KR20010061561A - A etching method of organic-based interlayer dielectric - Google Patents

A etching method of organic-based interlayer dielectric Download PDF

Info

Publication number
KR20010061561A
KR20010061561A KR1019990064057A KR19990064057A KR20010061561A KR 20010061561 A KR20010061561 A KR 20010061561A KR 1019990064057 A KR1019990064057 A KR 1019990064057A KR 19990064057 A KR19990064057 A KR 19990064057A KR 20010061561 A KR20010061561 A KR 20010061561A
Authority
KR
South Korea
Prior art keywords
etching
organic
interlayer dielectric
insulating film
interlayer insulating
Prior art date
Application number
KR1019990064057A
Other languages
Korean (ko)
Inventor
박수영
조정일
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990064057A priority Critical patent/KR20010061561A/en
Publication of KR20010061561A publication Critical patent/KR20010061561A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: A method for etching an organic interlayer dielectric is to prevent a lateral etching of an organic interlayer dielectric and the damage of the organic interlayer dielectric due to an etching of a hard mask. CONSTITUTION: An organic interlayer dielectric is deposited on a semiconductor substrate with a predetermined lower layer formed thereon. A hard mask is deposited on the organic interlayer dielectric. Then, the hard mask is patterned by performing a photolithography and an etching process. The organic interlayer dielectric is etched through a contact hole etching process, using the hard mask as an etch barrier. The etching gas uses a mixed gas of O2, N2, and SO2. The contact hole etching process is performed within TCP(transformer-coupled plasma) chamber. The ratio of SO2 gas is restricted to 5 to 20% in a gas amount. The etching temperature is -30 to 0 deg.C. The top power is 300 to 700 W, and the bottom power is 50 to 200 W.

Description

유기물계 층간절연막의 식각방법{A ETCHING METHOD OF ORGANIC-BASED INTERLAYER DIELECTRIC}Etching method of organic material interlayer insulating film {A ETCHING METHOD OF ORGANIC-BASED INTERLAYER DIELECTRIC}

본 발명은 반도체 기술에 관한 것으로, 특히 반도체 소자의 층간절연막 관련 기술에 관한 것이며, 더 자세히는 유기물계 층간절연막의 식각 공정에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor technology, and more particularly, to a technology related to an interlayer insulating film of a semiconductor device, and more particularly, to an etching process of an organic material interlayer insulating film.

반도체 메모리를 비롯한 반도체 소자는 통상 다층 구조로 이루어지는데, 각각의 층을 이루는 전도층 간의 절연을 위하여 층간절연막이 사용되고 있다. 층간절연막으로는 대부분 실리콘산화막 계열의 절연막이 사용되고 있다.BACKGROUND Semiconductor devices, including semiconductor memories, generally have a multilayer structure, and an interlayer insulating film is used to insulate the conductive layers constituting each layer. As the interlayer insulating film, an insulating film based on a silicon oxide film is mostly used.

한편, 반도체 소자의 고집적화가 가속되어 차세대 초고집적 반도체 소자는 그 디자인 룰(design rule)이 0.13㎛ 이하에 이르고 있다. 이와 같은 초미세 디자인 룰을 가지는 반도체 소자에서는 배선간의 피치(pitch)가 매우 작아짐에 따라 배선간 정전용량이 커지는 문제점이 있으며, 이러한 배선간 정전용량의 증가는 RC-지연의 증가를 가져와 소자의 동작 속도를 떨어뜨리는 요인이 되고 있다.On the other hand, high integration of semiconductor devices has accelerated, and the design rules of the next generation ultra high density semiconductor devices have reached 0.13 µm or less. In the semiconductor device having such an ultra-fine design rule, there is a problem in that the capacitance between wires increases as the pitch between wires becomes very small. Such an increase in the capacitance between wires leads to an increase in RC-delay, resulting in operation of the device. It is a factor that slows down.

최근, 이러한 배선의 RC-지연을 줄이기 위한 하나의 방법으로 실리콘산화막에 비해 유전율이 매우 낮은 저유전율 층간절연막을 사용하는 기술이 제안되었다. 이러한 저유전율 층간절연막으로 C-H 체인과 산소(O)의 결합으로 이루어진 폴리머 성분의 유기물계 산화막이 주류를 이루고 있으며, 향후 초고집적 소자 개발의 핵심 기술로 대두되고 있다.Recently, a technique of using a low dielectric constant interlayer insulating film having a very low dielectric constant compared with a silicon oxide film has been proposed as one method for reducing the RC-delay of such wiring. As such a low dielectric constant interlayer insulating film, a polymer-based organic oxide film composed of a combination of C-H chain and oxygen (O) is the mainstream, and has emerged as a core technology for the development of ultra-high density devices in the future.

이러한 유기물계 층간절연막을 사용하는 경우, 콘택홀 식각 공정이나 대머신 금속배선 공정을 위한 트렌치 식각시에 불소계 가스를 식각제로 사용하는데, 이 식각제에 의해 하드 마스크로 사용된 절연막이 함께 식각되어 층간절연막의 손실(loss)을 유발하는 문제점이 발생한다.In the case of using such an organic interlayer insulating film, a fluorine-based gas is used as an etchant in the trench etching for the contact hole etching process or the metallization process of the damascene. A problem that causes loss of the insulating film occurs.

또한, 식각시 유기물계 층간절연막의 측면(lateral) 식각이 유발되어 콘택홀 또는 트렌치 측벽의 네거티브 경사(negative slope)를 유발하거나, 후속 금속 매립시 보이드(void)를 유발하여 반도체 소자의 신뢰도를 저하시키는 문제점이 있었다. 이러한 측면 식각 특성은 고온 식각 공정에서 심하게 나타나기 때문에 통상 상온에서 공정을 진행하는데, 이 경우에도 측면 식각 특성은 완전히 제거되지 않아 해결 과제로 남아 있다.In addition, the sidewall etching of the organic interlayer insulating layer may be caused during etching to cause a negative slope of the contact hole or trench sidewalls, or to cause voids during subsequent metal filling, thereby lowering the reliability of the semiconductor device. There was a problem letting. Since the side etch characteristics are severely shown in the high temperature etching process, the process is usually performed at room temperature. In this case, the side etch characteristics are not completely removed and remain a problem.

첨부된 도면 도 1은 종래기술에 따른 듀얼 대머신 타입 금속배선 형성 공정 중 층간절연막 식각 후의 단면을 도시한 것으로, 측면 식각이 발생하는 지역을 예시하고 있다. 미설명 도면 부호 '10'은 하부 전도층, '11', '13'은 유기물계 층간절연막, '12', '14'는 하드 마스크를 각각 나타낸 것이다.1 is a cross-sectional view after the interlayer dielectric layer is etched during the dual damascene type metallization forming process according to the prior art, illustrating an area where side etching occurs. Reference numeral '10' denotes a lower conductive layer, '11', '13' denotes an organic interlayer insulating layer, and '12' and '14' denote hard masks, respectively.

한편, 첨부된 도면 도 2는 종래기술에 따른 유기물계 층간절연막 식각 후의 단면 SEM(scanning electron microscope) 사진을 도시한 것으로, 유기물계 층간절연막(low-k)의 측면 식각이 발생한 상태를 확인할 수 있다.On the other hand, Figure 2 is a cross-sectional SEM (electron scanning electron microscope) photograph after etching the organic interlayer insulating film according to the prior art, it can be confirmed that the side etching of the organic interlayer insulating film (low-k) occurs. .

본 발명은 하드 마스크의 식각에 의한 유기물계 층간절연막의 손실과 유기물계 층간절연막의 측면 식각 현상을 방지할 수 있는 반도체 소자 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device capable of preventing loss of an organic interlayer insulating film due to etching of a hard mask and side etching of the organic interlayer insulating film.

도 1은 종래기술에 따른 듀얼 대머신 타입 금속배선 형성 공정 중 층간절연막 식각 후의 단면도.1 is a cross-sectional view after etching the interlayer insulating film during the dual damascene type metal wiring forming process according to the prior art.

도 2는 종래기술에 따른 유기물계 층간절연막 식각 후의 단면 SEM(scanning electron microscope) 사진.Figure 2 is a scanning electron microscope (SEM) photograph of a cross section after etching an organic interlayer insulating film according to the prior art.

도 3은 본 발명의 일 실시예에 따른 층간절연막 식각 후의 단면 SEM 사진.3 is a cross-sectional SEM photograph after etching the interlayer insulating film according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 하부 전도층10: lower conductive layer

11, 13 : 유기물계 층간절연막11, 13: organic material interlayer insulating film

12, 14 : 하드 마스크12, 14: hard mask

상기의 기술적 과제를 해결하기 위한 본 발명의 특징적인 반도체 소자 제조방법은, 소정의 하부층 상에 유기물계 층간절연막을 형성하는 제1 단계와, O2, N2, SO2혼합 가스를 사용하여 -30℃∼0℃의 공정 온도로 상기 유기물계 층간절연막을 선택 식각하는 제2 단계를 포함하여 이루어진다.The characteristic semiconductor device manufacturing method of the present invention for solving the above technical problem, the first step of forming an organic interlayer insulating film on a predetermined lower layer, and using a mixed gas of O 2 , N 2 , SO 2- And a second step of selectively etching the organic-based interlayer insulating film at a process temperature of 30 ° C. to 0 ° C.

즉, 본 발명은 유기물계 층간절연막 식각 공정시 식각제로 종래의 불소계 가스를 대신하여 O2, N2, SO2혼합 가스를 사용하며, 식각시 공정 온도를 0℃ 이하의 저온에서 진행한다. 이때, 적절한 전력 조건을 사용하는 것이 바람직하며, TCP 챔버의 경우 300∼700W의 탑 파워, 50∼200W의 바텀 파워를 사용한다.That is, the present invention uses O 2 , N 2 , SO 2 mixed gas in place of the conventional fluorine-based gas as an etchant during the organic-based interlayer insulating film etching process, the process temperature during etching proceeds at a low temperature of 0 ℃ or less. At this time, it is preferable to use suitable power conditions, and in the case of the TCP chamber, 300-700W of top power and 50-200W of bottom power are used.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

본 실시예에 따른 공정은 우선, 소정의 하부층이 형성된 반도체 기판 상에 유기물계 층간절연막을 증착하고, 그 상부에 하드 마스크층을 증착한다.In the process according to the present embodiment, first, an organic-based interlayer insulating film is deposited on a semiconductor substrate on which a predetermined lower layer is formed, and then a hard mask layer is deposited thereon.

다음으로, 사진 및 식각 공정을 실시하여 하드 마스크층을 패터닝하고, 하드 마스크를 식각 장벽으로 하여 유기물계 층간절연막을 콘택홀 식각을 실시한다.Next, a photomask and an etching process are performed to pattern the hard mask layer, and a contact hole etching is performed on the organic interlayer insulating layer using the hard mask as an etching barrier.

이때, 콘택홀 식각 공정은 TCP(transformer-coupled plasma) 챔버에서 수행하며, 식각 가스로는 O2, N2, SO2혼합 가스를 사용하되 SO2가스의 비율을 전체 가스량의 5∼20%로 제한한다. 또한, 식각시 공정 온도는 -30℃∼0℃가 바람직하며,300∼700W의 탑(top) 파워, 50∼200W의 바텀(bottom) 파워를 사용한다.In this case, the contact hole etching process is performed in a transformer-coupled plasma (TCP) chamber, and as an etching gas, O 2 , N 2 and SO 2 mixed gases are used, but the ratio of SO 2 gas is limited to 5-20% of the total gas amount. do. In the etching process, the process temperature is preferably -30 ° C to 0 ° C, and a top power of 300 to 700W and a bottom power of 50 to 200W are used.

상기와 같이 유기물계 층간절연막의 식각을 실시하는 경우, SiO2가스의 사용과 저온 공정의 적용으로 측면 식각 특성을 최소화할 수 있으며, 하드 마스크의 식각 선택비를 확보할 수 있다.When etching the organic layer-based interlayer insulating film as described above, the side etching characteristics can be minimized by using SiO 2 gas and applying a low temperature process, it is possible to secure the etching selectivity of the hard mask.

첨부된 도면 도 3은 본 발명의 일 실시예에 따른 층간절연막 식각 후의 단면 SEM 사진을 도시한 것으로, 유기물계 층간절연막의 측면 식각이 나타나지 않음을 확인할 수 있다.3 is a cross-sectional SEM photograph after etching an interlayer insulating film according to an embodiment of the present invention, and it can be seen that side etching of the organic-based interlayer insulating film does not appear.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

예컨대, 전술한 실시예에서는 유기물계 층간절연막의 식각을 TCP 챔버에서 실시하는 경우를 일례로 들어 설명하였으나, 본 발명은 ICP(inductively-coupled plasma) 챔버와 같이 플라즈마 식각 방식을 사용하는 챔버에서 식각을 진행하는 모든 경우에 적용될 수 있다.For example, in the above-described embodiment, the organic layer-based insulating film is etched in the TCP chamber as an example, but the present invention uses the plasma etching method as in the inductively-coupled plasma (ICP) chamber. Applicable in all cases in which it proceeds.

전술한 본 발명은 유기물계 층간절연막의 측면 식각 특성을 억제하여 콘택홀 또는 트렌치 측벽의 네거티브 경사 발생을 억제하는 효과가 있으며, 하드 마스크의선택비를 확보하여 유기물계 층간절연막의 손실을 방지하는 효과가 있다. 또한, 본 발명은 유기물계 층간절연막 공정의 안정화를 통해 초고집적 소자 개발 기간을 단축할 수 있는 효과가 있다.The present invention described above has the effect of suppressing the side etch characteristics of the organic interlayer insulating film to suppress the occurrence of negative inclination of the contact hole or trench sidewalls, and to secure the selectivity of the hard mask to prevent the loss of the organic interlayer insulating film. There is. In addition, the present invention has the effect of shortening the development period of the ultra-high integrated device through the stabilization of the organic-based interlayer insulating film process.

Claims (4)

소정의 하부층 상에 유기물계 층간절연막을 형성하는 제1 단계와,A first step of forming an organic material interlayer insulating film on a predetermined lower layer, O2, N2, SO2혼합 가스를 사용하여 -30℃∼0℃의 공정 온도로 상기 유기물계 층간절연막을 선택 식각하는 제2 단계A second step of selectively etching the organic-based interlayer insulating film at a process temperature of -30 ° C to 0 ° C using O 2 , N 2 , SO 2 mixed gas 를 포함하여 이루어진 반도체 소자 제조방법.Semiconductor device manufacturing method comprising a. 제1항에 있어서,The method of claim 1, 상기 SO2가스의 비율이 전체 혼합 가스량의 5∼20%인 것을 특징으로 하는 반도체 소자 제조방법.A proportion of the SO 2 gas is 5 to 20% of the total amount of mixed gas. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 제2 단계가,The second step, 트랜스포머 결합 플라즈마(TCP) 챔버에서 수행되는 것을 특징으로 하는 반도체 소자 제조방법.A method of manufacturing a semiconductor device, characterized in that performed in a transformer coupled plasma (TCP) chamber. 제3항에 있어서,The method of claim 3, 상기 제2 단계에서,In the second step, 300∼700W의 탑(top) 파워, 50∼200W의 바텀(bottom) 파워 조건을 사용하는 것을 특징으로 하는 반도체 소자 제조방법.A method for manufacturing a semiconductor device using a top power of 300 to 700 W and a bottom power condition of 50 to 200 W.
KR1019990064057A 1999-12-28 1999-12-28 A etching method of organic-based interlayer dielectric KR20010061561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990064057A KR20010061561A (en) 1999-12-28 1999-12-28 A etching method of organic-based interlayer dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990064057A KR20010061561A (en) 1999-12-28 1999-12-28 A etching method of organic-based interlayer dielectric

Publications (1)

Publication Number Publication Date
KR20010061561A true KR20010061561A (en) 2001-07-07

Family

ID=19631375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064057A KR20010061561A (en) 1999-12-28 1999-12-28 A etching method of organic-based interlayer dielectric

Country Status (1)

Country Link
KR (1) KR20010061561A (en)

Similar Documents

Publication Publication Date Title
US7892940B2 (en) Device and methodology for reducing effective dielectric constant in semiconductor devices
KR100416596B1 (en) Method of manufacturing interconnection wire in semiconductor device
US20050214694A1 (en) Pattern formation method
KR100672823B1 (en) Method of forming conductive pattern in a semiconductor device
US6372649B1 (en) Method for forming multi-level metal interconnection
TW200522203A (en) Method for fabricating semiconductor device
US7687381B2 (en) Method of forming electrical interconnects within insulating layers that form consecutive sidewalls including forming a reaction layer on the inner sidewall
US6903461B2 (en) Semiconductor device having a region of a material which is vaporized upon exposing to ultraviolet radiation
US7087515B2 (en) Method for forming flowable dielectric layer in semiconductor device
KR100555512B1 (en) Manufacturing method for semiconductor device using poly silicon etching mask
KR20030050951A (en) Method for forming metal wiring of semiconductor device
KR100875653B1 (en) Method of forming fine pattern of semiconductor device
US6967151B2 (en) Method of manufacturing a semiconductor device
US20080242092A1 (en) Method of manufacturing spacer
KR20010061561A (en) A etching method of organic-based interlayer dielectric
KR100373358B1 (en) Method for fabricating semiconductor device using via first dual damscene process
US7135406B2 (en) Method for damascene formation using plug materials having varied etching rates
JP2006032721A (en) Fabrication process of semiconductor device
KR100764452B1 (en) Semiconductor device and method of manufacturing the semiconductor device
KR100537187B1 (en) Method for fabrication of semiconductor device
KR20040038049A (en) Method of forming contact in semiconductor device
US20030045091A1 (en) Method of forming a contact for a semiconductor device
KR100681209B1 (en) Method for forming a deep contact hole in semiconductor device
JP4188606B2 (en) Method for forming SOG film
KR100648858B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination