이 있다. 그러나, Si 및 Al 이 다량 첨가되므로 용접성이 나쁘고 항복강도가 낮아서 충돌 안전성에 불리한 단점이 있다.Third, there is a manufacturing method of processed organic transformation steel which increases the elongation by remaining residual austenite in the steel. This method adds a large amount of elements of C: 0.2% by weight or more (hereinafter referred to as "%"), Si: 1.5-2.5%, and Al: 1.0% or more, and maintains the heat treatment temperature at or above the martensite transformation temperature. Carbon is concentrated to form residual austenite. In other words, when the residual austenite is formed, the elongation of the material increases, so that the moldability is improved. However, since a large amount of Si and Al are added, the weldability is poor and the yield strength is low.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 적정한 양의 잔류 오스테나이트를 형성하여 연신율을 증가시킴과 동시에, 석출경화에 의해 항복강도를 증가시킴으로써, 우수한 충격흡수성 및 성형성을 제공할 수 있는 고강도 냉연강판 및 그 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the above problems and propose the present invention based on the results. The present invention forms an appropriate amount of retained austenite and increases the elongation. To increase the yield strength by precipitation hardening, to provide a high-strength cold-rolled steel sheet and a method of manufacturing the same that can provide excellent impact absorption and formability, the object.

도1은 Nb함량에 따른 강의 재질변화를 나타내는 그래프1 is a graph showing the material change of the steel according to the Nb content

도2는 강도변화식으로 계산한 인장강도와 실험으로 측정한 인장강도를 비교한 그래프Figure 2 is a graph comparing the tensile strength measured by the strength change equation and the experimentally measured tensile strength

도3는 소둔온도에 따른 오스테나이트 분율을 나타내는 그래프3 is a graph showing the austenitic fraction according to the annealing temperature

본 발명은 중량%로 C: 0.10~0.20%, Si: 0.2~0.8%, Mn: 2.0~2.5%, S: 0.015% 이하, P: 0.020% 이하, Al: 0.04% 이하, N: 0.004% 이하, Nb: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 함유하고 하기 관계식 1을 만족하며, 그리고 잔류 오스테나이트 함량이 4~6%인 것을 특징으로 하는 충격흡수성 및 성형성이 우수한고강도 냉연강판에 관한 것이다.In the present invention, C: 0.10 to 0.20%, Si: 0.2 to 0.8%, Mn: 2.0 to 2.5%, S: 0.015% or less, P: 0.020% or less, Al: 0.04% or less, N: 0.004% or less , Nb: 0.01 ~ 0.05%, the remaining Fe and other unavoidable impurities, satisfy the following equation 1, and the residual austenite content of 4 ~ 6%, characterized in that the high strength cold rolled steel sheet with excellent shock absorption and formability It is about.

또한, 본 발명은 고강도 냉연강판의 제조방법에 있어서,In addition, the present invention is a method of manufacturing a high strength cold rolled steel sheet,

중량%로 C: 0.10~0.20%, Si: 0.2~0.8%, Mn: 2.0~2.5%, S: 0.015% 이하, P: 0.020% 이하, Al: 0.04% 이하, N: 0.004% 이하, Nb: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1을 만족하는 강 슬라브를 열간압연후 냉간압연한 다음, 하기 관계식 2의 온도범위에서 연속소둔하고, 오스템퍼링을 실시하는 것을 특징으로 하는 충격흡수성 및 성형성이 우수한 고강도 냉연강판의 제조방법에 관한 것이다.By weight% C: 0.10 to 0.20%, Si: 0.2 to 0.8%, Mn: 2.0 to 2.5%, S: 0.015% or less, P: 0.020% or less, Al: 0.04% or less, N: 0.004% or less, Nb: A steel slab containing 0.01 to 0.05%, the remaining Fe and other unavoidable impurities, and hot rolling the steel slab that satisfies the following relation 1, and then cold-rolled, and then continuously annealed in the temperature range of the following relation 2, and subjected to the ostempering It relates to a method for producing a high strength cold rolled steel sheet excellent in shock absorption and moldability.

[관계식 1][Relationship 1]

(58.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222 < Nb[%](58.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 <Nb [%]

< (68.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222<(68.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222

[관계식 2][Relationship 2]

563 + 651C[%] + 42Si[%] + 18Mn[%] < 소둔온도[℃] < 870℃563 + 651C [%] + 42Si [%] + 18Mn [%] <Annealing Temperature [℃] <870 ℃

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기 C는 마르텐사이트 변태온도를 낮추어 오스테나이트를 안정하게 하는 원소로, 그 양이 많으면 상온에서 잔류 오스테나이트를 형성시켜 재료의 연신율을 증가시킨다. 그러나, 그 함량이 너무 많으면 용접성이 열화되어 냉연강판제조시 강판의 용접 및 자동차 부품의 용접 공정에 불리하므로, 0.10~0.20%로 첨가하는 것이바람직하다.C is an element that stabilizes austenite by lowering the martensite transformation temperature. If the amount is large, residual austenite is formed at room temperature to increase the elongation of the material. However, if the content is too high, the weldability is deteriorated, which is disadvantageous to the welding process of the steel sheet and the welding of automobile parts during the production of cold rolled steel sheet. Therefore, it is preferable to add 0.10 to 0.20%.

상기 Si은 오스템퍼링 과정에서 탄화물 형성을 억제하여 고용 C의 양을 증가시켜서, 잔류 오스테나이트로 확산되는 C의 함량을 증가시키고 잔류 오스테나이트를 안정화 하는 원소이다. 그러나, 그 함량이 많을수록 용접성이 저하되고, 특히 1.0%보다 과잉 첨가되면 잔류 오스테나이트가 과도하게 형성되어 항복강도를 감소시키고 충격흡수성을 저하시키므로, Si의 함량은 0.2~0.8%로 설정하는 것이 바람직하다.The Si is an element that suppresses carbide formation in the process of austempering to increase the amount of solid solution C, thereby increasing the content of C diffused into the residual austenite and stabilizing the residual austenite. However, the higher the content, the lower the weldability, especially when it is added in excess of 1.0%, the residual austenite is excessively formed, thereby reducing the yield strength and lowering the shock absorbency. Therefore, the Si content is preferably set to 0.2 to 0.8%. Do.

상기 Mn은 재료의 강도를 증가시키고 C와 같이 마르텐사이트의 변태온도를 감소시켜 오스테나이트를 안정화시키는 원소이다. 그 함량이 증가하면 열연강판의 변형저항이 커져서 냉간압연성이 열화되므로, Mn의 함량은 2.0~2.5%로 설정하는 것이 바람직하다.Mn is an element that increases the strength of the material and stabilizes austenite by decreasing the transformation temperature of martensite, such as C. When the content is increased, the deformation resistance of the hot rolled steel sheet is increased, and thus the cold rolling property is deteriorated. Therefore, the Mn content is preferably set to 2.0 to 2.5%.

상기 S은 Mn과 결합하여 MnS 석출물을 형성하는 원소이다. 그런데, MnS는 개재물로 형성되어 균열의 시작점으로 작용할 수 있어서 적을수록 유리하므로, S의 함량은 0.015% 이하로 제한하는 것이 바람직하다.S is an element which combines with Mn to form a MnS precipitate. By the way, since MnS is formed as inclusions and can act as a starting point of cracking, the less it is advantageous, the S content is preferably limited to 0.015% or less.

상기 P은 결정립계에 편석하여 연주 및 압연공정에서 취성파괴의 원인이 되므로, 0.020% 이하로 제한하는 것이 바람직하다.Since P is segregated at grain boundaries and causes brittle fracture in the playing and rolling processes, the P content is preferably limited to 0.020% or less.

상기 Al은 강중 O를 석출시키기 위한 원소로, O를 석출시킨 후에는 잔류 Al의 함량을 0.04% 이하로 제한하는 것이 바람직하다.Al is an element for depositing O in steel, and after precipitation of O, it is preferable to limit the content of residual Al to 0.04% or less.

상기 N는 0.004% 이하로 제한하는 것이 바람직한데, 그 이유는 N의 함량이 많아지면 AlN을 형성하여 강도를 높이고 연신율을 저하시키기 때문이다.It is preferable to limit the N to 0.004% or less, because the content of N increases to form AlN to increase the strength and lower the elongation.

상기 Nb은 강의 인장강도와 함께 항복강도를 증가시키는 석출경화원소로, C와 반응해 NbC를 석출시킴으로써, 도1에 나타난 바와 같이, 강의 강도를 증가시킨다. 그러나, 많이 첨가되면 연신율을 감소시키므로, 연신율측면에서는 그 함량을 0.01~0.05%로 설정하는 것이 바람직하다.The Nb is a precipitation hardening element that increases the yield strength together with the tensile strength of the steel, and reacts with C to precipitate NbC, thereby increasing the strength of the steel, as shown in FIG. However, when a large amount is added, the elongation is reduced, so it is preferable to set the content at 0.01 to 0.05% in terms of elongation.

그러나, 본 발명에서는 Nb의 함량을 적절히 조절하여 우수한 항복강도와 연신율을 동시에 갖는 강판을 제조하므로, 강도측면에서 바람직한 Nb의 함량을 설정해야 한다. 이에 따라, 상기 Nb의 함량은 상기 C, Si, Mn의 함량에 따라 정하는데, 그 범위는 하기 관계식 1에 따라 설정하는 것이 바람직하다.However, in the present invention, since the steel sheet having an excellent yield strength and elongation at the same time by appropriately adjusting the content of Nb, it is necessary to set the desired content of Nb in terms of strength. Accordingly, the content of Nb is determined according to the content of C, Si, Mn, the range is preferably set according to the following relational formula (1).

[관계식 1][Relationship 1]

(58.2-145.5C[%] - 8.2Si[%] - 14.5Mn[%])/222 < Nb[%](58.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 <Nb [%]

< (68.2 - 145.5C[%] - 8.2Si[%] - 14.5Mn[%])/222<(68.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222

상기 관계식 1은 C, Si, Mn 함량을 변화시키면서 인장강도를 각각 측정하여 구한 C, Si, Mn의 함량변화에 따른 강도변화식과, Nb 함량에 따른 인장강도측정 실험결과를 이용해 구한 식으로, 이 식에 의하면 C, Si, Mn 및 Nb 첨가시 인장강도가 80~90kgf/㎟이 되는 Nb의 함량을 설정하는 것이 가능하다.Equation 1 is obtained by using the strength change equation according to the change of the content of C, Si, Mn obtained by measuring the tensile strength while changing the C, Si, Mn content, and the tensile strength measurement experiment results according to the Nb content, According to the formula, it is possible to set the content of Nb, the tensile strength of 80 ~ 90kgf / mm2 when adding C, Si, Mn and Nb.

한편, 도2는 C, Si, Mn의 함량변화에 따른 강도변화식으로 구한 인장강도와 실험으로 측정한 인장강도의 값을 비교한 그래프로, 계산식이 실험결과와 잘 일치하는 것을 보여주고 있다.On the other hand, Figure 2 is a graph comparing the tensile strength measured by the experimental results and the tensile strength obtained by the strength change equation according to the change in the content of C, Si, Mn, shows that the calculation equation is in good agreement with the experimental results.

본 발명의 냉연강판은 상기와 같은 조성으로 조성되고, 또한 높은 연신율을 얻기 위해서는 4~6%의 잔류 오스테나이트가 함유되어야 한다.The cold rolled steel sheet of the present invention is composed of the above composition, and in order to obtain a high elongation, 4 to 6% of retained austenite must be contained.

상기와 같이 조성된 강 슬라브를 이용하여 냉연강판으로 제조하는데 있어서,통상 1050~1300℃의 온도범위에서 재가열한 후, 890~940℃의 마무리압연온도에서 열간압연을 종료하고, 600~700℃에서 권취한 다음, 40~70%의 냉간압하율로 냉간압연하는 것이 바람직하다.In manufacturing a cold rolled steel sheet using the steel slab formed as described above, after reheating in the temperature range of 1050 ~ 1300 ℃ usually, the hot rolling is finished at the finish rolling temperature of 890 ~ 940 ℃, at 600 ~ 700 ℃ After winding, it is preferable to cold-roll at a cold reduction rate of 40 to 70%.

그 다음, 연속소둔하는데, 본 발명은 상기 연속소둔시 그 온도를 하기 관계식 2의 범위에서 실시하는 것을 특징으로 한다.Then, the continuous annealing, the present invention is characterized in that the temperature at the time of the continuous annealing is carried out in the range of the formula (2).

[관계식 2][Relationship 2]

563 + 651C[%] + 42Si[%] + 18Mn[%] < 소둔온도[℃] < 870℃563 + 651C [%] + 42Si [%] + 18Mn [%] <Annealing Temperature [℃] <870 ℃

그 이유는 다음과 같다.The reason for this is as follows.

C, Si, Mn을 함유한 강을 이용하여 연신율을 증가시키기 위해서는 잔류 오스테나이트의 함량을 증가시켜야 하는데, 이를 위해서는 강 성분에 적절한 열처리 사이클을 설정해야 한다.In order to increase the elongation using steel containing C, Si, and Mn, the content of residual austenite must be increased.

연속소둔로를 이용하여 소둔할 때 잔류 오스테나이트를 만들기 위해서는, 어닐링하여 오스테나이트를 만들고 오스템퍼링 온도까지 냉각한 다음 오스템퍼링하여 베이나이트를 형성하면서 고용 C를 잔류 오스테나이트로 확신시켜서 오스테나이트를 안정화시켜야 한다. 이 때, 소둔온도를 각 성분의 강에 따라 최적으로 설정하는 것이 중요하다.In order to make residual austenite when annealed using a continuous annealing furnace, annealing is made to form austenite, cooled to an ostempering temperature, and then austem tempered to form bainite, while confining solid solution C to residual austenite to stabilize austenite. You have to. At this time, it is important to set the annealing temperature optimally according to the steel of each component.

즉, 소둔온도가 너무 낮으면 열연강판에 존재하는 퍼얼라이트가 용해되지 못하여 오스테나이트가 너무 많이 형성되고 페라이트가 적어지므로 최종적으로 베이나이트가 많이 형성되어 강도가 증가하고 연신율이 감소한다.In other words, when the annealing temperature is too low, the austenite is not dissolved in the hot rolled steel sheet so much austenite is formed and the ferrite is reduced so that a lot of bainite is finally formed, thereby increasing strength and decreasing elongation.

한편, 소둔온도결정에 크게 영향을 주는 원소는 C, Si, Mn으로, 각 성분을 변화시켜 제조한 강을 각 소둔온도에서 51초 동안 유지하였을 때의 오스테나이트 양을 측정한 결과가 도3에 나타나 있다. 도3에 나타난 바와 같이, 오스테나이트의 양은 소둔온도에 따라 변화하는데, 그 소둔온도는 상기 C,Si,Mn의 함량과 관련된 것을 알 수 있다.On the other hand, the elements that greatly influence the annealing temperature determination are C, Si, Mn, and the result of measuring the amount of austenite when the steel produced by changing each component is maintained at each annealing temperature for 51 seconds is shown in FIG. Is shown. As shown in Figure 3, the amount of austenite changes depending on the annealing temperature, which can be seen that the annealing temperature is related to the content of C, Si, Mn.

즉, 같은 성분의 강을 이용하는 경우 잔류 오스테나이트의 양을 증가시키기 위해서는 최대의 페라이트를 형성시켜서 오스테나이트에 최대의 고용 C를 확산시켜야 하는 것이다. 이 때, 페라이트 분율을 최대로 증가시키면서 퍼얼라이트는 반드시 용해되어야 하는데, 그 이유는 퍼얼라이트에는 탄화물이 다량 존재하므로 퍼얼라이트가 존재하면 오스테나이트로 확산되어 가는 고용 C가 줄어들기 때문이다. 퍼얼라이트를 완전히 용해시키기 위해 C의 함량이 0.1, 0.15, 0.20% 인 각각의 강에서는 오스테나이트의 양이 19, 28, 38% 가 되어야 한다. 이 이상의 오스테나이트를 형성하게 되면 페라이트의 양이 줄어들기 때문에 잔류 오스테나이트를 많이 형성시키기 어렵다.That is, in the case of using steel of the same component, in order to increase the amount of retained austenite, it is necessary to form the maximum ferrite and diffuse the maximum solid solution C in the austenite. At this time, the ferrite must be dissolved while maximally increasing the ferrite fraction, since the presence of a large amount of carbide in the ferrite reduces the amount of solid solution C diffused into austenite when the ferrite is present. In order to completely dissolve the ferrite, the amount of austenite should be 19, 28 and 38% for each steel with a C content of 0.1, 0.15 and 0.20%. If the austenite is formed more than this, the amount of ferrite is reduced, so it is difficult to form a large amount of retained austenite.

따라서, 이러한 조건하에서 퍼얼라이트를 완전히 용해시키기 위해서는 563+ 651C[%] + 42Si[%] + 18Mn[%] 이상의 소둔온도가 바람직한 것이다. 반면에, 소둔온도가 870℃보다 높을 경우에는 오스테나이트가 너무 많이 형성되기 때문에, 상한은 870℃로 설정하는 것이 바람직하다.Therefore, annealing temperature of 563 + 651C [%] + 42Si [%] + 18Mn [%] or more is preferable to completely dissolve the pearlite under such conditions. On the other hand, when the annealing temperature is higher than 870 ° C, too much austenite is formed, so the upper limit is preferably set to 870 ° C.

한편, 상기한 온도범위에서 적정한 오스테나이트를 형성하기 위해서는 50초 이상 소둔하는 것이 바람직하다.On the other hand, in order to form the appropriate austenite in the above temperature range, it is preferable to anneal for 50 seconds or more.

그 다음, 상기와 같이 소둔하여 오스테나이트가 형성된 재료를 오스템퍼링하는데, 통상 퍼얼라이트가 형성되지 않도록 20~100℃/s 냉각속도로 오스템퍼링 개시 온도 420~480℃ 까지 급냉하고, 오스템퍼링시 소둔구간 형성된 오스테나이트의 일부가 베이나이트로 형성되고 고용 C가 잔류 오스테나이트로 확산되어 잔류 오스테나이트가 안정화되도록, 380~430℃까지 300~500초 동안 냉각하는 것이 바람직하다.Then, annealing as described above to austenite the material formed austenite, usually quenched to the oscillating start temperature 420 ~ 480 ℃ at a cooling rate of 20 ~ 100 ℃ / s so that the pearlite is not formed, annealing at the time of It is preferable to cool for 300-500 seconds to 380-430 degreeC so that a part of the formed austenite may be formed into bainite and solid solution C diffuses into residual austenite to stabilize the residual austenite.

이하, 실시예를 통해 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

하기 표1과 같이 조성되는 강 슬라브를 1250℃로 재가열하고 마무리압연온도는 910℃로 하여 열간압연을 실시하였다. 그 후, 620℃에서 권취하고 열간압연판의 표면 산화층을 산세로 제거한 후, 50% 냉간압연을 실시하여 1.4mm 두께의 냉연강판을 제조하였다. 그 다음, 하기 표2의 조건으로 냉간압연판을 연속소둔로에서 열처리하였는데, 소둔시간은 51초로 하였고, 오스템퍼링 시간은 300초로 하였다.The steel slab, as shown in Table 1 below, was reheated to 1250 ° C. and the final rolling temperature was 910 ° C. to perform hot rolling. Thereafter, the sheet was wound at 620 ° C., and the surface oxide layer of the hot rolled sheet was removed by pickling, followed by 50% cold rolling to prepare a 1.4 mm thick cold rolled steel sheet. Then, the cold rolled plate was heat-treated in a continuous annealing furnace under the conditions shown in Table 2 below, the annealing time was 51 seconds, the ostempering time was 300 seconds.

그 후, 상기 시편에 대한 재질특성을 측정하고 그 결과를 하기 표2에 나타내었다.Then, the material properties for the specimens were measured and the results are shown in Table 2 below.

강종Steel grade CC SiSi MnMn PP SS Sol.AlSol.Al NbNb MoMo 발명강Invention steel 0.140.14 0.480.48 2.202.20 0.0100.010 0.0090.009 0.0380.038 0.0180.018 -- 비교강1Comparative Steel 1 0.140.14 0.980.98 2.102.10 0.0100.010 0.0090.009 0.0380.038 0.0180.018 -- 비교강2Comparative Steel 2 0.140.14 0.470.47 2.402.40 0.0480.048 0.0110.011 0.0310.031 비교강3Comparative Steel 3 0.140.14 0.930.93 2.112.11 0.0130.013 0.0100.010 0.0450.045 비교강4Comparative Steel 4 0.150.15 0.990.99 2.392.39 0.0110.011 0.0090.009 0.0350.035 -- -- 비교강5Comparative Steel 5 0.140.14 0.980.98 2.112.11 0.0110.011 0.0100.010 0.0440.044 -- 0.100.10 비교강6Comparative Steel 6 0.140.14 1.001.00 2.052.05 0.0460.046 0.010.01 0.0100.010 비교강7Comparative Steel 7 0.140.14 1.001.00 2.052.05 0.0400.040 0.0090.009 0.0440.044 0.0090.009 -- 비교강8Comparative Steel 8 0.170.17 1.011.01 2.102.10 0.0430.043 0.010.01 0.0100.010 -- -- 비교강9Comparative Steel 9 0.140.14 1.431.43 1.771.77 0.0130.013 0.0100.010 0.0390.039 -- -- 비교강10Comparative Steel 10 0.140.14 1.431.43 1.791.79 0.0130.013 0.0110.011 0.0390.039

시편Psalter 제조조건Manufacture conditions 재질특성Material characteristics 소둔온도(℃)Annealing Temperature (℃) 오스템퍼링 개시온도(℃)Ostempering start temperature (℃) 항복강도(kgf/㎟)Yield strength (kgf / ㎡) 인장강도(kgf/㎟)Tensile strength (kgf / ㎡) 연신율(%)Elongation (%) 발명재Invention 발명강Invention steel 800800 450450 58.058.0 83.083.0 19.119.1 830830 450450 54.854.8 82.482.4 20.520.5 860860 450450 54.054.0 81.781.7 22.522.5 비교재Comparative material 비교강1Comparative Steel 1 800800 450450 50.350.3 81.481.4 23.023.0 830830 450450 47.247.2 78.378.3 25.225.2 860860 450450 44.244.2 78.078.0 24.624.6 830830 500500 45.645.6 89.189.1 16.316.3 830830 400400 46.046.0 81.381.3 19.719.7 비교강2Comparative Steel 2 800800 450450 49.249.2 8484 20.920.9 830830 450450 50.550.5 84.584.5 16.816.8 860860 450450 50.950.9 84.484.4 17.917.9 비교강3Comparative Steel 3 800800 450450 40.540.5 80.780.7 23.523.5 830830 450450 39.639.6 79.179.1 25.125.1 860860 450450 45.045.0 78.878.8 24.224.2 비교강4Comparative Steel 4 800800 450450 46.846.8 83.583.5 23.523.5 830830 450450 43.643.6 81.781.7 24.624.6 860860 450450 38.038.0 82.482.4 22.622.6 830830 500500 46.746.7 89.189.1 16.616.6 830830 400400 48.748.7 85.785.7 20.920.9 비교강5Comparative Steel 5 800800 450450 50.050.0 87.687.6 19.619.6 830830 450450 48.248.2 83.983.9 22.322.3 860860 450450 42.742.7 82.782.7 22.222.2 830830 500500 49.249.2 74.774.7 17.817.8 830830 400400 43.043.0 79.479.4 23.623.6 비교강6Comparative Steel 6 800800 450450 40.940.9 86.986.9 22.122.1 830830 450450 44.044.0 83.483.4 22.922.9 860860 450450 45.045.0 84.384.3 21.121.1 830830 500500 39.939.9 85.385.3 16.916.9 830830 400400 43.343.3 81.581.5 22.622.6 비교강7Comparative Steel 7 800800 450450 45.045.0 87.887.8 23.623.6 830830 450450 42.042.0 85.285.2 23.423.4 860860 450450 42.542.5 85.385.3 21.121.1 830830 500500 44.144.1 86.586.5 14.214.2 830830 400400 48.748.7 82.782.7 19.819.8 비교강8Comparative Steel 8 800800 450450 40.140.1 76.276.2 22.522.5 830830 450450 41.941.9 76.476.4 21.521.5 860860 450450 44.744.7 76.776.7 17.717.7 830830 500500 41.741.7 92.792.7 15.815.8 830830 400400 42.542.5 87.087.0 22.322.3 비교강9Comparative Steel 9 800800 450450 35.235.2 83.683.6 19.719.7 830830 450450 36.236.2 84.484.4 18.818.8 600600 450450 40.040.0 84.884.8 17.517.5 비교강10Comparative Steel 10 800800 450450 37.437.4 73.773.7 24.824.8 830830 450450 35.135.1 74.774.7 25.125.1 860860 450450 34.734.7 75.175.1 25.125.1

상기 표2에 나타난 바와 같이, 본 발명의 발명재는 인장강도 및 연신율이 비교재 대비 동등수준이면서, 항복강도는 비교재에 비해 우수한 것을 알 수 있다.As shown in Table 2, the invention material of the present invention can be seen that the tensile strength and elongation are equivalent to the comparative material, the yield strength is superior to the comparative material.

따라서, 본 발명은 스트레칭 및 블포밍으로 각각 자동차 범퍼를 제작하는 경우, 성형성이 우수한 것으로 판정받을 수 있다.Therefore, the present invention can be judged to be excellent in moldability when manufacturing an automobile bumper by stretching and foaming, respectively.

상기한 바와 같이, 본 발명은, 항복강도가 높아 충격흡수성이 우수하고 연신율이 높아 성형성이 우수하여, 자동차 범퍼레일에 적용해 자동차의 안정성을 향상시킬 수 있는 효과가 있는 것이다.As described above, the present invention has a high yield strength, excellent impact absorption, high elongation, excellent moldability, and has an effect of being applied to an automobile bumper rail to improve stability of an automobile.

Claims (3)

중량%로 C: 0.10~0.20%, Si: 0.2~0.8%, Mn: 2.0~2.5%, S: 0.015% 이하, P: 0.020% 이하, Al: 0.04% 이하, N: 0.004% 이하, Nb: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1을 만족하고, 그리고 잔류 오스테나이트가 4~6%인 것을 특징으로 하는 충격흡수성 및 성형성이 우수한 고강도 냉연강판By weight% C: 0.10 to 0.20%, Si: 0.2 to 0.8%, Mn: 2.0 to 2.5%, S: 0.015% or less, P: 0.020% or less, Al: 0.04% or less, N: 0.004% or less, Nb: High strength cold rolled steel sheet having excellent shock absorption and formability, containing 0.01 to 0.05%, remaining Fe and other unavoidable impurities, satisfying the following relational formula 1, and having 4 to 6% of retained austenite [관계식 1][Relationship 1] (58.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222 < Nb[%](58.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 <Nb [%] < (68.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222<(68.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 고강도 냉연강판의 제조방법에 있어서,In the manufacturing method of high strength cold rolled steel sheet, 중량%로 C: 0.10~0.20%, Si: 0.2~0.8%, Mn: 2.0~2.5%, S: 0.015% 이하, P: 0.020% 이하, Al: 0.04% 이하, N: 0.004% 이하, Nb: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1을 만족하는 강 슬라브를 열간압연후 냉간압연한 다음, 하기 관계식 2의 온도범위에서 연속소둔하고, 오스템퍼링을 실시하는 것을 특징으로 하는 충격흡수성 및 성형성이 우수한 고강도 냉연강판의 제조방법By weight% C: 0.10 to 0.20%, Si: 0.2 to 0.8%, Mn: 2.0 to 2.5%, S: 0.015% or less, P: 0.020% or less, Al: 0.04% or less, N: 0.004% or less, Nb: A steel slab containing 0.01 to 0.05%, the remaining Fe and other unavoidable impurities, and hot rolling the steel slab that satisfies the following relation 1, and then cold-rolled, and then continuously annealed in the temperature range of the following relation 2, and subjected to the ostempering Method for producing high strength cold rolled steel sheet with excellent shock absorption and formability [관계식 1][Relationship 1] (58.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222 < Nb[%](58.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 <Nb [%] < (68.2-145.5C[%]-8.2Si[%]-14.5Mn[%])/222<(68.2-145.5C [%]-8.2Si [%]-14.5Mn [%]) / 222 [관계식 2][Relationship 2] 563 + 651C[%] + 42Si[%] + 18Mn[%] < 소둔온도[℃] < 870℃563 + 651C [%] + 42Si [%] + 18Mn [%] <Annealing Temperature [℃] <870 ℃ 제2항에 있어서, 연속소둔후 20~100℃/sec의 냉각속도로 오스템퍼링 개시온도 420~480℃까지 급냉한 후 380~430℃까지 300~500초 동안 냉각하는 오스템퍼링을 실시하는 것을 특징으로 하는 충격흡수성 및 성형성이 우수한 고강도 냉연강판의 제조방법The method according to claim 2, wherein after the continuous annealing at a cooling rate of 20 ~ 100 ℃ / sec quenched to the osmosis start temperature 420 ~ 480 ℃ and then subjected to ostempering to cool to 300 to 500 seconds to 380 ~ 430 ℃ Method for producing high strength cold rolled steel sheet with excellent shock absorption and formability
KR10-1999-0059220A 1999-12-20 1999-12-20 A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it KR100415667B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059220A KR100415667B1 (en) 1999-12-20 1999-12-20 A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059220A KR100415667B1 (en) 1999-12-20 1999-12-20 A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it

Publications (2)

Publication Number Publication Date
KR20010064846A true KR20010064846A (en) 2001-07-11
KR100415667B1 KR100415667B1 (en) 2004-01-31

Family

ID=19627134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0059220A KR100415667B1 (en) 1999-12-20 1999-12-20 A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it

Country Status (1)

Country Link
KR (1) KR100415667B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554754B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 Method for Manufacturing Cold-rolled Steel Sheets with Ultra High Strength
KR100554753B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554754B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 Method for Manufacturing Cold-rolled Steel Sheets with Ultra High Strength
KR100554753B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof

Also Published As

Publication number Publication date
KR100415667B1 (en) 2004-01-31

Similar Documents

Publication Publication Date Title
KR101027250B1 (en) High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
KR20150086312A (en) High-Formability and Super-Strength Cold-Rolled Steel Sheet and Manufacturing Method Thereof
EP3395993A1 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
KR100554753B1 (en) High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof
KR20150142791A (en) High strength cold rolled steel sheet excellent in shape freezability, and manufacturing method thereof
KR20180034773A (en) High strength steel having hydrogen embrittlement resistance and method for manufacturing the same
KR100985322B1 (en) High strength cold rolled steel sheet having superior workability
KR20100137196A (en) Steel sheet with excellent impact resistant property, method for manufacturing the same, high strength structural member for vehicles and method for manufacturing the same
KR100782760B1 (en) Method for manufacturing cold-rolled steel sheet and galvanized steel sheet having yield ratio and high strength
KR100415667B1 (en) A method for high strength cold rolled steel sheet having superior impact absorption property and formability and a method for manufacturing it
KR100470652B1 (en) A method for manufacturing high strength cold rolled steel sheet with superior formability
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR20190107585A (en) Martensit-based precipitation hardening type lightweight steel and manufacturing method for the same
KR100368731B1 (en) Manufacturing method of high strength cold rolled steel sheet with excellent stretchability
KR102398271B1 (en) High-strength steel sheet having excellent bendability and hole expandability and method for manufacturing same
KR100481366B1 (en) A hot rolled trip steel sheet with excellent ductility, and a method for manufacturing it
KR102478807B1 (en) Steel sheet having high strength and high formability and method for manufacturing the same
KR101225264B1 (en) Ultra high strength hot-rolled steel with excellent formability and surface properties and method of manufacturing the same
KR20110062899A (en) Steel sheet with excellent cold rolling property and coatability, method for manufacturing the same, high strength structural member for vehicles and method for manufacturing the same
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability
KR100325109B1 (en) Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability
KR100273948B1 (en) The manufacturing method of hot rolling transformation organicplasticity steel with excellent tensile strength
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
KR20090103619A (en) High-strength steel sheet, and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 15