KR100325109B1 - Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability - Google Patents

Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability Download PDF

Info

Publication number
KR100325109B1
KR100325109B1 KR1019970055661A KR19970055661A KR100325109B1 KR 100325109 B1 KR100325109 B1 KR 100325109B1 KR 1019970055661 A KR1019970055661 A KR 1019970055661A KR 19970055661 A KR19970055661 A KR 19970055661A KR 100325109 B1 KR100325109 B1 KR 100325109B1
Authority
KR
South Korea
Prior art keywords
low carbon
steel
cold rolled
steel sheet
killed steel
Prior art date
Application number
KR1019970055661A
Other languages
Korean (ko)
Other versions
KR19990034162A (en
Inventor
김성진
한성호
Original Assignee
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사 filed Critical 포항종합제철 주식회사
Priority to KR1019970055661A priority Critical patent/KR100325109B1/en
Publication of KR19990034162A publication Critical patent/KR19990034162A/en
Application granted granted Critical
Publication of KR100325109B1 publication Critical patent/KR100325109B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/42Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for step-by-step or planetary rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: Provided is a method to produce bake hardenable low carbon cold rolled steel sheet with a tensile strength of 30 to 35 kgf/mm¬2 and improved bake hardenability of 3.0 to 5.0 kgf/mm¬2, which is valid range for aging resistance at ambient temperatures while confirming excellent formability without modification of conventional continuous annealing process only by addition of Mn, S, N and a trace of Ti. CONSTITUTION: The method includes the steps of soaking a Ti added low carbon aluminum killed steel comprising C 0.03 to 0.05 wt.%, Mn 0.1 to 0.6 wt.%, P 0.008 to 0.09 wt.%, S 0.02 to 0.05 wt.%, Soluble-Al 0.02 to 0.08 wt.%, 0.006 wt.% or less of N, Ti 0.015 to 0.05 wt.% at above 1200°C wherein Ti is incorporated to satisfy the relationship of Ti<=(48/14)N+(48/32)S; finish hot rolling the soaked Ti added low carbon aluminum killed steel at 900 to 950°C; winding the hot rolled Ti added low carbon aluminum killed steel at 700 to 750°C; cold rolling the hot rolled low carbon aluminum killed steel at a reduction rate of 75 %; quenching the cold rolled Ti added low carbon aluminum killed steel at 800 to 860°C at a cooling rate of 30 to 50°C/sec; continuous annealing the cold rolled Ti added low carbon aluminum killed steel for overaging; and temper rolling it at a reduction rate of 1.0 to 2.0 %.

Description

성형성이 우수한 소부경화형 저탄소 냉연강판의 제조 방법Manufacturing method of small hardening type low carbon cold rolled steel sheet with excellent formability

본 발명은 자동차의 내외판재등에 사용되고 있는 냉연강판의 제조 방법에 관한 것으로, 보다 상세하게는 우수한 성형성을 가지는 소부경화형 저탄소 냉연강판의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold rolled steel sheet used in interior and exterior sheet materials of automobiles, and more particularly, to a method for producing a small hardened type low carbon cold rolled steel sheet having excellent moldability.

최근 자동차 경량화에 의한 연비 향상과 차체의 경량화를 목적으로 자동차용 냉연강판의 고강도화 및 성형성 향상에 대한 요구가 한층 커지고 있다. 자동차용 냉연강판에 요구되는 특성으로는 항복강도, 인장강도, 양호한 프레스 성형성, 스폿트(Spot) 용접성 및 도장 내식성 등이 있다.In recent years, the demand for higher strength and formability of cold rolled steel sheets for automobiles has been increased for the purpose of improving fuel efficiency and reducing the weight of automobile bodies. Properties required for automotive cold rolled steel sheet include yield strength, tensile strength, good press formability, spot weldability and paint corrosion resistance.

일반적으로 강판은 성형성과 강도는 서로 상반된 특징을 나타내는 것이 보통이다. 냉연강판에 있어서 이와 같은 양 특성을 만족시킬 수 있는 강으로서는 복합 조직강과 소부경화형 냉연강판이 있다. 일반적으로 용이하게 제조할 수 있는 복합 조직강은 인장강도가 40㎏f/㎟ 이하인 강에서 프레스 성형시 연질강판에 가까운 항복강도를 가지므로 연성이 우수하며 프레스 성형후 도장 소부(Baking)처리시 가하는 온도에 의해 항복강도가 증가하는 강으로서 강도가 증가하면 성형성이 열화하는 종래의 냉연강판에 비해 매우 이상적인 강으로 주목받고 있다.In general, steel sheets generally exhibit characteristics in which moldability and strength are opposite to each other. Examples of the steel that can satisfy both of these characteristics in a cold rolled steel sheet include a composite structure steel and a hardened cold rolled steel sheet. In general, composite tissue steel that can be easily manufactured has excellent yield strength because it has a yield strength close to a soft steel sheet during press molding in steels having a tensile strength of 40 kgf / mm2 or less, and is excellent in ductility and applied during baking treatment after press molding. It is a steel whose yield strength increases with temperature, and it is attracting attention as a very ideal steel compared with the conventional cold rolled steel sheet which deteriorates formability as strength increases.

소부 경화는 강중에 고용된 침입형 원소인 탄소나 질소가 자동차 소부 처리와 같은 고온처리시 변형 과정에서 생성된 전위를 고착하여 발생되는 일종의 변형 시효를 이용한 것으로 고용탄소 및 질소가 증가하면 소부경화량은 증가하나 과다한 고용원소의 함유로 인해 상온 시효를 수반하여 성형성을 악화하게 되므로 적정한 양의 고용원소 제어가 매우 중요하다.Baking hardening is a kind of strain aging that occurs when carbon or nitrogen, an invasive element dissolved in steel, adheres to the potential generated during deformation during high temperature treatment such as automobile baking. Is increased, but due to the excessive content of solid elements, deterioration of moldability due to aging at room temperature, it is very important to control the appropriate amount of solid elements.

일반적으로 소부경화성을 가지는 냉연강판의 제조 방법으로서는 P 첨가 저탄소 Al 킬드(Killed)강을 단순히 저온에서 권취, 즉 열연 권취 온도가 400∼500℃ 온도 범위인 저온 권취를 이용하여 장시간 소둔하는 상소둔법에 의해 소부경화량이 약 4∼5㎏f/㎟ 정도의 강을 제조하는 방법이 주로 사용되었다. 이는 상소둔에 의해 성형성과 소부경화성의 양립이 보다 용이하기 때문이었다. 연속소둔법에 의한 P 첨가 Al 킬드강의 경우 비교적 빠른 냉각속도를 이용하기 때문에 소부경화성의 확보가 용이한 반면 급속가열, 단시간 소둔에 의해 고용원소의 과다한 첨가에 의한 성형성 악화의 문제점이 있어 가공성이 요구되지 않는 자동차의 외판에만 제한되고 있다. 최근 제강 기술의 비약적인 발전에 힘입어 강중에 적정 고용원소량의 제어가 가능하고 Ti 또는 Nb 등의 강력한 탄질화물 형성원소를 첨가한 극저탄소 Al 킬드강판의 사용으로 성형성이 매우 우수하며 소부경화성을 가지는 냉연강판이 제조되어 내덴트성이 요구되는 자동차 외판재용으로서의 사용이 증가 추세에 있다.In general, as a method for producing a cold-rolled steel sheet having a hardening hardening property, the P-added low-carbon Al-kilted steel is simply wound at a low temperature, that is, in an ordinary annealing method in which the hot-rolled winding temperature is annealed for a long time by using a cold winding having a temperature range of 400 to 500 ° C. Is mainly used to produce steel having a hardened amount of about 4 to 5 kgf / mm 2. This is because both of the moldability and the baking hardenability are more easily achieved by the annealing. In the case of P-added Al-kilted steel by the continuous annealing method, it is easy to secure baking hardenability because it uses a relatively fast cooling rate, but there is a problem of deterioration in formability due to excessive addition of solid elements by rapid heating and short time annealing. It is limited only to the outer shell of the car, which is not required. Thanks to the recent rapid development of steelmaking technology, it is possible to control the appropriate amount of solid solution in the steel, and it is very formable by using ultra-low carbon Al-kilted steel sheet containing strong carbonitride-forming elements such as Ti or Nb. Eggplants have been increasingly used for automotive exterior materials, in which cold rolled steel sheets are manufactured to require dent resistance.

일본 특허 공보 소 63004899 호에서는 C:0.005∼0.015%, S+N 함량 0.005%의 Ti 및 Ti,Nb 복합첨가 극저탄소 냉연강판에 대하여 개시하고 있으며, 일본 특허공보 소 57089437 호에서는 C: 0.005% 이하의 Ti,Nb 복합첨가강을 이용하여 소부경화량이 약 4 ㎏f/㎟ 이상인 냉연강판의 제조 방법에 대해 개시하고 있다. 이러한 방법은 Ti,Nb 첨가량 또는 소둔시 냉각속도를 제어함으로써 강중 고용탄소를 적절히 제어하여 재질의 열화를 방지하면서 적정 소부경화성을 부여하는 것이다.Japanese Patent Publication No. 63004899 discloses a Ti and Ti, Nb composite-added ultra low carbon cold rolled steel sheet having a C: 0.005 to 0.015% and an S + N content of 0.005%. In Japanese Patent Publication No. 57089437, C: 0.005% or less Disclosed is a method for producing a cold rolled steel sheet having a bake hardening amount of about 4 kgf / mm 2 or more using Ti, Nb composite additive steel. This method is to control the amount of Ti, Nb added or the cooling rate during annealing to appropriately control the solid solution carbon in the steel to prevent deterioration of the material and to impart proper baking hardening.

한편, 연속소둔법에서 저탄소강을 이용한 내시효성과 소부경화성을 확보하기 위한 방법으로서 일본 특허공보 평 5055573 호의 경우 C:0.01∼0.06%, S:0.002∼0.025%, Mn:0.05∼0.04%로 제어하고 슬라브 재가열 온도를 1000∼1130℃로 저온 가열한 냉연강판을 연속소둔시 50∼200℃/초의 급속냉각, 200∼310℃에서 수초간 유지후 재가열 및 경사과시효를 이용한 내시효성이 우수한 소부경화형 저탄소 냉연강판의 제조 방법에 대해 소개하고 있다.On the other hand, as a method for securing the aging resistance and baking hardening resistance using low carbon steel in the continuous annealing method, Japanese Patent Publication No. 5055573, C: 0.01 to 0.06%, S: 0.002 to 0.025%, Mn: 0.05 to 0.04% Cold-rolled steel sheet heated at low temperature to 1000 ~ 1130 ℃ at 50 ℃ to 200 ℃ / sec rapid cooling, maintained at 200 ~ 310 ℃ for several seconds, and then reheated and hardened with low age It introduces the manufacturing method of cold rolled steel sheet.

그러나 Ti 또는 Ti,Nb 복합첨가 극저탄소강의 경우 극저탄소강의 제조를 위해서는 제강단계에서 진공 탈가스(VacuumDegassing) 공정의 추가 및 적정 소부경화량의 확보를 위해 Ti 및 질소, 황 등의 엄격한 제어가 필요하게 되므로 원가 상승에 대한 문제가 발생한다. 또한 Nb 첨가 극저탄소강의 경우도 진공 탈가스 공정의 추가 및 특수 원소 첨가에 따른 원가 상승과 더불어 고온 소둔에 의한 작업성 악화 등의 문제가 초래된다.However, in the case of Ti or Ti, Nb composite addition ultra low carbon steel, strict control such as Ti, nitrogen, sulfur, etc. is required to add a vacuum degassing process and to secure an adequate baking hardening step in the steelmaking step to manufacture ultra low carbon steel. This raises the problem of cost increase. In addition, in the case of Nb-added ultra-low carbon steel, problems such as cost increase due to the addition of a vacuum degassing process and the addition of special elements, and deterioration of workability due to high temperature annealing are caused.

또한, 일본 특허공보 평5055573호에 개시된 방법은 성분의 엄격 제어 뿐만 아니라 연속소둔시 급냉후 재가열, 경사과시효라는 특수한 소둔 방법을 이용하고 있기 때문에 내시효성과 소부경화성을 가지는 냉연강판을 제조하기 위해서는 소둔 설비의 전면 개조가 불가피하며 저온 슬라브 재가열 온도로 인해 열간압연시 혼립조직에 의한 재질 열화가 예상된다.In addition, the method disclosed in Japanese Patent Application Laid-Open No. 5055573 uses a special annealing method such as reheating and quenching and aging at the time of continuous annealing as well as strict control of the components, so to produce cold rolled steel sheet having aging resistance and hardening hardening. It is inevitable that the front side of the facility will be retrofitted, and due to the low temperature slab reheating temperature, material degradation due to the mixed structure during hot rolling is expected.

본 발명은 상기 설명한 종래 기술의 문제점을 해결하기 위하여 이루어진 것으로, 진공 탈가스에 의한 제조 원가 상승을 최소화함으로써 저탄소강에 의한 소부경화형 냉연강판을 제조하고자 하였으며, 연속소둔설비의 개조 없이 단순히 탄소, Mn, S,N 및 소량의 강력한 탄질화물 형성 원소인 Ti 를 첨가함으로써 통상의 연속소둔법에 의한 성형성이 우수하며 상온 내시효성을 억제할 수 있는 범위인 3.0∼5.0 ㎏f/㎟ 의 적정 소부경화성을 가진 인장강도 30∼35 ㎏f/㎟ 의 Al 킬드 저탄소 소부경화형 냉연강판을 제조하는 방법을 제공하는데 그 목적이 있다.The present invention was made in order to solve the problems of the prior art described above, to minimize the increase in manufacturing cost by vacuum degassing to produce a hardened type cold-rolled steel sheet by low carbon steel, carbon, Mn simply without modification of continuous annealing equipment , S, N and a small amount of strong carbonitride-forming element, the addition of Ti, which is excellent in formability by the usual continuous annealing method, and the appropriate hardening hardening property of 3.0 to 5.0 kgf / mm 2, which can suppress the aging resistance at room temperature It is an object of the present invention to provide a method for producing an Al-killed low carbon hardened hardened cold rolled steel sheet having a tensile strength of 30 to 35 kgf / mm 2.

상기 목적을 달성하기 위한 본 발명의 성형성이 우수한 저탄소 소부경화형 냉연강판의 제조 방법은, 중량%로, C:0.03∼0.05%, Mn:0.1∼0.6%, P:0.008∼0.09%, S:0.02∼0.05%,가용(Soluble)Al:0.02∼0.08%, N:0.006% 이하, Ti:0.015∼0.05% 를 함유하면서 Ti≤(48/14)N + (48/32)S 의 관계를 만족하도록 Ti 를 첨가한 저탄소 Ai 킬드강을 1200℃ 이상에서 균질화 열처리후 900∼950℃의 온도범위에서 마무리 열간압연, 700∼750℃의 온도범위에서 권취후 약 75%의 냉간압연 및 800∼860℃의 온도범위에서 통상의 조건인 냉각속도 30∼50℃/초로 급냉후 경사과시효를 행하는 연속소둔을 실시하고 1.0∼2.0%의 조질압연을 실시하는 구성이다.In order to achieve the above object, the method for producing a low carbon calcined hardened cold rolled steel sheet excellent in formability of the present invention is, by weight, C: 0.03 to 0.05%, Mn: 0.1 to 0.6%, P: 0.008 to 0.09%, and S: 0.02 to 0.05%, Soluble Al: 0.02 to 0.08%, N: 0.006% or less, Ti: 0.015 to 0.05%, while satisfying the relationship of Ti≤ (48/14) N + (48/32) S Low-carbon Ai-killed steel with Ti added to be homogenized heat treatment at 1200 ℃ or higher and finished hot rolling at temperature range of 900 ~ 950 ℃, cold rolling at about 75% and 800 ~ 860 ℃ after winding in temperature range of 700 ~ 750 ℃ In the temperature range of, a rapid annealing is performed at a cooling rate of 30 ° C. to 50 ° C./sec, followed by ramping and aging, followed by temper rolling of 1.0% to 2.0%.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

우선, 본 발명에서의 합금 성분 및 제조 방법에 관해 설명한다.First, the alloy component and the manufacturing method in this invention are demonstrated.

탄소(C)는 고용강화와 소부경화 효과를 나타내는 원소로서 그 함유량이 적을수록 성형성 및 내시효성 향상에 유리하다. 탄소함량이 0.03% 이하인 경우 탄소함량을 낮추기 위해 제강 단계에서 진공 탈가스 등의 작업 추가에 의해 제조 원가 상승이 예상되어 원가 상승을 최소화하고자 하는 본 발명 목적에 위배된다. 또한 탄소 함량이 0.05% 이상인 경우 첨가되는 Ti 함량에 비해 탄소량이 매우 많으므로 강중 고용탄소량이 과다하게 되어 상온 내시효성이 확보되지 않아 프레스 성형시 스트레쳐 스트레인이 발생하게 되므로 성형성과 연성이 저하된다.Carbon (C) is an element exhibiting a solid solution hardening and a hardening hardening effect. The smaller the content, the more favorable the moldability and the aging resistance. When the carbon content is 0.03% or less, the production cost is expected to increase due to the addition of a vacuum degassing operation in the steelmaking step in order to lower the carbon content, which is against the object of the present invention to minimize the cost increase. In addition, when the carbon content is 0.05% or more, the amount of carbon is very high compared to the amount of Ti added, so that the amount of solid solution carbon in the steel becomes excessive and room temperature aging resistance is not secured.

망간(Mn)은 연성의 손상 없이 입자를 미세화시키며 강중의 황을 완전히 MnS 로 석출시켜 FeS 의 생성에 의한 열간취성을방지하기 위한 원소이며, 특히 저탄소강에서 성형성 향상 및 상온 내시효성 방지와 더불어 열연 단계에서 부터 석출함으로써 탄화물의 우선 핵생성 사이트(Site)로서 작용하는 강중 MnS 및 Ti 계 석출물중 MnS 석출물을 형성시키는 매우 중요한 원소이다. 따라서 망간 함량이 0.1% 이하인 경우 강도의 저하와 더불어 적정 MnS 석출물 크기의 제어 및 석출물 양이 적어지며 0.6% 이상 첨가될 경우 고용강화에 의해 강도는 급격히 증가하는데 비해 연성의 저하가 불가피하게 되며, 또한적정 소부경화성 확보를 위한 적정 MnS 석출물 크기 및 분포를 확보하기 위해서는 황의 함량이 증가하게 되어 재질의 열화가 발생하게 되므로 그 함량을 0.1∼0.6%로 제한한다.Manganese (Mn) is an element for minimizing particles without damaging ductility and precipitating sulfur in the steel to MnS to prevent hot brittleness due to the formation of FeS. In particular, in low carbon steels, in addition to improving moldability and preventing room temperature aging resistance Precipitation from the hot rolling step is a very important element for forming MnS precipitates in steel-based MnS and Ti-based precipitates which act as a nucleation site for carbides. Therefore, when the manganese content is 0.1% or less, the strength decreases and control of the appropriate MnS precipitate size and the amount of precipitates become small. When 0.6% or more is added, the strength increases rapidly due to solid solution strengthening. In order to secure the appropriate size and distribution of MnS precipitates to secure proper baking hardenability, the content of sulfur is increased to cause deterioration of the material, so the content is limited to 0.1 to 0.6%.

인(P)은 내시효성 개선에는 큰 영향이 없는 원소이나 강중에서 고용강화 효과가 가장 큰 치환형 합금 원소로서 면내 이방성을 개선하고 강도를 증진시키는 역할을 한다. 그러나 인의 함량이 0.008% 이하인 경우 상술한 효과는 얻을 수 없으며, 0.09% 이상으로 첨가한 경우 급격한 강도 상승과 더불어 입계에 편석하여 재료를 취화시키는등 연성의 저하가 불가피하므로 그 첨가량을 0.008∼0.009% 로 제한한다.Phosphorus (P) is a substitution-type alloy element having the highest solid solution strengthening effect in the element or steel that does not significantly affect the aging resistance, and serves to improve in-plane anisotropy and enhance strength. However, when the phosphorus content is 0.008% or less, the above-mentioned effect cannot be obtained. When the phosphorus content is added at 0.09% or more, the addition amount is 0.008 to 0.009% because the drop in ductility is inevitable such as sudden increase in strength and embrittlement of the material by segregation at grain boundaries. Limited to

황(S)은 고온에서 망간과 더불어 MnS 또는 Ti 첨가에 의해 또다른 탄화물 핵생성 사이트로 작용하는 TiS 황화물로 석출한다. 그러나 황의 함량이 0.02% 이하인 경우 적정 MnS 석출물의 크기 및 분포를 확보하기가 어려우며 0.05% 이상으로 첨가될 경우 적정 탄화물 핵생성 사이트 크기 및 분포 제어를 통해 적정 소부경화성을 얻기 위해서는 망간의 첨가량이 상대적으로 많아져 강도 상승에 따른 연성의 저하가 불가피하므로 그 첨가량을 0.02∼0.05%로 제한함이 바람직하다.Sulfur (S) precipitates as TiS sulfide, which acts as another carbide nucleation site by the addition of MnS or Ti with manganese at high temperatures. However, when the sulfur content is less than 0.02%, it is difficult to secure the proper size and distribution of the MnS precipitates. When the sulfur content is more than 0.05%, the amount of manganese added is relatively high in order to obtain the appropriate hardening hardening property by controlling the appropriate carbide nucleation site size and distribution. Since the decrease in ductility due to the increase in strength is inevitable, the addition amount is preferably limited to 0.02 to 0.05%.

알루미늄(Al)은 강의 탈산 및 탈질을 위해 첨가하는 원소로서 0.02% 이하로 첨가될 경우 강중에 산화개재물이 많아져 가공성이 열화되는등 기계적 성질에 불리하다. 또한, 0.08% 이상으로 과다하게 첨가될 경우 재질의 경화 및 제조 비용의 상승을 초래하게 되므로 그 함량을 0.02∼0.08%로 제한함이 바람직하다.Aluminum (Al) is an element added for deoxidation and denitrification of steel, and when added in an amount of 0.02% or less, it is disadvantageous to mechanical properties such as increase of oxidation inclusions in steel and deterioration of workability. In addition, when excessively added to more than 0.08% will cause an increase in the curing and manufacturing cost of the material is preferably limited to the content of 0.02 to 0.08%.

질소(N)는 본 발명에서 제시하는 탄소 범위내에서 입내 탄화물 핵생성 사이트로 작용하는 MnS, TiN 및 TiS 석출물 중 TiN 석출을 도모함으로써 적정 소부경화성과 성형성을 확보하기 위한 본 발명에서 매우 중요한 원소로서 다량의 첨가가 요구된다. 그러나 그 함량은 0.0060% 이상이 될 경우 다량의 TiN 석출을 위한 Ti 첨가량이 과도하게 증가하여 제조원가 상승은 물론 재질의 열화가 예상되므로 그 함량을 0.0060% 이하로 제한할 필요가 있다.Nitrogen (N) is a very important element in the present invention to secure proper baking hardenability and formability by promoting TiN precipitation in MnS, TiN and TiS precipitates serving as intracarbide carbide nucleation sites within the carbon range of the present invention. As a large amount of addition is required. However, if the content is more than 0.0060%, the amount of Ti added for a large amount of TiN precipitation is excessively increased, so that the production cost is increased and the material is expected to deteriorate. Therefore, it is necessary to limit the content to 0.0060% or less.

Ti 는 저탄소강에서 과도한 강중 고용탄소에 의한 성형성 및 시효 열화를 방지하고 적정 소부경화성을 얻을 수 있는 적정 고탄소량 확보를 위해 입내 탄화물핵생성 사이트로 작용하는 MnS 석출물 외의 또다른 Ti계 고온 석출물인 TiN 및 TiS 를 석출시키는 원소이다. 그러나 Ti 가 0.015% 이하로 첨가될 경우 탄화물 핵생성 사이트인 Ti 계 석출물의 절대량 감소로강중 고용탄소 증가에 의한 성형성 및 내시효성의 열화가 예상되며 Ti 를 0.05% 이상으로 첨가할 경우 과도한 Ti 첨가에의한 제조원가 상승은 물론 Ti 계 석출물의 양의 증가와 더불어 TiC 석출물이 생성되므로 TiC 석출에 기인한 석출경화 현상이 발생되어 오히려 성형성이 열화되는 문제가 발생되므로 가능한 그 범위를 좁게 관리할 필요가 있다. 따라서 Ti 계 석출물 생성에 의한 탄화물 핵생성 사이트의 작용으로 안정한 소부경화성을 얻기 위해서는 Ti 량의 범위를 0.015∼0.05% 이면서 Ti ≤(48/14)N + (48/32)S의 범위로 제한할 필요가 있다.Ti is another high temperature Ti-based precipitate other than MnS precipitate that acts as a nucleation nucleation site in the mouth in order to prevent moldability and aging deterioration due to excessively dissolved solid carbon in low carbon steels and to obtain an appropriate high carbon content to obtain proper hardening hardenability. It is an element which precipitates TiN and TiS. However, when Ti is added at 0.015% or less, the absolute amount of Ti-based precipitates, which are carbide nucleation sites, is expected to deteriorate formability and aging resistance due to the increase of solid solution carbon in the steel. Due to the increase of manufacturing cost and the increase of Ti-based precipitates, TiC precipitates are produced. Therefore, precipitation hardening due to TiC precipitation occurs and moldability is deteriorated. Therefore, it is necessary to manage the range as narrowly as possible. There is. Therefore, in order to obtain stable bake hardenability due to the action of carbide nucleation sites due to the formation of Ti-based precipitates, the Ti content should be limited to the range of Ti ≤ (48/14) N + (48/32) S while being 0.015 to 0.05%. There is a need.

상기 조성으로 전로에서 용해후 연속주조된 슬라브(Slab)는 열간압연 전의 오스테나이트 조직이 충분히 균질화될 수 있는1200℃ 이상에서 가열하여 Ar3온도 직상인 900∼950℃의 온도 범위에서 열간압연을 마무리한다.Slab slab (Slab) is melted in the converter after the composition in the composition is heated at more than 1200 ℃ can be sufficiently homogenized austenite structure before hot rolling to finish the hot rolling in the temperature range of 900 ~ 950 ℃ immediately above the Ar3 temperature .

슬라브 균열 온도가 1200℃ 이하인 경우 강의 조직이 균일한 오스테나이트 결정립이 되지 못하여 혼립이 발생하게 되며특히 강중에서 석출물이 조대화되는 문제점 등이 발생하게 되므로 탄화물 핵생성 사이트로서 역할을 할 수 있는 MnS 및 Ti 계 석출물의 적정 크기 제어가 어려워 적정 소부경화성의 확보가 어렵다.If the slab cracking temperature is less than 1200 ℃ MnS that can act as a carbide nucleation site because the steel structure does not become uniform austenite grains, and the mixture is generated, especially coarse precipitates occur in the steel, Difficult to control the appropriate size of Ti-based precipitates, it is difficult to secure appropriate baking hardenability.

열연 마무리 온도가 900℃ 이하일 경우 열연코일의 상부(Top), 하부(Tail) 및 가장자리가 단상 영역으로 되어 면내 이방성 증가 및 성형성이 열화된다. 또한950℃ 이상인 경우 현저한 조대립이 발생하여 가공후에 표면에 오렌지필(OrangePeel)등의 결함이 생기기 쉽다.When the hot rolling finish temperature is 900 ° C. or less, the top, tail and edges of the hot rolled coil become single phase regions, thereby increasing in-plane anisotropy and degrading formability. In addition, when the temperature is higher than 950 ° C, remarkable coarse grains are generated and defects such as orange peel are likely to occur on the surface after processing.

상기 열간압연 가공후 열연판에 잔존하는 고용탄소에 의한 가공성 악화를 방지하기 위해 700∼750℃의 고온 권취가 바람직하다. 그러나 권취온도가 750℃를 초과한 경우 이상립 성장이 발생하여 양호한 재질을 얻을 수 없으며, 또한 700℃ 이하인 경우 열연 조직의 세립화에 기인한 항복강도 상승 및 성형성 열화가 초래된다.High temperature winding of 700-750 degreeC is preferable in order to prevent the deterioration of the workability by the solid solution carbon which remain | survives in a hot rolled sheet after the said hot rolling process. However, when the coiling temperature exceeds 750 ℃ abnormal grain growth occurs and a good material can not be obtained, and if the temperature is less than 700 ℃, yield strength increase and moldability deterioration due to fine grain of the hot-rolled structure is caused.

열간압연이 완료된 강은 통상의 방법으로 산세를 행한후 75%의 냉간압연율로 0.8㎜ 두께까지 냉간압연을 행하고 또한 통상의 방법인 승온 속도 8∼10℃/초로 승온후 재결정이 완료되고 충분한 결정립 성장이 일어날 수 있는 800∼860℃의 온도범위에서 균열 온도 열처리후 3∼6℃/초의 냉각속도로 서냉, 30∼50℃/초의 냉각속도로 급냉후 과시효 초기 온도 350∼450℃에서 300∼400℃의 온도로 3∼5 분간 경사과시효 처리후 공냉하는 열처리를 행한다. 특히,소둔 균열 온도가 860℃ 이상이 되면 고온 소둔으로 인한 연속소둔시 장력 제어가 어렵게 되며 버너의 수명이 감소되는등 작업성 악화가 에상되므로 그 온도 범위를 800∼860℃으로 제한하는 것이 바람직하다.After hot rolling, the steel is pickled by a conventional method, followed by cold rolling to a thickness of 0.8 mm at a cold rolling rate of 75%, and a recrystallization is completed after raising the temperature at a normal temperature raising rate of 8 to 10 ° C / sec. Slow cooling at 3-6 ° C / sec after crack temperature heat treatment in the temperature range of 800-860 ° C where growth can occur, and rapid cooling at 30-50 ° C / sec after cooling Heat treatment which is air-cooled after inclination and aging treatment at the temperature of 400 degreeC for 3 to 5 minutes is performed. In particular, when the annealing crack temperature is higher than 860 ℃, it is difficult to control the tension during continuous annealing due to high temperature annealing and deterioration of workability such as reducing the life of the burner is expected to limit the temperature range to 800 ~ 860 ℃. .

상기와 같이 제조된 저탄소 Al 킬드강을 이용하여 적정 소부경화성과 더불어 내시효성을 확보하기 위한 수단으로 통상의 조질압연율 보다 다소 높은 1.0∼2.0%의 조질압연을 행한다. 조질압연율이 1.0% 이하인 경우 상온에서 장시간 보전시 시효가 발생하여 항복강도가 증가하고 프레스 가공에 치명적인 항복점 연신율이 재현되는등 내시효성 측면에서 매우 불리하다. 그러나 조질압연율이 2.0% 이상인 경우 과다한 조질압연에 의한 가공경화가 발생하여 강도가 증가하고 연성이 저하되는등 재질의 열화가 발생한다.By using the low carbon Al-kilted steel prepared as described above, temper rolling of 1.0-2.0%, which is somewhat higher than the usual temper rolling ratio, is performed as a means for securing appropriate bake hardening resistance and aging resistance. When the temper rolling ratio is 1.0% or less, aging occurs during long-term preservation at room temperature, yielding strength is increased and yield point elongation, which is fatal to press processing, is very disadvantageous in terms of aging resistance. However, when the temper rolling ratio is 2.0% or more, work hardening occurs due to excessive temper rolling to increase the strength and deteriorate the ductility.

이하에서는 실시예와 관련하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

아래의 표 1 은 탄소, 망간, 황 및 Ti 를 엄격제어한 발명강과 비교강의 화학 성분 및 제조 조건을 나타낸 것으로 1∼5번강이 발명강이며, 6∼10번강이 비교강이다.Table 1 below shows the chemical composition and manufacturing conditions of the invention steel and the comparative steel with strict control of carbon, manganese, sulfur and Ti. Steels 1 to 5 are invention steels and steels 6 to 10 are comparative steels.

표 1Table 1

Figure pat00001
Figure pat00001

상기 표 1 의 강들을 열간압연하고 통상의 조건인 75%의 냉간압연을 행한후 또한, 승온 속도 8℃/초, 800℃의 소둔온도에서 균열처리후 5℃/초의 냉각속도로 서냉, 약 40℃/초의 냉각속도로 급냉처리후 과시효 초기 온도인 400℃에서 350℃까지3분간 경사과시효 처리후 공냉하는 통상의 연속소둔 및 약 1.5% 의 조질압연을행한후 기게적 성질을 측정하였으며 그 결과를 표 2에 나타내었다.After hot-rolling the steels of Table 1 above and performing cold rolling at 75%, which is the normal condition, and after cooling at a temperature rising rate of 8 ° C / sec and 800 ° C annealing at a cooling rate of 5 ° C / sec, about 40 After rapid quenching at a cooling rate of ℃ / sec, the mechanical properties were measured after the continuous continuous annealing and air-tight rolling of about 1.5%, followed by gradient and aging treatment for 3 minutes from 400 ℃ to 350 ℃. Is shown in Table 2.

표 2TABLE 2

Figure pat00002
Figure pat00002

탄소:0.022∼0.044%, 망간:0.11∼0.17%, 인:0.013∼0.014%, 황:0.022∼0.026%, 질소:0.0037∼0.0059%, Ti:0.015∼0.047% 이면서 Ti 량의 범위가 Ti≤(48/14)N + (48/32)S 의 식을 만족하도록 Ti 량을 제어한 발명강 1∼5 번은 소부경화량(BH)이 4.0∼4.7㎏f/㎟, 연신율이 40∼42.2%, 인장강도33.4∼34.9 ㎏f/㎟을 나타내며 시효지수 3.0 ㎏f/㎟ 이하로서 본 발명에 의해 성형성과 상온 내시효성이 우수한 소부경화형 저탄소 냉연강판을 제조할 수 있음을 알 수 있다.Carbon: 0.022-0.044%, Manganese: 0.11-0.17%, Phosphorus: 0.013-0.014%, Sulfur: 0.022-0.026%, Nitrogen: 0.0037-0.0059%, Ti: 0.015-0.047% Inventive steel Nos. 1 to 5, in which the amount of Ti was controlled to satisfy the formula of N + (48/32) S, the baking hardening amount (BH) was 4.0 to 4.7 kgf / mm 2, the elongation was 40 to 42.2%, Tensile strength of 33.4 ~ 34.9 kgf / mm 2 and the aging index of 3.0 kgf / mm 2 or less, it can be seen that according to the present invention can be produced a small hardening type low carbon cold rolled steel sheet excellent in moldability and room temperature aging resistance.

6번강은 다른 성분들은 본 발명강의 성분 범위를 잘 만족하고 있으나 황의 함량이 0.007%로서 매우 낮으므로 강중에 탄화물 핵생성 사이트로 작용하는 MnS 및 TiS 석출물을 충분히 석출시키지 못하여 소부경화량이 5.8 ㎏f/㎟ 로 매우 높아 시효지수 3.5 ㎏f/㎟ 로서 상온 내시효성이 열화되었으며, 또한 Ti 량의 범위가 본 발명강의 제시 범위를 만족하고 있더라도 낮은 황의 함량으로 인해 첨가된 Ti 량이Ti의 성분 규제범위인 Ti≤(48/14)N + (48/32)S 보다 높았기 때문에 강중에TiC 석출물의 생성에 의한 석출경화의 발생으로 재질의 열화가 발생하였다.Steel 6 satisfies the range of components of the present invention, but the sulfur content is very low as 0.007%, so the precipitation hardening amount of MnS and TiS, which acts as a carbide nucleation site in the steel, cannot be sufficiently precipitated. The aging index is 3.5 ㎏f / mm2, which is very high as mm2, and the aging resistance is deteriorated at room temperature. Also, even though the amount of Ti is within the range of the present invention, the amount of Ti added due to the low sulfur content is Ti Since it was higher than ≤ (48/14) N + (48/32) S, the material was degraded due to precipitation hardening caused by the formation of TiC precipitates in the steel.

7번강 또한 다른 성분들은 본 발명의 성분 규제 범위를 잘 만족하고 있으나 Ti 량이 매우 높아 과도한 Ti계 석출물에 의해 재질열화가 발생하였으며 또한 다량의 Ti 첨가에 의한 제조 원가 상승이 발생할 가능성이 있다.Steel 7 also satisfies the component regulation range of the present invention, but the amount of Ti is very high, which causes material degradation due to excessive Ti-based precipitates, and also increases the manufacturing cost due to the addition of a large amount of Ti.

8번강은 황의 함량이 0.012% 로서 본 발명의 규제 범위 보다 다소 낮아 탄화물 핵생성 사이트로 작용하는 MnS 및 TiS 석출물의 양이 작아졌으며 또한 탄소의 함량이 0.062% 로서 매우 높아 강중 고용탄소량이 충분히 석출되지 못하고 강중에 잔존하게 되어 재질의 열화와 더불어 소부경화량이 5.9 ㎏f/㎟ 로서 매우 높아 상온 내시효성이 매우 열화되었다.Steel No. 8 has a sulfur content of 0.012%, which is somewhat lower than the scope of the present invention, resulting in a decrease in the amount of MnS and TiS precipitates acting as a carbide nucleation site and a very high carbon content of 0.062%. In addition, it remains in the steel, and as the material deteriorates, the bake hardening amount is 5.9 kgf / mm 2, which is very high.

9번강은 다른 성분들은 본 발명의 성분 범위를 잘 만족하고 있으나 Ti 가 첨가되지 않아 Ti계 석출물에 의한 탄화물 핵생성 사이트로서의 효과는 없었으며 이에 따라 소부경화성이 6.9 ㎏f/㎟ 로서 매우 높아 시효지수가 4.2㎏f/㎟ 로서 상온 내시효성이 열화되었다.Although steel 9 satisfies the component range of the present invention well, the addition of Ti did not have an effect as a carbide nucleation site due to Ti-based precipitates, and thus the hardening hardenability was very high as 6.9 kgf / mm 2. The room temperature aging resistance was deteriorated as 4.2 kgf / mm <2>.

10번강은 모든 성분들이 본 발명의 성분 규제 범위를 잘 만족하고 있으나 제조조건에 있어서 슬라브 재가열온도가 본 발명강을 제조시 규정하는 조건 보다 낮은 1030℃ 이므로 탄화물 핵생성 사이트로 작용하는 석출물들이 저온 재가열에 의해 적정 크기 이상으로 조대하게 성장하게 되며 또한 석출물 분포 밀도가 감소하게 되므로 낮은 슬라브 재가열 온도에 의해 재질은 연화되었으나 소부경화량이 5.8㎏f/㎟ 로서 매우 높아 상온 내시효성이 열화되었다.In steel 10, all the components satisfy the component regulation range of the present invention, but in the manufacturing conditions, the slabs reheating temperature is 1030 ° C lower than the conditions specified when manufacturing the present invention steel, so the precipitates acting as carbide nucleation sites are reheated at low temperature. Because of the coarse growth of more than the proper size and the decrease of precipitate distribution density, the material was softened by the low slab reheating temperature, but the baking hardening amount was very high as 5.8kgf / mm2.

따라서, 상술한 바와 같은 본 발명에 의하면 소부경화량이 3.0∼5.0㎏f/㎟ 이고, 연신율이 40% 이상이며 인장강도가 30∼35㎏f/㎟ 급의 성형성이 개선된 저탄소 소부경화형 냉연강판이 얻어진다.Therefore, according to the present invention as described above, the low-carbon bake hardened cold-rolled steel sheet having a bake hardening amount of 3.0 to 5.0 kgf / mm 2, an elongation of 40% or more, and a tensile strength of 30 to 35 kgf / mm 2 formability is improved. Is obtained.

Claims (1)

중량%로, C:0.03∼0.05%, Mn:0.1∼0.6%, P:0.008∼0.09%, S:0.02∼0.05%,가용(Soluble)Al:0.02∼0.08%,N:0.006% 이하, Ti:0.015∼0.05% 를 함유하면서 Ti≤(48/14)N + (48/32)S 의 관계를 만족하도록 Ti 를 첨가한 저탄소 Ai 킬드강을 1200℃ 이상에서 균질화 열처리후 900∼950℃의 온도범위에서 마무리 열간압연, 700∼750℃의 온도범위에서 권취후 약 75%의 냉간압연 및 800∼860℃의 온도범위에서 통상의 조건인 냉각속도 30∼50℃/초로 급냉후 경사과시효를 행하는 연속소둔을 실시하고 1.0∼2.0%의 조질압연을 실시하는 것을 특징으로 하는 성형성이 개선된 저탄소 소부경화형 냉연강판의 제조 방법.By weight%, C: 0.03-0.05%, Mn: 0.1-0.6%, P: 0.008-0.09%, S: 0.02-0.05%, Soluble Al: 0.02-0.08%, N: 0.006% or less, Ti : Temperature of 900-950 ° C after homogenization heat treatment of low-carbon Ai-killed steel containing Ti to satisfy the relation of Ti≤ (48/14) N + (48/32) S containing 0.015-0.05% at 1200 ° C or higher Finish hot rolling in the range, cold rolling of about 75% after winding in the temperature range of 700 to 750 ° C, and continuous cooling and aging after rapid cooling at a cooling rate of 30 to 50 ° C / sec, which is a normal condition in the temperature range of 800 to 860 ° C. A method for producing a low carbon calcined hardened cold rolled steel sheet having improved formability, characterized by performing annealing and tempering rolling at 1.0 to 2.0%.
KR1019970055661A 1997-10-28 1997-10-28 Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability KR100325109B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970055661A KR100325109B1 (en) 1997-10-28 1997-10-28 Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970055661A KR100325109B1 (en) 1997-10-28 1997-10-28 Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability

Publications (2)

Publication Number Publication Date
KR19990034162A KR19990034162A (en) 1999-05-15
KR100325109B1 true KR100325109B1 (en) 2002-07-27

Family

ID=37478157

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970055661A KR100325109B1 (en) 1997-10-28 1997-10-28 Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability

Country Status (1)

Country Link
KR (1) KR100325109B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496532B1 (en) * 2000-12-07 2005-06-22 주식회사 포스코 A bake-hardenable cold rolled steel sheet with superior formability, and a method for manufacturing it
WO2005061748A1 (en) * 2003-12-23 2005-07-07 Posco Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same

Also Published As

Publication number Publication date
KR19990034162A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
KR100985286B1 (en) High Manganese Steel Having High Strength and Excellent Delayed Fracture Resistance and Manufacturing Method Thereof
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR20200075991A (en) Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
EP3647454A1 (en) Low-cost and high-formability 1180 mpa grade cold-rolled annealed dual-phase steel plate and manufacturing method thereof
KR20080061855A (en) Dual phase steel having superior deep drawing, and method for manufacturing of it
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
KR102557845B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR100325109B1 (en) Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability
WO2003076675A1 (en) Steel plate subjected to heat treatment and process for producing the same
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
JP3882263B2 (en) Steel plate with excellent panel appearance and dent resistance after panel processing
KR100276277B1 (en) The manufacturing method for low carbon steel sheet with excellent workability and anti-aging effect
KR20040057777A (en) Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
KR100470640B1 (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
KR0143469B1 (en) The making method of cold rolling steel plate with forming
KR102245228B1 (en) Steel sheet having excellent uniform elongation and strain hardening rate and method for manufacturing thereof
KR100273846B1 (en) The manufacturing method for low carbon cold rolling steel sheet with excellent normal temperature anti aging and formability
KR102678567B1 (en) Ultra high strength cold rolled steel having excellent bendability and method of manufacturing the same
KR20090043442A (en) A cold rolledsteel sheet and method for manufacturing the same
KR20080085808A (en) A high carbon steel sheet superior in strenth and toughness and a manufacturing method thereof
KR100368220B1 (en) A method for manufacturing a soft cold rolling steel sheet having high formability and annealed hardenability
KR20100060565A (en) Manufacturing method of high strength steel sheet having excellent bake-hardenability
KR100345019B1 (en) Manufacturing method of steel plate for fork bolt and wedge striker of car door latch
KR100496532B1 (en) A bake-hardenable cold rolled steel sheet with superior formability, and a method for manufacturing it
KR100338702B1 (en) METHOD FOR MANUFACTURING 60kg CLASS COLLED ROLLING STEEL WITH HIGH DUCTILITY

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee