KR20010058831A - Fabricating method of semiconductor device - Google Patents

Fabricating method of semiconductor device Download PDF

Info

Publication number
KR20010058831A
KR20010058831A KR1019990066202A KR19990066202A KR20010058831A KR 20010058831 A KR20010058831 A KR 20010058831A KR 1019990066202 A KR1019990066202 A KR 1019990066202A KR 19990066202 A KR19990066202 A KR 19990066202A KR 20010058831 A KR20010058831 A KR 20010058831A
Authority
KR
South Korea
Prior art keywords
region
layer
gate oxide
polysilicon layer
logic region
Prior art date
Application number
KR1019990066202A
Other languages
Korean (ko)
Other versions
KR100336784B1 (en
Inventor
임민규
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990066202A priority Critical patent/KR100336784B1/en
Publication of KR20010058831A publication Critical patent/KR20010058831A/en
Application granted granted Critical
Publication of KR100336784B1 publication Critical patent/KR100336784B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to prevent a gate oxide layer from being contaminated and damaged, by separately forming the gate oxide layer in a logic region and a dynamic random access memory(DRAM) region, and by consecutively stacking a polysilicon layer on the respective gate oxide layers. CONSTITUTION: An isolation region(12) is formed on a semiconductor substrate(11) where A logic region and a dynamic random access memory(DRAM) region are defined. A thin gate oxide layer(13) and the undoped first polysilicon layer are formed. N-type impurity ions are implanted into a portion of the first polysilicon layer in the logic region. The first polysilicon layer and the thin gate oxide layer in the DRAM region are removed. A thick gate oxide layer(15), the second polysilicon layer doped with the n-type impurity ions, a WSix layer(17) and a cap insulation layer(18) are formed. A gate is patterned through a photolithography process. The first polysilicon layer and the thin gate oxide layer in the logic region are etched to pattern a logic region gate. A patterned insulation layer sidewall of a gate is formed in the logic region and the DRAM region. A source/drain(20) is formed in the semiconductor substrate by a selective n-type and p-type impurity ion implantation process while p-type impurity ions are implanted into the undoped first polysilicon layer in the logic region. A silicide layer(21) is selectively formed only on the first polysilicon layer and the source/drain in the logic region where silicon is exposed.

Description

반도체소자의 제조방법{FABRICATING METHOD OF SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {FABRICATING METHOD OF SEMICONDUCTOR DEVICE}

본 발명은 반도체소자의 제조방법에 관한 것으로, 특히 메모리 내장형 로직(merged memory logic) 반도체소자의 로직부와 디램(DRAM)부 각각의 동작특성에 적합한 게이트전극을 동시에 형성하기에 적당하도록 한 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a semiconductor device suitable for simultaneously forming gate electrodes suitable for operating characteristics of each of a logic part and a DRAM part of a memory module. It relates to a manufacturing method of.

일반적으로, 0.25㎛ 이하의 로직 공정은 성능향상을 위하여 얇은 게이트 산화막 상부에 듀얼 폴리실리콘 게이트 구조로 형성하고, 또한 게이트전극과 소스/드레인 상에는 자기정렬되는 실리사이드(self aligned silicide : SALICIDE) 방식을 통해 Ti 또는 Co 실리사이드층을 형성하며, 반면에 고집적 디램 공정은 워드라인의 동작전압 상승과 디램셀의 신뢰성을 향상시키기 위하여 상대적으로 두꺼운 게이트 산화막 상부에 메모리셀의 고집적화를 위하여 게이트 캡물질을 이용한 자기정렬되는 콘택(self aligned contact : SAC) 방식을 통해 폴리실리콘 플러그를 형성하고, 게이트전극 상에는 WSix 폴리사이드(polycide)를 형성한다.In general, a logic process of 0.25 μm or less is formed using a dual polysilicon gate structure on the thin gate oxide layer to improve performance, and a self aligned silicide (SALICIDE) method on the gate electrode and the source / drain. The Ti or Co silicide layer is formed, whereas the highly integrated DRAM process is self-aligned using a gate cap material for high integration of a memory cell on a relatively thick gate oxide layer to increase the operating voltage of the word line and improve the reliability of the DRAM cell. A polysilicon plug is formed through a self aligned contact (SAC) method, and a WSix polycide is formed on the gate electrode.

따라서, 메모리 내장형 로직 반도체소자를 형성하기 위해서는 상기 로직 공정과 고집적 디램 공정을 용이하게 병합시켜야 한다.Therefore, in order to form a memory embedded logic semiconductor device, the logic process and the highly integrated DRAM process need to be easily merged.

상기한 바와같은 종래 반도체소자의 제조방법을 첨부한 도1a 내지 도1e의 수순단면도를 참조하여 상세히 설명하면 다음과 같다.Referring to the procedure cross-sectional view of Figs. 1A to 1E attached to the conventional method for manufacturing a semiconductor device as described above in detail as follows.

먼저, 도1a에 도시한 바와같이 로직영역과 디램영역이 구분된 반도체기판(1)상에 STI(shallow trench isolation) 격리영역(2)을 형성하여 액티브영역을 정의하고, 상부전면에 두꺼운 게이트산화막(3)을 형성한 다음 감광막(PR1) 패턴을 통해 로직영역 상에 형성된 두꺼운 게이트산화막(3)을 식각한다.First, as shown in FIG. 1A, a shallow trench isolation (STI) isolation region 2 is formed on a semiconductor substrate 1 having a logic region and a DRAM region divided therein to define an active region, and a thick gate oxide film is formed on the upper surface. After forming (3), the thick gate oxide film 3 formed on the logic region is etched through the photoresist film PR1 pattern.

그리고, 도1b에 도시한 바와같이 상기 감광막(PR1) 패턴을 제거하고, 로직영역과 디램영역의 상부전면에 로직영역에서 요구되는 얇은 게이트산화막(4)을 형성한 다음 도핑되지 않은 폴리실리콘층(5)을 증착하여 평탄화하고, 2차의 마스크 및 이온주입을 통해 선택적으로 로직영역의 엔모스와 피모스 트랜지스터가 형성될 영역에 엔형과 피형 불순물이온을 주입함과 아울러 디램영역에 엔형 불순물이온을 주입한다. 이때, 디램영역은 상기 두꺼운 게이트산화막(3)과 얇은 게이트산화막(4)이 적층되어 요구되는 게이트산화막의 두께를 만족시킨다.As shown in FIG. 1B, the photoresist film PR1 pattern is removed, a thin gate oxide film 4 required in the logic region is formed on the upper surface of the logic region and the DRAM region, and then the undoped polysilicon layer ( 5) Deposition and planarization, through the second mask and ion implantation, the N-type and impurity ions are selectively injected into the region where the NMOS and PMOS transistors of the logic region are to be formed, and the N-type impurity ions are injected into the DRAM region. Inject. In this case, the DRAM region satisfies the required thickness of the gate oxide film by stacking the thick gate oxide film 3 and the thin gate oxide film 4.

그리고, 도1c에 도시한 바와같이 상기 불순물이온이 선택적으로 주입된 폴리실리콘층(5) 상부에 WSix막(6)과 캡절연막(7)을 순차적으로 형성한다. 이때, WSix막(6)은 디램의 워드라인으로 적용되는 게이트전극의 저항값을 최소화하기 위하여 형성하고, 캡절연막(7)은 디램의 고집적화를 위한 자기정렬되는 콘택 방식을 적용하기 위하여 SiO2또는 SiN을 적용하여 형성한다.1C, a WSix film 6 and a cap insulating film 7 are sequentially formed on the polysilicon layer 5 into which the impurity ions are selectively implanted. At this time, the WSix film 6 is formed to minimize the resistance value of the gate electrode applied to the word line of the DRAM, the cap insulating film 7 is SiO 2 or to apply a self-aligned contact method for high integration of the DRAM It is formed by applying SiN.

그리고, 도1d에 도시한 바와같이 상기 캡절연막(7) 상에 사진공정을 통해 게이트 패터닝 마스크(미도시)를 형성하여 캡절연막(7), WSix막(6), 폴리실리콘층(5) 및 게이트산화막(4,3)을 순차적으로 식각함으로써, 로직영역과 디램영역의 액티브영역 상부에 요구되는 게이트를 패터닝한다.As shown in FIG. 1D, a gate patterning mask (not shown) is formed on the cap insulating film 7 by a photo process to form a cap insulating film 7, a WSix film 6, a polysilicon layer 5, and the like. By sequentially etching the gate oxide films 4 and 3, the gates required on the active regions of the logic region and the DRAM region are patterned.

그리고, 도1e에 도시한 바와같이 상기 결과물의 상부전면에 절연막 증착 및 선택적 식각을 통해 게이트의 측벽(8)을 형성한 다음 마스크(미도시)를 이용한 선택적 엔형 및 피형 불순물 이온주입을 통해 반도체기판(1) 내에 소스/드레인(9)을 형성하고, 로직영역의 상부전면에 Ti 또는 Co를 증착한 다음 빠른 열처리(rapid thermal processing : RTP)를 실시하여 실리콘이 노출된 로직영역 소스/드레인(9) 상에만 선택적으로 실리사이드층(10)을 형성한다.As shown in FIG. 1E, the sidewalls 8 of the gate are formed on the upper surface of the resultant through an insulating film deposition and selective etching, and then a semiconductor substrate is formed through selective N-type and impurity ion implantation using a mask (not shown). The source / drain 9 is formed in (1), Ti or Co is deposited on the upper surface of the logic area, and then rapid thermal processing (RTP) is performed to expose the silicon area / drain (9). The silicide layer 10 is selectively formed only on the?).

그러나, 상기한 바와같은 종래 반도체소자의 제조방법은 다음과 같은 문제점을 내포하고 있다.However, the above-described method for manufacturing a semiconductor device has the following problems.

먼저, 게이트산화막의 경우는 디램영역의 두꺼운 게이트산화막이 로직영역을 식각하기 위한 감광막에 의해 오염될 수 있고, 감광막 제거시에 플라즈마에 의해 손상이 발생할 수 있으며, 또한 얇은 게이트산화막과 두꺼운 게이트산화막의 적층으로 형성됨에 따라 계면에 트랩(trap)이 발생할 수 있으며, 산화 및 세정등에 의해 두께변화가 발생하여 제어가 어려운 문제점이 있다.First, in the case of the gate oxide film, the thick gate oxide film of the DRAM region may be contaminated by the photoresist film for etching the logic region, and the damage may be caused by plasma when the photoresist film is removed, and the thin gate oxide film and the thick gate oxide film may be As the stack is formed, a trap may occur at an interface, and a change in thickness may occur due to oxidation and cleaning, thereby making it difficult to control.

그리고, WSix막의 경우는 디램영역의 공정을 쉽게 하기 위하여 게이트전극의 높이를 낮추어야 함에 따라 하부의 폴리실리콘층의 두께를 낮추게 되는데, 이때 폴리실리콘층에 피형 불순물이온으로 주입되는 붕소(boron)의 에너지와 농도 제어가 어려워져서 에너지와 농도가 높게 되면, 붕소이온이 게이트산화막을 투과하여 기판까지 침투하는 붕소투과현상(boron penetration)이 발생하는 문제점이 있고, 에너지와 농도가 낮게 되면, 폴리실리콘층이 공핍되어 피모스 트랜지스터의 특성저하를유발시키는 문제점이 있으며, 또한 WSix막 자체가 게이트산화막에 영향을 주어 전기적(electrical) 게이트산화막의 두께를 증가시킴에 따라 얇은 게이트산화막의 제어를 어렵게 하는 문제점이 있다.In the case of the WSix film, as the height of the gate electrode needs to be lowered to facilitate the process of the DRAM region, the thickness of the lower polysilicon layer is lowered. In this case, the energy of boron injected into the polysilicon layer with the impurity ions in the form When the concentration and the concentration control become difficult, the energy and the concentration become high, boron ions penetrate the gate oxide film and penetrate to the substrate, and boron penetration occurs. When the energy and the concentration become low, the polysilicon layer becomes There is a problem that depletion causes the deterioration of the characteristics of the PMOS transistor, and the WSix film itself affects the gate oxide film, thereby increasing the thickness of the electrical gate oxide film, thereby making it difficult to control the thin gate oxide film. .

그리고, 게이트 패터닝의 경우는 얇은 게이트산화막과 두꺼운 게이트산화막의 식각이 동시에 이루어짐에 따라 식각제어가 어려운 문제점이 있다. 즉, 마이크로 로딩 효과(micro loading effect)에 의해 게이트 패턴의 밀도가 높은 디램영역의 식각률이 상대적으로 낮으므로, 디램영역을 고려한 과도식각을 실시하게 되면 로직영역의 얇은 게이트산화막이 형성된 로직영역의 액티브가 손상을 받을 수 있고, 과도식각을 실시하지 않게 되면 디램영역에 폴리실리콘 찌꺼기(residue)가 남게 된다.In addition, in the case of gate patterning, etching of the thin gate oxide film and the thick gate oxide film is simultaneously performed, thus making it difficult to control the etching. That is, since the etching rate of the DRAM area having a high gate pattern density is relatively low due to the micro loading effect, the transient etching considering the DRAM area causes the active area of the logic area to form a thin gate oxide film of the logic area. May be damaged and polysilicon residues remain in the DRAM area if the over etching is not performed.

그리고, WSix막을 적용한 디램영역 게이트전극은 면저항이 7∼14/sq. 정도로, 실리사이드층을 적용한 로직영역 게이트전극의 면저항 3∼7/sq. 정도에 비해 높기 때문에 로직영역에 비해 디램영역의 성능이 저하되어 고성능 메모리 내장형 로직 반도체소자 구현이 어려운 문제점이 있다.The DRAM region gate electrode to which the WSix film is applied has a sheet resistance of 7 to 14. / sq. Surface resistance of logic region gate electrode to which silicide layer is applied / sq. Due to the high degree of accuracy, the performance of the DRAM area is lowered compared to the logic area, which makes it difficult to implement a high-performance memory embedded logic semiconductor device.

한편, 디램영역 게이트전극에 실리사이드층을 적용하게 되면, 폴리실리콘층의 도핑문제와 면저항 증가에 대한 문제점들을 해결할 수 있으나, 이 경우에는 디램의 리프레시(refresh) 특성 저하를 초래할 수 있다.On the other hand, if the silicide layer is applied to the DRAM region gate electrode, problems of the doping problem of the polysilicon layer and the increase of the sheet resistance may be solved. In this case, however, the refresh characteristic of the DRAM may be reduced.

본 발명은 상기한 바와같은 종래의 문제점을 해결하기 위하여 창안한 것으로, 본 발명의 목적은 로직영역과 디램영역의 게이트산화막 형성을 독립적으로 진행함과 아울러 로직영역의 게이트전극으로 실리사이드층을 적용하고, 디램영역의게이트전극으로 WSix막을 적용하여 각각의 동작특성에 적합한 게이트전극을 동시에 형성할 수 있는 반도체소자의 제조방법을 제공하는데 있다.The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to independently form a gate oxide film of a logic region and a DRAM region, and to apply a silicide layer as a gate electrode of a logic region. The present invention provides a method of manufacturing a semiconductor device capable of simultaneously forming a gate electrode suitable for each operation characteristic by applying a WSix film as a gate electrode of a DRAM region.

도1a 내지 도1e는 종래 반도체소자의 제조방법을 보인 수순단면도.1A to 1E are cross-sectional views showing a conventional method for manufacturing a semiconductor device.

도2a 내지 도2h는 본 발명의 일 실시예를 보인 수순단면도.2A to 2H are cross-sectional views showing an embodiment of the present invention.

***도면의 주요부분에 대한 부호의 설명****** Explanation of symbols for main parts of drawing ***

11:반도체기판 12:격리영역11: semiconductor substrate 12: isolation area

13:얇은 게이트산화막 14,16:폴리실리콘층13: thin gate oxide film 14, 16: polysilicon layer

15:두꺼운 게이트산화막 17:WSix막15: thick gate oxide film 17: WSix film

18:캡절연막 19:측벽18: Cap insulation film 19: Side wall

20:소스/드레인 21:실리사이드층20: source / drain 21: silicide layer

PR21∼PR23:감광막PR21-PR23: photosensitive film

상기한 바와같은 본 발명의 목적을 달성하기 위한 반도체소자의 제조방법은 로직영역과 디램영역이 구분된 반도체기판 상에 격리영역을 형성한 다음 상부전면에 얇은 게이트산화막과 도핑되지 않은 제1폴리실리콘층을 형성하고, 로직영역 제1폴리실리콘층의 일부에 엔형 불순물이온을 주입하는 공정과; 상기 디램영역의 제1폴리실리콘층과 얇은 게이트산화막을 제거하는 공정과; 상기 결과물의 상부전면에 두꺼운 게이트산화막, 엔형 불순물이온이 도핑된 제2폴리실리콘층, WSix막 및 캡절연막을 형성한 다음 디램영역 게이트 사진식각을 통해 게이트를 패터닝하는 공정과; 상기 로직영역의 제1폴리실리콘과 얇은 게이트산화막을 식각하여 로직영역 게이트를 패터닝하는 공정과; 상기 로직영역과 디램영역에 패터닝된 게이트의 절연막측벽을 형성한 다음 선택적 엔형 및 피형 불순물 이온주입을 통해 반도체기판 내에 소스/드레인을 형성함과 아울러 상기 로직영역의 도핑되지 않은 제1폴리실리콘층 내에 피형 불순물이온을 주입하고, 실리콘이 노출된 로직영역 제1폴리실리콘층 및 소스/드레인 상에만 선택적으로 실리사이드층을 형성하는 공정을 구비하여 이루어지는 것을 특징으로 한다.A method of manufacturing a semiconductor device for achieving the object of the present invention as described above is to form an isolation region on a semiconductor substrate divided logic region and DRAM region and then a thin gate oxide film and an undoped first polysilicon on the upper surface Forming a layer and implanting N-type impurity ions into a portion of the logic region first polysilicon layer; Removing the first polysilicon layer and the thin gate oxide layer in the DRAM region; Forming a thick gate oxide film, a second polysilicon layer doped with N-type impurity ions, a WSix film, and a cap insulating film on an upper surface of the resultant, and then patterning the gate through DRAM region gate photolithography; Patterning the logic region gate by etching the first polysilicon and the thin gate oxide layer of the logic region; Forming an insulating film sidewall of the gate patterned in the logic region and the DRAM region, and then forming a source / drain in the semiconductor substrate through selective N-type and implanted impurity ion implantation and in the undoped first polysilicon layer of the logic region And implanting the impurity ions, and selectively forming a silicide layer only on the logic region-first polysilicon layer and the source / drain in which silicon is exposed.

상기한 바와같은 본 발명에 의한 바이폴라 트랜지스터 제조방법을 첨부한 도2a 내지 2h의 수순단면도를 일 실시예로 하여 상세히 설명하면 다음과 같다.Referring to the cross-sectional view of Figure 2a to 2h accompanying the method for manufacturing a bipolar transistor according to the present invention as described above in detail as an embodiment as follows.

먼저, 도2a에 도시한 바와같이 로직영역, 디램영역이 구분된 반도체기판(11)상에 STI 격리영역(12)을 형성하여 액티브영역을 정의한 다음 상부전면에 얇은 게이트산화막(13)과 도핑되지 않은 폴리실리콘층(14)을 순차적으로 형성하고, 로직영역 엔모스 트랜지스터의 게이트를 형성하는 폴리실리콘층(14)이 노출되도록 감광막(PR11) 패턴을 형성한 다음 엔형 불순물이온을 주입한다. 이때, 폴리실리콘층(14)은 단일 로직공정과 동일하게 2500Å 정도의 두께로 형성한다.First, as shown in FIG. 2A, an STI isolation region 12 is formed on a semiconductor substrate 11 having a logic region and a DRAM region defined therein to define an active region, and then doped with a thin gate oxide film 13 on the upper surface. The polysilicon layer 14 is sequentially formed, and a photoresist film PR11 pattern is formed to expose the polysilicon layer 14 forming the gate of the logic region NMOS transistor, and then the N-type impurity ions are implanted. At this time, the polysilicon layer 14 is formed to a thickness of about 2500 Å in the same manner as a single logic process.

그리고, 도2b에 도시한 바와같이 상기 감광막(PR11) 패턴을 제거하고, 로직영역의 폴리실리콘층(14)을 마스킹하도록 감광막(PR12) 패턴을 형성한 다음 노출된 디램영역의 폴리실리콘층(14)과 얇은 게이트산화막(13)을 식각한다.As shown in FIG. 2B, the photoresist film PR11 pattern is removed, the photoresist film PR12 pattern is formed to mask the polysilicon layer 14 of the logic region, and then the polysilicon layer 14 of the exposed DRAM region is formed. ) And the thin gate oxide film 13 are etched.

그리고, 도2c에 도시한 바와같이 상기 결과물의 상부전면에 두꺼운 게이트산화막(15), 엔형 불순물이온이 주입된 폴리실리콘층(16), WSix막(17) 및 캡절연막(18)을 순차적으로 형성한다. 이때, 두꺼운 게이트산화막(15), 엔형 불순물이온이 주입된 폴리실리콘층(16), WSix막(17) 및 캡절연막(18)은 단일 디램공정과 동일한 두께로 형성한다.2C, a thick gate oxide film 15, a polysilicon layer 16 into which N-type impurity ions are implanted, a WSix film 17, and a cap insulating film 18 are sequentially formed on the upper surface of the resultant product. do. At this time, the thick gate oxide film 15, the polysilicon layer 16 into which the N-type impurity ions are implanted, the WSix film 17, and the cap insulating film 18 are formed to have the same thickness as a single DRAM process.

그리고, 도2d에 도시한 바와같이 상기 캡절연막(18) 상부에 디램영역 게이트 패터닝 마스크(미도시)를 형성하여 캡절연막(18)을 선택적으로 식각한 다음 디램영역 게이트 패터닝 마스크를 제거한다.As shown in FIG. 2D, a DRAM region gate patterning mask (not shown) is formed on the cap insulation layer 18 to selectively etch the cap insulation layer 18, and then the DRAM region gate patterning mask is removed.

그리고, 도2e에 도시한 바와같이 상기 캡절연막(18)을 하드 마스크(hard mask)로 적용하여 WSix막(17), 폴리실리콘층(16) 및 두꺼운 게이트산화막(15)을 식각함으로써, 디램영역의 액티브영역 상부에 요구되는 게이트를 패터닝한다.As shown in FIG. 2E, the cap insulation layer 18 is applied as a hard mask to etch the WSix layer 17, the polysilicon layer 16, and the thick gate oxide layer 15 to form a DRAM region. The gate required on the top of the active region is patterned.

그리고, 도2f에 도시한 바와같이 상기 디램영역을 완전히 마스킹함과 아울러로직영역의 폴리실리콘층(14) 상부에 로직영역의 게이트를 패터닝하기 위하여 감광막(PR13) 패턴을 형성한다.As shown in FIG. 2F, a photoresist film PR13 pattern is formed to completely mask the DRAM region and to pattern the gate of the logic region on the polysilicon layer 14 of the logic region.

그리고, 도2g에 도시한 바와같이 상기 감광막(PR13) 패턴을 적용하여 폴리실리콘층(14)과 얇은 게이트산화막(13)을 식각함으로써, 로직영역의 액티브영역 상부에 요구되는 게이트를 패터닝한 다음 감광막(PR13) 패턴을 제거한다.As shown in FIG. 2G, the polysilicon layer 14 and the thin gate oxide layer 13 are etched by applying the photoresist layer PR13 pattern to pattern the gate required on the active region of the logic region, and then the photoresist layer. (PR13) Remove the pattern.

그리고, 도2h에 도시한 바와같이 상기 결과물의 상부전면에 절연막 증착 및 선택적 식각을 통해 로직영역과 디램영역에 패터닝된 게이트의 측벽(19)을 형성한 다음 마스크(미도시)를 이용한 선택적 엔형 및 피형 불순물 이온주입을 통해 반도체기판(11) 내에 소스/드레인(20)을 형성함과 아울러 상기 로직영역의 도핑되지 않은 폴리실리콘층(14) 내에 피형 불순물이온을 주입하고, 로직영역의 상부전면에 Ti 또는 Co를 증착한 다음 빠른 열처리를 실시하여 실리콘이 노출된 로직영역 폴리실리콘층(14) 및 소스/드레인(20) 상에만 선택적으로 실리사이드층(21)을 형성한다.As shown in FIG. 2H, the sidewalls 19 of the gate patterned in the logic region and the DRAM region are formed through the insulating film deposition and selective etching on the upper surface of the resultant, and then the selective N-type using a mask (not shown); Source / drain 20 is formed in the semiconductor substrate 11 by implanting impurity impurities, and implanted impurity ions into the undoped polysilicon layer 14 of the logic region are formed on the upper surface of the logic region. After the deposition of Ti or Co, a rapid heat treatment is performed to selectively form the silicide layer 21 only on the silicon region-exposed logic region polysilicon layer 14 and the source / drain 20.

상기한 바와같은 본 발명에 의한 반도체소자의 제조방법은 다음과 같은 효과를 갖는다.The method of manufacturing a semiconductor device according to the present invention as described above has the following effects.

먼저, 로직영역과 디램영역의 게이트산화막을 개별적인 단일막으로 형성하고, 각 영역의 게이트산화막 상부에 연속적으로 폴리실리콘을 증착함에 따라 게이트산화막의 오염 및 손상을 방지하고, 적층으로 인한 계면 트랩 발생을 방지하며, 형성두께의 제어가 용이하여 반도체소자의 신뢰성이 향상되는 효과가 있다.First, the gate oxide films of the logic region and the DRAM region are formed as individual single films, and polysilicon is continuously deposited on the gate oxide films of each region to prevent contamination and damage of the gate oxide film, and to generate an interface trap due to the stacking. It is effective in preventing the formation thickness and improving the reliability of the semiconductor device.

그리고, 로직영역의 게이트 폴리실리콘층 두께 및 도핑을 단일 로직공정과동일하게 진행할 수 있게 되므로, 로직영역 피모스 트랜지스터의 게이트 도핑시에 발생하는 붕소투과현상 및 폴리실리콘층 공핍을 방지하여, 로직영역 피모스 트랜지스터의 성능저하를 방지할 수 있는 효과가 있다.Since the gate polysilicon layer thickness and doping of the logic region can be performed in the same manner as a single logic process, boron permeation and polysilicon layer depletion occurring during gate doping of the logic region PMOS transistor are prevented, There is an effect that can prevent the performance degradation of the PMOS transistor.

그리고, 로직영역과 디램영역의 게이트 패터닝을 개별적으로 수행함에 따라 각 영역의 특성에 맞는 식각조건을 설정할 수 있게 되어 용이한 공정진행 및 제조된 소자의 신뢰성 향상을 꾀할 수 있다.As the gate patterning of the logic region and the DRAM region is performed separately, etching conditions suitable for the characteristics of each region can be set, thereby facilitating process progress and improving reliability of the manufactured device.

그리고, 로직영역과 디램영역의 게이트전극을 각 영역의 특성에 맞게 실리사이드층과 WSix막을 이용한 폴리사이드를 적용하여 형성함에 따라 각 영역에서 최적의 성능을 발휘할 수 있는 메모리 내장형 로직 반도체소자를 구현할 수 있는 효과가 있다.In addition, the gate electrodes of the logic region and the DRAM region are formed by applying a polyside using a silicide layer and a WSix film according to the characteristics of each region, thereby implementing a memory-embedded logic semiconductor device capable of exhibiting optimal performance in each region. It works.

그리고, 로직영역에서 폴리실리콘 게이트를 적용함과 아울러 디램영역에서 WSix막을 이용한 폴리사이드 게이트를 적용함에 따라 아날로그 회로에서 요구되는 플레이너(planar) 커패시터와 플래시 메모리(flash memory)의 적층형 게이트를 용이하게 제조할 수 있게 되므로, 디램 뿐만 아니라 플래시 메모리도 함께 내장된 메모리 내장형 로직 반도체소자의 제조가 가능한 효과가 있다.In addition, by applying a polysilicon gate in a logic region and a polyside gate using a WSix film in a DRAM region, a stacked gate of a planar capacitor and a flash memory, which is required in an analog circuit, is easily provided. Since it can be manufactured, it is possible to manufacture a memory-embedded logic semiconductor device having not only DRAM but also flash memory.

Claims (1)

로직영역과 디램영역이 구분된 반도체기판 상에 격리영역을 형성한 다음 상부전면에 얇은 게이트산화막과 도핑되지 않은 제1폴리실리콘층을 형성하고, 로직영역 제1폴리실리콘층의 일부에 엔형 불순물이온을 주입하는 공정과; 상기 디램영역의 제1폴리실리콘층과 얇은 게이트산화막을 제거하는 공정과; 상기 결과물의 상부전면에 두꺼운 게이트산화막, 엔형 불순물이온이 도핑된 제2폴리실리콘층, WSix막 및 캡절연막을 형성한 다음 디램영역 게이트 사진식각을 통해 게이트를 패터닝하는 공정과; 상기 로직영역의 제1폴리실리콘과 얇은 게이트산화막을 식각하여 로직영역 게이트를 패터닝하는 공정과; 상기 로직영역과 디램영역에 패터닝된 게이트의 절연막측벽을 형성한 다음 선택적 엔형 및 피형 불순물 이온주입을 통해 반도체기판 내에 소스/드레인을 형성함과 아울러 상기 로직영역의 도핑되지 않은 제1폴리실리콘층 내에 피형 불순물이온을 주입하고, 실리콘이 노출된 로직영역 제1폴리실리콘층 및 소스/드레인 상에만 선택적으로 실리사이드층을 형성하는 공정을 구비하여 이루어지는 것을 특징으로 하는 반도체소자의 제조방법.An isolation region is formed on the semiconductor substrate where the logic region and the DRAM region are separated, and then a thin gate oxide layer and an undoped first polysilicon layer are formed on the upper surface, and the N-type impurity ion is formed on a portion of the logic region first polysilicon layer. Injecting; Removing the first polysilicon layer and the thin gate oxide layer in the DRAM region; Forming a thick gate oxide film, a second polysilicon layer doped with N-type impurity ions, a WSix film, and a cap insulating film on an upper surface of the resultant, and then patterning the gate through DRAM region gate photolithography; Patterning the logic region gate by etching the first polysilicon and the thin gate oxide layer of the logic region; Forming an insulating film sidewall of the gate patterned in the logic region and the DRAM region, and then forming a source / drain in the semiconductor substrate through selective N-type and implanted impurity ion implantation and in the undoped first polysilicon layer of the logic region And forming a silicide layer only on the logic region first polysilicon layer and the source / drain where silicon is exposed.
KR1019990066202A 1999-12-30 1999-12-30 Fabricating method of semiconductor device KR100336784B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990066202A KR100336784B1 (en) 1999-12-30 1999-12-30 Fabricating method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990066202A KR100336784B1 (en) 1999-12-30 1999-12-30 Fabricating method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010058831A true KR20010058831A (en) 2001-07-06
KR100336784B1 KR100336784B1 (en) 2002-05-16

Family

ID=19633344

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990066202A KR100336784B1 (en) 1999-12-30 1999-12-30 Fabricating method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100336784B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418928B1 (en) * 2001-10-24 2004-02-14 주식회사 하이닉스반도체 Method for fabricating of Merged DRAM with Logic semiconductor device
KR100937651B1 (en) * 2002-12-31 2010-01-19 동부일렉트로닉스 주식회사 Semiconductor device and method for forming having the same
CN112563277A (en) * 2020-11-13 2021-03-26 上海华力微电子有限公司 NOR flash unit structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418928B1 (en) * 2001-10-24 2004-02-14 주식회사 하이닉스반도체 Method for fabricating of Merged DRAM with Logic semiconductor device
KR100937651B1 (en) * 2002-12-31 2010-01-19 동부일렉트로닉스 주식회사 Semiconductor device and method for forming having the same
CN112563277A (en) * 2020-11-13 2021-03-26 上海华力微电子有限公司 NOR flash unit structure and manufacturing method thereof

Also Published As

Publication number Publication date
KR100336784B1 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
US6235574B1 (en) High performance DRAM and method of manufacture
US6998319B2 (en) Method of manufacturing semiconductor device capable of suppressing impurity concentration reduction in doped channel region arising from formation of gate insulating film
US7709324B2 (en) Method for forming a gate within a trench including the use of a protective film
US7465637B2 (en) Method for manufacturing semiconductor device
KR0119961B1 (en) Fabrication method for capacitor of semiconductor device
US20100120213A1 (en) Embedded DRAM with multiple gate oxide thicknesses
US6333249B2 (en) Method for fabricating a semiconductor device
JP2004095745A (en) Semiconductor device and method for manufacturing the same
US6306760B1 (en) Method of forming a self-aligned contact hole on a semiconductor wafer
KR100336784B1 (en) Fabricating method of semiconductor device
KR100495858B1 (en) Method of manufacturing a semiconductor device
KR20040016496A (en) Method for forming spacer of semiconductor device and manufacturing semiconductor device using the same
KR100351912B1 (en) Method for forming gate electrode of semiconductor device
KR20060119354A (en) Method for forming a recess gate electrode
KR100995329B1 (en) Method of manufacturing a semiconductor device
KR960001952B1 (en) Method of manufacturing a stacked trench capacitor
KR100412143B1 (en) Method of manufacturing semiconductor device applying a triple gate oxide
KR0146245B1 (en) Method of fabricating a capacitor of semiconductor device
KR20040046853A (en) Method for forming the DRAM memory cell
KR930006135B1 (en) Manufacturing method of buried trench capacitor cell
KR100314478B1 (en) A method for forming a gate electrode of a semiconductor device
CN117835691A (en) Semiconductor structure and preparation method thereof
KR20000038331A (en) Fabrication method of semiconductor memory device
KR20040003948A (en) Method for forming the MOS transistor in semiconductor device
KR20050002999A (en) method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050422

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee