KR20010058690A - Method for measuring a overlay status in a fabricating process of a semiconductor device - Google Patents

Method for measuring a overlay status in a fabricating process of a semiconductor device Download PDF

Info

Publication number
KR20010058690A
KR20010058690A KR1019990066046A KR19990066046A KR20010058690A KR 20010058690 A KR20010058690 A KR 20010058690A KR 1019990066046 A KR1019990066046 A KR 1019990066046A KR 19990066046 A KR19990066046 A KR 19990066046A KR 20010058690 A KR20010058690 A KR 20010058690A
Authority
KR
South Korea
Prior art keywords
data
overlay
calculated
ega
result
Prior art date
Application number
KR1019990066046A
Other languages
Korean (ko)
Other versions
KR100688721B1 (en
Inventor
지승민
Original Assignee
황인길
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황인길, 아남반도체 주식회사 filed Critical 황인길
Priority to KR1019990066046A priority Critical patent/KR100688721B1/en
Publication of KR20010058690A publication Critical patent/KR20010058690A/en
Application granted granted Critical
Publication of KR100688721B1 publication Critical patent/KR100688721B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Abstract

PURPOSE: A method for measuring overlay is provided to improve the efficiency and exactness depending on overlay measurement by adaptively specifying the number of data calculated in an overlay measurement process using an enhanced global alignment mode. CONSTITUTION: A method for measuring overlay calculates enhanced global alignment(EGA) data(301), where the minimum number(for example, 4) necessary for overlay measurement is measured. EGA data measurement in step(301) is repeated by the predetermined number of the minimum calculation (for example, 4)(303). The resulting value is calculated using respective data(305). A stage onto which wafers are loaded is moved based on the calculated value to calculate data again(307). It is determined that the data calculated in step(307) fall within a predetermined range(309). As a result of the determination, if not, the above step(307) is repeated. If so, on the other hand, a resulting value is calculated from it and it is again determined that the calculated resulting value falls within a predetermined range(311). As a result of the determination in step(311), if not, an error message is outputted(313). If so, on the other hand, an exposure process is performed using the resulting value as the final result value(315).

Description

반도체 제조 공정에서의 오버레이 측정 방법{METHOD FOR MEASURING A OVERLAY STATUS IN A FABRICATING PROCESS OF A SEMICONDUCTOR DEVICE}Overlay measurement method in semiconductor manufacturing process {METHOD FOR MEASURING A OVERLAY STATUS IN A FABRICATING PROCESS OF A SEMICONDUCTOR DEVICE}

본 발명은 반도체 제조 공정에서의 오버레이 측정 방법에 관한 것으로, 더욱상세하게는 EGA(Enhanced Global Alignment) 방식의 오버레이 측정 방법에 관한 것이다.The present invention relates to an overlay measurement method in a semiconductor manufacturing process, and more particularly, to an overlay measurement method of an enhanced global alignment (EGA) method.

잘 알려진 바와 같이, 반도체 제조 공정중 리소그래피(lithography) 공정은 웨이퍼 상에 실제로 필요한 회로를 포토 레지스트(photo resist)를 이용하여 그리는 공정으로서, 설계하고자 하는 회로 패턴이 그려진 포토 마스크 또는 레티클(photo mask 또는 reticle)에 빛을 조사하여 웨이퍼 상에 도포된 포토 레지스트를 감광시키므로써 원하는 패턴을 웨이퍼 상에 형성할 수 있게 된다.As is well known, a lithography process in a semiconductor manufacturing process is a process in which a photoresist is used to draw a circuit that is actually needed on a wafer, and a photo mask or a reticle having a circuit pattern to be designed is drawn. By irradiating light to the reticle to expose the photoresist applied on the wafer, it is possible to form a desired pattern on the wafer.

그리고, 이러한 포토 리소그래피 공정을 진행중에 수행되는 오버레이는 반도체 장치 내의 각 층을 형성하는 과정에서, 각 층에서 형성되는 패턴을 정확히 맞추어 쌓기 위한 것으로서, 이는 포토 공정에 있어서 중요한 공정중 하나이다. 즉, 상위 층으로 진행해 가면서 각 층 간의 오버레이 공정 마진(margin)이 실제 반도체 소자의 특성에 상당한 영향을 미치게 된다. 특히, 최근 들어 포토 리소그래피 기술의 향상으로 패턴의 크기가 점차 축소되면서 오버레이 마진 또한 상당한 정밀도를 요구하게 된다.In addition, the overlay performed during the photolithography process is to accurately stack the patterns formed in each layer in the process of forming each layer in the semiconductor device, which is one of the important processes in the photo process. In other words, as the process progresses to the upper layer, the overlay process margin between each layer has a significant influence on the characteristics of the actual semiconductor device. In particular, as the size of the pattern is gradually reduced due to the advancement of photolithography technology, the overlay margin also requires considerable precision.

한편, 이러한 리소그래피 공정시 상술한 바와 같은 오버레이의 정밀도 및 생산성을 향상시키기 위해 통상적으로 EGA 방식을 사용하는데, 종래의 일반적인 EGA 방식에서는 계측하고자 하는 싸이트(site)의 갯수를 미리 지정해야만 하며, 그로 인해 필요 이상의 데이터를 계측하게 되어 그 처리 속도가 저하되는 등의 문제점이 있다.On the other hand, in such a lithography process, in order to improve the precision and productivity of the overlay as described above, the EGA method is typically used. In the conventional general EGA method, the number of sites to be measured must be specified in advance. There is a problem that more than necessary data is measured, and the processing speed thereof decreases.

도 1은 이러한 종래의 EGA 방식에 따른 오버레이 측정 과정을 도시한 플로우차트로서, 동도면을 참조하여 설명하면 다음과 같다.1 is a flowchart illustrating an overlay measurement process according to the conventional EGA method, which will be described below with reference to the accompanying drawings.

먼저, 오버레이 측정을 위한 EGA 계측이 시작되면, 종래에는 기설정된 갯수만큼의 데이터를 계측한 다음(단계 101), 계측된 각각의 데이터로부터 그 결과값을 산출하게 된다(단계 103).First, when EGA measurement for overlay measurement is started, conventionally, as much as a predetermined number of data is measured (step 101), and then the result value is calculated from each measured data (step 103).

그리고, 그 산출된 결과값이 기설정된 허용 범위, 즉 오버레이 마진 내에 포함되는지를 판단하게 되고(단계 105), 그 판단 결과, 허용 범위를 벗어나는 결과값이 산출된 경우에는 에러 메시지를 출력하여(단계 107) 운용자의 조작에 의해 오버레이 측정 과정을 다시 수행하게 된다.Then, it is determined whether the calculated result value is included in a preset allowable range, that is, overlay margin (step 105). If the result of the determination is that a result value out of the allowable range is calculated, an error message is output (step 107) The overlay measurement process is performed again by the operator.

이와는 달리, 상술한 단계(105)에서의 판단 결과, 산출된 결과값이 허용범위 내에 포함되면, 오버레이 측정이 정상적인 것으로 판단하여 후속하는 공정인 노광 과정을 수행하게 된다(단계 109).On the contrary, if the result of the determination in the above-described step 105 includes the calculated result value within the allowable range, it is determined that the overlay measurement is normal and the subsequent exposure process is performed (step 109).

한편, 이러한 종래의 EGA 방식에 따른 오버레이 공정은 상술한 단계(101)에서와 같이 오버레이 측정을 위한 데이터의 갯수가 기설정(통상적으로, 8∼9개)되어 있기 때문에 공정 속도를 단축할 수 없을 뿐만 아니라, 필요에 따라 보다 더 많은 데이터가 요구되는 경우가 발생하더라도 후속하는 노광 공정이 진행되어 버리는 문제점이 있다.On the other hand, in the overlay process according to the conventional EGA method, the process speed cannot be shortened because the number of data for overlay measurement is preset (usually 8 to 9) as in step 101 described above. In addition, there is a problem that a subsequent exposure process proceeds even if more data is required as needed.

따라서, 본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 안출한 것으로, 반도체 장치의 리소그래피 공정시 EGA 방식을 이용한 오버레이 측정 과정에서 계측되는 데이터 갯수를 유동적으로 지정하므로써, 오버레이 측정에 따른 효율성및 정밀도를 향상시킬 수 있는 반도체 제조 공정에서의 오버레이 측정 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and by specifying the number of data measured in the overlay measurement process using the EGA method during the lithography process of the semiconductor device, the efficiency and precision according to the overlay measurement It is an object of the present invention to provide an overlay measurement method in a semiconductor manufacturing process that can improve the.

상기 목적을 달성하기 위하여 본 발명은, 반도체 제조 공정에서의 EGA 방식을 오버레이 측정 방법에 있어서, 상기 오버레이 측정에 필요한 제 1 EGA 데이터를 기설정된 횟수만큼 반복하여 계측하는 제 1 단계; 상기 계측된 각각의 EGA 데이터를 이용하여 결과값을 산출하는 제 2 단계; 상기 산출된 결과값에 의거하여 웨이퍼가 탑재된 스테이지를 이동시켜 제 2 EGA 데이터를 계측하는 제 3 단계; 상기 제 2 EGA 데이터가 기설정된 허용 범위에 포함되는지를 판별하는 제 4 단계; 상기 판별 결과, 상기 제 2 EGA 데이터가 허용 범위 내에 포함되지 않으면, 상기 제 3 단계 이후의 과정을 반복 수행하는 제 5 단계; 상기 판별 결과, 상기 제 2 EGA 데이터가 기설정된 허용 범위에 포함되면, 상기 제 2 EGA 데이터로부터 결과값을 산출하는 제 6 단계; 상기 제 6 단계에서 산출된 결과값이 기설정된 결과 범위 내에 포함되면 노광 공정을 수행하며, 상기 기설정된 결과 범위를 벗어나면 에러 메시지를 출력하는 제 7 단계를 포함하는 반도체 제조 공정에서의 오버레이 측정 방법을 제공한다.In order to achieve the above object, the present invention provides an overlay measuring method for an EGA method in a semiconductor manufacturing process, comprising: a first step of repeatedly measuring a first EGA data required for the overlay measurement by a predetermined number of times; A second step of calculating a result value using each of the measured EGA data; A third step of measuring the second EGA data by moving the stage on which the wafer is mounted based on the calculated result; A fourth step of determining whether the second EGA data is included in a preset tolerance range; A fifth step of repeating the process after the third step if the second EGA data is not within an allowable range as a result of the determination; A sixth step of calculating a result value from the second EGA data when the second EGA data is included in a preset allowable range as a result of the determination; And a seventh step of performing an exposure process if the result value calculated in the sixth step is within a preset result range, and outputting an error message if it is out of the preset result range. To provide.

도 1은 종래의 오버레이 측정 방법중 EGA 방식에 따른 처리 절차를 도시한 플로우차트,1 is a flowchart illustrating a processing procedure according to an EGA method of a conventional overlay measurement method;

도 2는 본 발명의 바람직한 실시예에 따른 오버레이 측정 방법을 적용하기에 적합한 시스템의 기본 구성을 도시한 도면,2 is a view showing a basic configuration of a system suitable for applying an overlay measuring method according to a preferred embodiment of the present invention;

도 3은 본 발명의 바람직한 실시예에 따른 오버레이 측정 방법에 대한 수행 과정을 도시한 플로우차트.3 is a flowchart illustrating a process of performing an overlay measuring method according to a preferred embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 오버레이 검출부 20 : 레티클10: overlay detection unit 20: reticle

30 : 렌즈부 40 : 웨이퍼30 lens unit 40 wafer

45 : 스테이지 50 : 제어부45 stage 50 control unit

60 : 메모리부60: memory

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 반도체 제조 공정에서의 오버레이 측정 방법에 대해 상세히 설명한다.Hereinafter, an overlay measuring method in a semiconductor manufacturing process according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 오버레이 측정을 위한 요소중, X, Y 시프트(shift)와 회전량, 신축도, 직교도는 기본적으로 최소 4개의 계측 데이터만 있으면 계산이 가능하게 된다. 그리고, 그 이상의 데이터는 리스트 스퀘어 메소드(least square method)를 이용하여 근사적으로 계산되어 최종 결과를 산출하게 된다.First, among the elements for overlay measurement, X, Y shift and rotation amount, elasticity, and orthogonality basically can be calculated if at least four measurement data are required. Further data is calculated approximately using the least square method to yield the final result.

따라서, 본 발명에서는 EGA 계측수의 최소치와 최대치를 지정하여, 최소 계측수까지는 기본적으로 계측을 실시하고, 그 이후의 싸이트(site)에 대해서는 이전에 계측된 데이터를 계산하고, 그 계산된 값을 고려하여 웨이퍼가 탑재된 스테이지를 움직이므로써 계측점을 찾는다. 이때, 계측된 데이터가 범위내에 포함되면, 더 이상의 데이터가 필요하지 않는 것으로 판단하여 노광 공정을 수행한다. 만일, 이와는 반대로, 계측된 데이터가 범위 내에 포함되지 않으면 그 계측 점은 하나의 데이터로서 결과값에 포함되고, 그로 인해 결과값이 갱신되며 이 갱신된 결과값을 고려하여 스테이지는 다음 계측점을 찾게 된다.Therefore, in the present invention, the minimum and maximum values of the EGA measurement number are designated, and measurement is basically performed up to the minimum measurement number, and the previously measured data is calculated for the subsequent sites, and the calculated value is calculated. Considering this, the measurement point is found by moving the stage on which the wafer is mounted. At this time, if the measured data is included in the range, it is determined that no more data is required to perform the exposure process. On the contrary, if the measured data is not included in the range, the measured point is included in the result value as one data, thereby updating the result value and considering the updated result value, the stage finds the next measurement point. .

이와 같이, 오버레이 측정 방법에 따르면, 오버레이 마진이 큰 공정과 작은 공정에 따라 EGA 데이터 계측수를 유동적으로 적용할 수 있게 되어 전반적인 오버레이 공정 속도를 향상시키게 될 것이다.As such, according to the overlay measurement method, it is possible to flexibly apply the EGA data measurement number according to the process of large and small overlay margin, thereby improving the overall overlay process speed.

도 2는 본 발명의 바람직한 실시예에 따른 오버레이 측정 방법을 적용하기에 적합한 시스템의 기본 구성을 도시한 도면으로서, 오버레이 검출부(10), 레티클(20), 렌즈부(30), 웨이퍼(40), 스테이지(45), 제어부(50), 메모리부(60)를 포함한다.2 is a diagram showing the basic configuration of a system suitable for applying the overlay measurement method according to a preferred embodiment of the present invention, the overlay detection unit 10, the reticle 20, the lens unit 30, the wafer 40 , The stage 45, the controller 50, and the memory unit 60.

먼저, 도 2에 도시된 오버레이 검출부(10), 레티클(20), 렌즈부(30), 웨이퍼(40), 스테이지(45)는 종래의 일반적인 오버레이 측정 장비에서와 동일한 기능을 수행하게 되며, 제어부(50)는 메모리부(60)는 본 발명에 따른 오버레이 측정방법을 수행하기 위해 별도로 구비되는 수단이다.First, the overlay detector 10, the reticle 20, the lens unit 30, the wafer 40, and the stage 45 illustrated in FIG. 2 perform the same functions as those of the conventional overlay measurement equipment. Reference numeral 50 is a memory unit 60 is a means provided separately to perform the overlay measurement method according to the present invention.

도 2를 참조하면, 오버레이 검출부(10)는 레티클(20)에 형성된 오버레이 마크와 웨이퍼(40) 상에 형성된 오버레이 마크를 이용하여 오버레이 측정에 필요한 데이터를 계측하고 이를 제어부(50)로 제공하며, 제어부(50)는 계측된 데이터를 이용하여 결과값을 계산한 다음, 계산된 결과와 기설정된 허용 범위를 비교하여, 그 비교 결과에 상응하는 제어 루틴을 수행하게 된다. 이때, 기설정된 허용 범위에 대한 정보는 메모리부(60)에 기저장되어 제어부(50)에 의해 판독된다.Referring to FIG. 2, the overlay detector 10 measures data necessary for overlay measurement using the overlay mark formed on the reticle 20 and the overlay mark formed on the wafer 40, and provides the data to the controller 50. The controller 50 calculates a result value using the measured data, compares the calculated result with a preset allowable range, and performs a control routine corresponding to the result of the comparison. At this time, the information about the preset allowable range is previously stored in the memory unit 60 and read by the controller 50.

도 3은 본 발명의 바람직한 실시예에 따른 오버레이 측정 방법에 대한 수행 과정을 도시한 플로우차트로서, 동도면을 참조하여 상술한 제어부(50)의 제어 루틴에 의거한 오버레이 측정 방법에 대해 상세히 설명하면 다음과 같다.FIG. 3 is a flowchart illustrating a process of performing an overlay measuring method according to an exemplary embodiment of the present invention. Referring to FIG. 3, the overlay measuring method based on the control routine of the controller 50 described above will be described in detail. As follows.

먼저, 오버레이 측정을 위해 EGA 데이터를 계측하게 되는데(단계 301), 이때 종래에는 EGA 데이터를 기설정된 갯수(예를 들어, 8∼9개)만큼 고정 계측하였으나, 본 발명에서는 오버레이 측정에 필요한 최소 갯수(예를 들어, 4개) 만을 계측하게 된다. 따라서, 상술한 단계(301)에서의 EGA 데이터 계측을 기설정된 최소 계측수(예를 들어, 4개)만큼 반복하여 수행하게 된다(단계 303).First, the EGA data is measured for overlay measurement (step 301). At this time, although the conventional EGA data is fixedly measured by a predetermined number (for example, 8 to 9), in the present invention, the minimum number required for overlay measurement is measured. Only four (eg four) will be measured. Therefore, the EGA data measurement in step 301 described above is repeatedly performed by a predetermined minimum number of measurements (for example, four) (step 303).

그리고, 이러한 과정을 거쳐 계측된 각각의 데이터를 이용하여 그 결과값을 계산한 다음(단계 305), 그 계산된 결과값에 의거하여 웨이퍼(40)가 탑재된 스테이지(45)를 이동시켜 다시 데이터를 계측하게 된다(단계 307).The resultant value is calculated using the data measured through the above process (step 305), and then the stage 45 on which the wafer 40 is mounted is moved based on the calculated resultant value, and the data is returned again. Is measured (step 307).

이때, 단계(307)에서 계측된 데이터가 기설정된 허용 범위에 포함되는지를 판별하게 되는데(단계 309), 그 판별 결과 허용 범위 내에 포함되지 않으면, 즉 허용 범위를 벗어나면 상술한 단계(307)를 반복 수행하게 된다.At this time, it is determined whether the data measured in step 307 is included in the preset allowable range (step 309). If the determination result does not fall within the allowable range, that is, outside the allowable range, step 307 described above is performed. Will be repeated.

만일, 이와는 달리 상술한 단계(309)에서의 판별 결과, 계측된 데이터가 기설정된 허용 범위에 포함되면, 다시 이로부터 결과값을 산출하고 이 산출된 결과값이 기설정된 범위 내에 포함되는 지를 판단하게 되는데(단계 311), 만일 기설정된 범위를 벗어날 경우에는 에러 메시지를 출력하게 되며(단계 313), 기설정된 범위 내에 포함될 경우에는 이 결과값을 최종 결과값으로 하여 후속 공정인 노광 공정을 수행하게 된다(단계 315).Otherwise, if the result of the determination in step 309 described above is that the measured data is included in the preset allowable range, the resultant value is again calculated therefrom to determine whether the calculated result is within the preset range. If it is out of the predetermined range (step 311), an error message is output (step 313), and if included in the predetermined range, the exposure value, which is a subsequent process, is performed as the final result value. (Step 315).

결과적으로, 본 발명에서는 종래의 EGA 방식의 오버레이 측정에서와는 달리, EGA 데이터 계측수를 유동적으로 설정하여 EGA 방식에 따른 오버레이 측정을 제어하게 된다. 그리고, 상술한 최소 계측 데이터 내에서 안정적인 데이터가 산출될 경우에는 더 이상의 데이터를 계측하지 않고 후속 공정을 수행할 수 있게 된다.As a result, in the present invention, unlike in the conventional EGA overlay measurement, the number of EGA data measurement is set to be fluid to control the overlay measurement according to the EGA method. When stable data is calculated within the above-described minimum measurement data, the subsequent process may be performed without further measuring the data.

이상 설명한 바와 같이 본 발명에 따르면, EGA 데이터 계측수를 유동적으로 설정하여 오버레이 측정을 수행하므로써, 오버레이 마진의 크기에 따라 적응적으로 오버레이 측정을 수행할 수 있는 효과가 있으며, 그에 따라 전반적인 오버레이 공정 시간을 단축할 수 있는 효과가 있다. 또한, 비정상적인 EGA 마크로 인해 많은 오차를 유발하는 데이터가 포함될 경우, 많은 계측점을 추가로 계측하게 되어 부정확한 데이터에 의한 영향을 상쇄시켜 오버레이 값의 정확도를 개선할 수 있는 효과가 있다.As described above, according to the present invention, the overlay measurement is performed by dynamically setting the number of EGA data measurements, so that the overlay measurement can be adaptively performed according to the size of the overlay margin, and thus the overall overlay process time. This can shorten the effect. In addition, when the data causing a lot of errors due to the abnormal EGA mark is included, a number of measuring points are additionally measured to offset the influence of incorrect data, thereby improving the accuracy of the overlay value.

Claims (1)

반도체 제조 공정에서의 EGA(Enhanced Global Alignment) 방식을 오버레이 측정 방법에 있어서,In the overlay measurement method of the Enhanced Global Alignment (EGA) method in the semiconductor manufacturing process, 상기 오버레이 측정에 필요한 제 1 EGA 데이터를 기설정된 횟수만큼 반복하여 계측하는 제 1 단계;A first step of repeatedly measuring the first EGA data required for the overlay measurement a predetermined number of times; 상기 계측된 각각의 EGA 데이터를 이용하여 결과값을 산출하는 제 2 단계;A second step of calculating a result value using each of the measured EGA data; 상기 산출된 결과값에 의거하여 웨이퍼가 탑재된 스테이지를 이동시켜 제 2 EGA 데이터를 계측하는 제 3 단계;A third step of measuring the second EGA data by moving the stage on which the wafer is mounted based on the calculated result; 상기 제 2 EGA 데이터가 기설정된 허용 범위에 포함되는지를 판별하는 제 4 단계;A fourth step of determining whether the second EGA data is included in a preset tolerance range; 상기 판별 결과, 상기 제 2 EGA 데이터가 허용 범위 내에 포함되지 않으면, 상기 제 3 단계 이후의 과정을 반복 수행하는 제 5 단계;A fifth step of repeating the process after the third step if the second EGA data is not within an allowable range as a result of the determination; 상기 판별 결과, 상기 제 2 EGA 데이터가 기설정된 허용 범위에 포함되면, 상기 제 2 EGA 데이터로부터 결과값을 산출하는 제 6 단계;A sixth step of calculating a result value from the second EGA data when the second EGA data is included in a preset allowable range as a result of the determination; 상기 제 6 단계에서 산출된 결과값이 기설정된 결과 범위 내에 포함되면 노광 공정을 수행하며, 상기 기설정된 결과 범위를 벗어나면 에러 메시지를 출력하는 제 7 단계를 포함하는 반도체 제조 공정에서의 오버레이 측정 방법.And a seventh step of performing an exposure process if the result value calculated in the sixth step is within a preset result range, and outputting an error message if it is out of the preset result range. .
KR1019990066046A 1999-12-30 1999-12-30 Method for measuring a overlay status in a fabricating process of a semiconductor device KR100688721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990066046A KR100688721B1 (en) 1999-12-30 1999-12-30 Method for measuring a overlay status in a fabricating process of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990066046A KR100688721B1 (en) 1999-12-30 1999-12-30 Method for measuring a overlay status in a fabricating process of a semiconductor device

Publications (2)

Publication Number Publication Date
KR20010058690A true KR20010058690A (en) 2001-07-06
KR100688721B1 KR100688721B1 (en) 2007-02-28

Family

ID=19633198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990066046A KR100688721B1 (en) 1999-12-30 1999-12-30 Method for measuring a overlay status in a fabricating process of a semiconductor device

Country Status (1)

Country Link
KR (1) KR100688721B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945920B1 (en) 2007-04-12 2010-03-05 주식회사 하이닉스반도체 Method for generating assist features by using simulation estimation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821441B2 (en) * 1996-08-23 1998-11-05 山形日本電気株式会社 How to measure the amount of misalignment
KR19980021245A (en) * 1996-09-14 1998-06-25 김광호 Overlay Data Correction Method in Photolithography Process
JP3245556B2 (en) * 1997-11-18 2002-01-15 日本電気株式会社 Mix and match exposure method
JPH11260683A (en) * 1998-03-10 1999-09-24 Sony Corp Method for determining exposure condition in semiconductor material manufacturing process and semiconductor material manufacturing equipment
KR100268042B1 (en) * 1998-03-12 2000-11-01 김규현 Overlay Correction Method for Semiconductor Wafers

Also Published As

Publication number Publication date
KR100688721B1 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
KR100431329B1 (en) Method for correcting atomatically overlay alignment of semiconductor wafer
KR102379329B1 (en) Method of determining a position of a feature
CN114200790A (en) Method and device for reducing wafer overlay deviation
KR100283382B1 (en) Method of measuring overlay offset
CN113093475A (en) Overlay accuracy detection method and overlay deviation compensation method
US5928822A (en) Method for confirming optimum focus of stepper
JP4088588B2 (en) Photolithographic short dimension control using reticle measurements
US6309944B1 (en) Overlay matching method which eliminates alignment induced errors and optimizes lens matching
CN114207527A (en) Method for controlling semiconductor manufacturing process
KR100688721B1 (en) Method for measuring a overlay status in a fabricating process of a semiconductor device
JP4157518B2 (en) Method for preparing substrate, measuring method, device manufacturing method, lithographic apparatus, computer program, and substrate
KR20220092844A (en) Patterning method, lithography apparatus, and article manufacturing method
US11809088B2 (en) Method for controlling a lithographic apparatus
CN111771167B (en) Alignment mark positioning in lithographic processes
KR20070014585A (en) Apparatus for aligning a semiconductor substrate
CN112180690A (en) Method for improving uniformity in critical dimension plane of device
WO2019162203A1 (en) Method for determining a corrected dimensional parameter value relating to a feature formed by a lithographic process and associated apparatuses
JP2000195770A (en) Tilt correcting method and manufacture of device
CN109541900B (en) Method and system for monitoring use of a light cover
US6456953B1 (en) Method for correcting misalignment between a reticle and a stage in a step-and-repeat exposure system
KR20020024928A (en) Method of forming pattern utilizing photoresist
GB2288467A (en) Manufacturing a semiconductor device
KR20070005810A (en) Wafer alignment method
TW202318098A (en) A method of monitoring a lithographic process and associated apparatuses
JPH0897123A (en) Alignment method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100121

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee