KR20010058488A - Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring - Google Patents

Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring Download PDF

Info

Publication number
KR20010058488A
KR20010058488A KR1019990065821A KR19990065821A KR20010058488A KR 20010058488 A KR20010058488 A KR 20010058488A KR 1019990065821 A KR1019990065821 A KR 1019990065821A KR 19990065821 A KR19990065821 A KR 19990065821A KR 20010058488 A KR20010058488 A KR 20010058488A
Authority
KR
South Korea
Prior art keywords
heat pipe
manifold
heat
filler
solar collector
Prior art date
Application number
KR1019990065821A
Other languages
Korean (ko)
Other versions
KR100342981B1 (en
Inventor
곽희열
강용혁
남명식
윤환기
유창균
부준홍
Original Assignee
손재익
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구원 filed Critical 손재익
Priority to KR1019990065821A priority Critical patent/KR100342981B1/en
Publication of KR20010058488A publication Critical patent/KR20010058488A/en
Application granted granted Critical
Publication of KR100342981B1 publication Critical patent/KR100342981B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE: A structure of connecting a hat pipe with a manifold in a solar heat collector is provided to improve heat transfer efficiency through having a maximum heat transfer area and keeping a complete sealing state. CONSTITUTION: To combine a heat pipe with a manifold, a spiral process unit(3) is formed at an outer surface of a front end of a condense portion at the heat pipe. A coil shaped pin(10) is attached at a lower inner circumference of a manifold connecting tool for being conveniently connected to the process unit and increasing contacting area between the heat pipe and the manifold. A filler is attached to an outer circumference of the heat pipe near the process unit for sealing a connect portion of the heat pipe and the manifold. Thus, the process unit and the coil shaped pin are combined for combining the heat pipe and the manifold connecting tool. Then, the heat pipe and the manifold are sealed by a silicone ring(11) located between a small surface(4A) of the filler and an inner surface(13) of the connecting tool. Moreover, a large surface(4B) of the filler and an outer surface(14) of the connecting tool are welded for completing sealing state.

Description

진공관형 태양열 집열기의 히트파이프와 내부 핀형 매니폴더의 연결 구조{Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring}Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring}

본 발명은 진공관형 태양열 집열기에 사용되는 히트파이프 응축부와 이에 연결되는 매니폴더의 연결 구조에 관한 것으로서, 더 자세하게는 상기 히트파이프 응축부의 연결부와 체결되는 매니폴더의 연결구 하부 내주면에 코일형 핀을 부착하여 히트파이프와 손쉬운 나사식 결합을 하게함과 동시에 열 전달 면적을 증대시켜 열 전달 효율을 향상시키고, 큰 직경의 상부 내주면과 작은 직경의 하부 내주면이 만나 형성되는 턱에는 실리콘 링을 준비하여 히트파이프의 필러와 매니폴더의 체결이 일차적으로 밀봉되도록 하며, 매니폴더 연결구의 입구와 접하는 히트파이프의 연결부 외주면에 층상 구조의 필러를 용접·부착하고, 이 필러와 매니폴더 연결구 입구를 다시 밀봉하도록 한 진공관형 히트파이프 응축부와 이에 연결되는 매니폴더의 연결 구조에 관한 것이다.The present invention relates to a connection structure of a heat pipe condensation unit and a manifold connected to the heat pipe condenser used in the vacuum tube solar collector, and more particularly, a coil-type pin is provided on an inner peripheral surface of a connector lower part of the manifold fastened to the connection portion of the heat pipe condensation unit. By attaching the heat pipe easily for screw connection, the heat transfer area can be increased to improve the heat transfer efficiency, and the silicon ring is prepared in the jaw where the upper inner circumferential surface of large diameter and lower inner circumferential surface of small diameter are formed. The filler of the pipe and the manifold are first sealed, and the layered filler is welded and attached to the outer circumferential surface of the heat pipe connecting the manifold connector inlet, and the seal and the manifold connector inlet are resealed. The connection structure of the vacuum tube heat pipe condenser and the manifold connected thereto It is about.

무제한 에너지원인 태양열 에너지의 이용에 있어서 무엇보다도 중요한 점은 태양열을 모으는 집열기의 고효율화에 있다고 할 수 있으며, 이러한 고효율화는 고효율 전열 소자인 히트파이프와 함께 진공 기술을 적용하므로써 어느정도 성과를 거두고 있다.The most important point in the use of solar energy, which is an unlimited energy source, is the high efficiency of solar collectors, and this high efficiency is achieved by applying vacuum technology together with a heat pipe, which is a high efficiency heating element.

그러나, 효율적으로 태양열 에너지를 집열하여도 이를 제대로 전달하지 못한다면 고효율의 집열기는 무용지물이 되는 바, 집광된 열 에너지를 열 매체 흐름관을 통하여 온수기에 열 손실 없이 전달하는 문제가 태양열 에너지의 이용에 있어서전체적인 에너지 이용 효율을 결정짓는 또 다른 중요 변수가 된다.However, if the solar energy can be efficiently collected and not properly delivered, the high efficiency collector becomes useless. The problem of transferring the collected heat energy to the water heater through the heat medium flow pipe without heat loss in the use of solar energy It is another important variable that determines the overall energy use efficiency.

따라서, 열 전달의 1차 관문인 히트파이프와 매니폴더간 연결부의 결합 형태가 열 전달 과정의 효율을 높이는데 1차적인 영향을 미치는 요소가 되나 국내에서는 이에 관한 연구가 활발히 이루어지지 않고 있는 실정이다.Therefore, the coupling form between the heat pipe and the manifold, which is the primary gateway of heat transfer, is the primary factor in improving the efficiency of the heat transfer process, but studies on this have not been actively conducted in Korea. .

국내 공개 특허공보 94-22030에는 히트파이프의 응축부를 축열 탱크에 직접 삽입하는 방법이 개시되어 있으나, 이는 히트파이프 응축부와 축열 탱크내 열 매체 사이의 접촉 면적이 작다는 문제가 지적되고 있다.Korean Patent Laid-Open Publication No. 94-22030 discloses a method of directly inserting a condensation part of a heat pipe into a heat storage tank, but this pointed out a problem that a contact area between the heat pipe condensation part and a heat medium in the heat storage tank is small.

그리고, 미국, 일본 및 호주와 같이 태양열 에너지에 관한 연구가 활발히 진행되고 있는 곳에서는 고효율 히트파이프의 응축부와 매니폴더가 간접적인 금속 매개체를 통해 연결되는 금속 접촉 방식을 채택하고 있으나, 이러한 방식은 접촉 저항을 증가시켜 열 전도 및 전달 효율을 떨어뜨린다는 단점이 있다.And, where researches on solar energy, such as the United States, Japan, and Australia, are being actively conducted, the metal contact method in which the condensation part of the high efficiency heat pipe and the manifold are connected through an indirect metal medium is adopted. The disadvantage is that the contact resistance is increased to reduce the heat conduction and transfer efficiency.

또한, 히트파이프의 응축부가 매니폴더 내로 완전히 삽입되어 열 매체 흐름관을 통하여 열원을 간접적으로 공급해 주고 있으나, 열 전달 저항이 크게되어 열 효율이 많이 떨어지므로 매니폴더와 히트파이프의 접촉 면적을 보다 넓게 하여 줌으로써 열 전달량을 최대화 시킬 필요가 있으나, 이러한 연결 방법에 적합한 매니폴더의 제작이 어렵다는 문제가 있다.In addition, the condensation part of the heat pipe is completely inserted into the manifold to indirectly supply the heat source through the heat medium flow pipe. However, since the heat transfer resistance is large, the thermal efficiency decreases so that the contact area between the manifold and the heat pipe is wider. It is necessary to maximize the amount of heat transfer, but there is a problem that it is difficult to manufacture a manifold suitable for this connection method.

상기에서 살펴본 바와 같이, 집열된 태양열 에너지의 효율적인 이용을 위해서는 열 전달 과정에서의 열 손실을 최소화해야 하며, 이를 위한 1차 열 전달 관문인 히트파이프와 매니폴더의 새로운 연결 구조를 제공하고자 한다.As described above, in order to efficiently use the collected solar thermal energy, heat loss in the heat transfer process should be minimized, and a new connection structure between the heat pipe and the manifold, which is a primary heat transfer gateway, is provided.

또한, 열 전달 효율을 가능한 한 높일 수 있도록 상기의 연결 구조가 동일 형태에서 최대의 열 전달 면적을 갖고 외부와 완전한 밀봉 상태를 유지하면서도 외부 충격에 강한 히트파이프와 매니폴더의 연결 구조를 제공하고자 한다.In addition, in order to increase the heat transfer efficiency as much as possible, the above connection structure has the maximum heat transfer area in the same form and maintains a completely sealed state with the outside while providing a heat pipe and manifold connection structure resistant to external impacts. .

도 1은 본 발명에 의한 히트파이프와 매니폴더가 조립된 진공관형 태양열 집열기 유니트의 평면도.1 is a plan view of a vacuum tube solar collector unit assembled with a heat pipe and a manifold according to the present invention;

도 2는 본 발명의 히트파이프와 매니폴더의 체결도.Figure 2 is a fastening of the heat pipe and the manifold of the present invention.

도 3은 본 발명의 히트파이프와 매니폴더간 결합 구조의 확대도.Figure 3 is an enlarged view of the coupling structure between the heat pipe and the manifold of the present invention.

((도면의 주요 부분에 대한 부호의 설명))((Explanation of symbols for main part of drawing))

1. 매 니 폴 더 2. 연 결 구1. Manifold 2. Connection

3. 나선형 가공부 4. 필 러3. Spiral part 4. Filler

5. 히트파이프-진공유리관 접합부 6. 히트 파이프5. Heat pipe to vacuum shared pipe joint 6. Heat pipe

7. 태양열 흡수판 8. 진공 유리관7. Solar absorber 8. Vacuum glass tube

9. 진공관형 태양열 집열기 10. 코일형 핀9. Vacuum tube solar collector 10. Coil pin

11. 실 리 콘 링 15. 응 축 부11.silicone ring 15.condensation

본 발명의 상기 목적은 매니폴더와 연결되는 히트파이프의 나선형 가공된 일측단부 외주면과, 상기 나선형 가공부가 끝나는 히트파이프의 외주면을 감싸며 부착된 층상 구조의 필러와, 히트 파이프의 나선형 외주면과 볼트-너트식 결합을 하도록 매니폴더 연결구의 하부 내주면에 부착된 코일형 핀과, 히트파이프와 매니폴더가 결합시 완전한 밀봉이 되도록 매니폴더 연결구의 큰 직경 상부 내주면과 작은 직경 하부 내주면이 만나 형성되는 턱에 안착되어 있는 실리콘 링에 의하여 달성된다.The above object of the present invention is a spiral-shaped one side end outer peripheral surface of the heat pipe connected to the manifold, and a layer-shaped filler attached to surround the outer peripheral surface of the heat pipe ending the spiral processing portion, the spiral outer peripheral surface of the heat pipe and the bolt-nut Coiled pins attached to the lower inner circumferential surface of the manifold connector for mechanical engagement, and seated on the jaws where the large diameter upper inner circumference and the small diameter lower inner circumferential surface of the manifold connector meet to form a complete seal when the heat pipe and manifold are joined. By means of a silicone ring.

본 발명의 목적과 자세한 기술적 특성 및 작용 효과는 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 다음의 상세한 설명에 의하여 명확하게 이해될 것이다.The purpose and detailed technical characteristics and operational effects of the present invention will be clearly understood by the following detailed description with reference to the drawings showing preferred embodiments of the present invention.

도1 내지 3에 도시한 바와 같이, 진공관형 태양열 집열기 유니트(12)는 다수의 태양열 집열기(9)가 하나의 매니폴더(1)에 연결되어 하나의 유니트를 구성하는 구조이다.As shown in Figs. 1 to 3, the vacuum tube solar collector unit 12 has a structure in which a plurality of solar collectors 9 are connected to one manifold 1 to constitute one unit.

상기 유니트의 구성 요소인 하나의 태양열 집열기(9)는 태양열을 수집하는태양열 흡수판(7)과, 이 흡수판(7)으로부터 열을 공급받아 열 전달을 시키는 고효율 전열소자인 히트파이프(6)와, 열 효율을 높이기 위하여 진공 상태로 태양열 흡수판(7)과 히트파이프(6)를 내장하고 있는 진공 유리관(8)으로 구성된다.One solar collector 9, which is a component of the unit, includes a solar heat absorbing plate 7 that collects solar heat, and a heat pipe 6 that is a high-efficiency heat transfer element that receives heat from the absorbing plate 7 and transmits heat. And a vacuum glass tube (8) having a solar heat absorbing plate (7) and a heat pipe (6) in a vacuum state in order to increase thermal efficiency.

그리고, 히트파이프(6)는 태양열 흡수판(7)을 벗어나 진공 유리관(8)과의 접합부(5)를 거쳐 진공 유리관(8) 밖으로 나오게 되는데, 이 부분은 응축부(15)로서 매니폴더(1)의 연결구(2)와 결합하게 되는 구조이다.Then, the heat pipe 6 exits the solar heat absorbing plate 7 and exits the vacuum glass tube 8 through the junction portion 5 with the vacuum glass tube 8, which is a manifold () as the condensation unit 15. It is a structure to be combined with the connector 2 of 1).

본 발명의 히트파이프(6)와 매니폴더(1)는 연결구(2)를 통한 두 장치(6)(1)의 손쉬운 결합과 열 전달 효율 향상을 위한 두 장치(6)(1)간의 접촉 면적 증대를 위하여, 히트파이프(6)의 응축부(15) 선단 외주면에는 볼트-너트식 체결에 필요한 나선형 가공부(3)가 형성되어 있다.The heat pipe 6 and the manifold 1 of the present invention have a contact area between the two devices 6 and 1 for easy coupling of the two devices 6 and 1 through the connector 2 and for improving heat transfer efficiency. In order to increase, a spiral processing portion 3 for bolt-nut fastening is formed on the outer peripheral surface of the tip of the condensation portion 15 of the heat pipe 6.

또한, 매니폴더 연결구(2)의 하부 내주면에는 히트파이프의 나선형 가공부(3)와 쉽게 결합되고 두 결합체(6)(1) 사이의 접촉 면적을 증대시켜 주기 위한 코일형 핀(10)이 부착되어 있다.In addition, the lower inner circumferential surface of the manifold connector 2 is easily attached to the spiral machining portion 3 of the heat pipe and has a coiled pin 10 for increasing the contact area between the two assemblies 6 and 1. It is.

히트파이프의 나선형 가공부(3)와 인접한 히트파이프의 외주면에는 히트파이프와 매니폴더의 연결부를 밀봉시키기 위한 필러(4)가 부착되는데, 이 필러(4)는 대소경의 원판 두장을 중심이 일치하도록 겹친 것과 같은 층상 구조의 원판 형태로서 원판의 중심을 히트파이프가 관통하므로써 히트파이프의 외주면에 부착된다.On the outer circumferential surface of the heat pipe adjacent to the helical processing portion 3 of the heat pipe, a filler 4 is attached to seal the connection portion of the heat pipe and the manifold, which is centered on two large diameter discs. It is attached to the outer circumferential surface of the heat pipe by the heat pipe penetrating the center of the disc in the form of a disk having a layered structure such as to overlap.

그리고, 매니폴더의 연결구(2)도 상기 필러(4)와 비슷한 층상 구조의 내주면을 갖으며, 이 연결구(2)의 내경은 연결구 입구측은 크고 코일형 핀측의 내경은 작은 형태로서 내경이 서로 다른 두 내주면이 만나 형성되는 층상면(13)에는 실리콘링(11)이 놓이게 된다.In addition, the connector 2 of the manifold also has an inner circumferential surface of a layered structure similar to the filler 4, and the inner diameter of the connector 2 has a large connector inlet side and a small inner diameter on the coil-type pin side. The silicon ring 11 is placed on the layered surface 13 where the two inner circumferential surfaces meet.

따라서, 히트파이프(6)와 매니폴더 연결구(2)의 체결은 히트파이프(6)가 매니폴더 연결구(2) 내로 삽입된 상태에서 히트파이프의 나선형 가공부(3)와 연결구 내부의 코일형 핀(10)에 의한 볼트-너트식 회전 결합을 통하여 이루어지고, 연결구(2) 내주면에 형성된 층상면(13)과 히트파이프 외주면에 부착된 필러(4)의 면적이 작은 면(4A) 사이에 위치하게 되는 실리콘 링(11)에 의하여 두 장치(6)(1)간 체결의 일차적인 밀봉이 이루어 진다.Therefore, the fastening of the heat pipe 6 and the manifold connector 2 is performed by the spiral-shaped portion 3 of the heat pipe and the coiled pin inside the connector in the state where the heat pipe 6 is inserted into the manifold connector 2. A bolt-nut rotational coupling by (10), which is located between the layered surface (13) formed on the inner peripheral surface of the connector (2) and the surface (4A) of the small area of the filler (4) attached to the outer peripheral surface of the heat pipe. The primary sealing of the fastening between the two devices 6, 1 is achieved by means of the silicon ring 11.

그리고, 최종적으로는 상기 필러(4)의 면적이 큰 면(4B)과 매니폴더 연결구(2) 입구 외면(14)이 용접·밀착되므로써 완전 밀봉 상태의 연결이 되는 것이다.Finally, the surface 4B having a large area of the filler 4 and the inlet outer surface 14 of the manifold coupler 2 are welded and adhered to each other to be connected in a completely sealed state.

즉, 히트파이프 외주면에 부착되어 있는 필러(4)는 연결부(2)의 밀봉 역활과 함께 히트파이프(6)를 지지하여 외부 충격에도 강한 구조를 갖도록 하여 준다.That is, the filler 4 attached to the outer circumferential surface of the heat pipe supports the heat pipe 6 together with the sealing role of the connecting portion 2 so as to have a structure strong against external impact.

상기에서 살펴본 바와 같이, 본 발명의 히트파이프와 매니폴더는 코일형 핀에 의한 연결로 열 전달 면적을 최대화 시킬 수 있을 뿐만 아니라, 필러와 실리콘 링에 의해서는 연결부를 이중으로 밀봉시키므로써 열 손실을 최소화할 수 있으며, 외부로부터 불순물의 침입으로 인한 부식을 방지할 수 있다.As described above, the heat pipe and the manifold of the present invention can maximize the heat transfer area through the connection by the coiled fins, and the heat loss by the double sealing of the connection by the filler and the silicon ring. It can be minimized and corrosion can be prevented due to intrusion of impurities from the outside.

그리고, 필러에 의한 히트파이프의 지지 역할에 의하여 어느 정도의 외부 충격에 대해서도 히트파이프와 매니폴더 연결부의 밀봉 상태를 유지할 수 있으며, 그 제작이 상대적으로 쉬운 장점도 있다.In addition, due to the support role of the heat pipe by the filler, it is possible to maintain the sealed state of the heat pipe and the manifold connection part to some degree of external impact, and there is an advantage that the manufacturing is relatively easy.

Claims (3)

진공관형 태양열 집열기에 사용되는 히트파이프와 매니폴더의 연결 구조에 있어서, 히트파이프 응축부의 연결측 선단부 외주면에 나선형 가공부가 구비되고, 매니폴더 연결구의 안쪽 내주면에는 상기 나선형 가공부와의 나사식 체결과 접촉 면적 증대를 위한 코일형 핀이 형성되어 있음을 특징으로 하는 진공관형 태양열 집열기의 히트파이프와 매니폴더의 연결 구조.In the connection structure of a heat pipe and a manifold used for a vacuum tube solar collector, a spiral machining part is provided on the outer peripheral surface of the distal end of the heat pipe condensation part, and a screw-type connection with the spiral machining part is provided on the inner inner peripheral surface of the manifold connector. A connection structure of a heat pipe and a manifold of a vacuum tube solar collector, characterized in that a coiled fin is formed to increase a contact area. 제 1항에 있어서, 상기 히트파이프의 나선형 가공부와 인접한 외주면에는 원판형 층상 구조의 필러가 결합되고, 상기 매니폴더 연결구의 내부는 단턱면이 구비된 이중 원통형 내주면으로 이루어지며, 그 단턱면 상에는 실리콘 링이 안착되어 실리콘 링을 사이에 두고 히트파이프의 상기 필러와 매니폴더의 연결구간에 밀봉 상태로 결합됨을 특징으로 하는 진공관형 태양열 집열기의 히트파이프와 매니폴더의 연결 구조.The circumferential surface adjacent to the spiral machining portion of the heat pipe is coupled to the disk-shaped layered filler, the inside of the manifold connector is made of a double cylindrical inner peripheral surface with a stepped surface, on the stepped surface A connection structure of a heat pipe and a manifold of a vacuum tube solar collector, characterized in that the silicon ring is seated and coupled in a sealed state to the connection section of the filler and the manifold of the heat pipe with the silicon ring interposed therebetween. 제1항에 의한 진공관형 태양열 집열기의 히트파이프 응축부와 매니폴더의 연결 구조를 이용하여 제작됨을 특징으로 하는 진공관형 태양열 집열기 유니트.The vacuum tube solar collector unit of claim 1, wherein the vacuum pipe solar collector is manufactured using a connection structure of a heat pipe condenser and a manifold of the vacuum tube solar collector.
KR1019990065821A 1999-12-30 1999-12-30 Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring KR100342981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990065821A KR100342981B1 (en) 1999-12-30 1999-12-30 Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990065821A KR100342981B1 (en) 1999-12-30 1999-12-30 Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring

Publications (2)

Publication Number Publication Date
KR20010058488A true KR20010058488A (en) 2001-07-06
KR100342981B1 KR100342981B1 (en) 2002-07-05

Family

ID=19632989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990065821A KR100342981B1 (en) 1999-12-30 1999-12-30 Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring

Country Status (1)

Country Link
KR (1) KR100342981B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368135B1 (en) * 2000-08-12 2003-01-15 한국에너지기술연구원 Evacuated tube solar collector for industry use
KR100692949B1 (en) * 2005-08-22 2007-03-12 한국에너지기술연구원 Solar Wavy-Absorber for Evacuated Tubular Solar Collector
WO2007043766A1 (en) * 2005-10-08 2007-04-19 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
CN101957080A (en) * 2010-09-29 2011-01-26 芜湖贝斯特新能源开发有限公司 Solar thermal collector
CN103090561A (en) * 2011-11-01 2013-05-08 昆山巨仲电子有限公司 Heat pipe solar thermal collector
CN103133692A (en) * 2011-11-29 2013-06-05 昆山巨仲电子有限公司 Heat pipe solar thermal collector and sealing structures thereof
KR101283566B1 (en) * 2011-05-24 2013-07-08 주식회사 강남에너텍 A solar heat collecting apparatus
EP3832225A1 (en) * 2019-12-04 2021-06-09 Emv2 Solar thermal collector, solar thermal panel and method for heating a building with integrated heat storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013028289A2 (en) * 2011-05-02 2019-09-24 Alan Bostwick Paul hybrid solar systems and production methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474170A (en) * 1981-08-06 1984-10-02 The United States Of America As Represented By The United States Department Of Energy Glass heat pipe evacuated tube solar collector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368135B1 (en) * 2000-08-12 2003-01-15 한국에너지기술연구원 Evacuated tube solar collector for industry use
KR100692949B1 (en) * 2005-08-22 2007-03-12 한국에너지기술연구원 Solar Wavy-Absorber for Evacuated Tubular Solar Collector
WO2007043766A1 (en) * 2005-10-08 2007-04-19 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
KR100712012B1 (en) * 2005-10-08 2007-04-30 한국에너지기술연구원 Evacuated tubular solar collector with eccentric type manifold flange
US8113192B2 (en) 2005-10-08 2012-02-14 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
CN101957080A (en) * 2010-09-29 2011-01-26 芜湖贝斯特新能源开发有限公司 Solar thermal collector
KR101283566B1 (en) * 2011-05-24 2013-07-08 주식회사 강남에너텍 A solar heat collecting apparatus
CN103090561A (en) * 2011-11-01 2013-05-08 昆山巨仲电子有限公司 Heat pipe solar thermal collector
CN103133692A (en) * 2011-11-29 2013-06-05 昆山巨仲电子有限公司 Heat pipe solar thermal collector and sealing structures thereof
CN103133692B (en) * 2011-11-29 2015-10-21 昆山巨仲电子有限公司 Hot pipe type solar heat collector and hermetically-sealed construction thereof
EP3832225A1 (en) * 2019-12-04 2021-06-09 Emv2 Solar thermal collector, solar thermal panel and method for heating a building with integrated heat storage
FR3104242A1 (en) * 2019-12-04 2021-06-11 Emv2 Solar thermal collector, solar thermal panel and method of heating a building with integrated heat storage.

Also Published As

Publication number Publication date
KR100342981B1 (en) 2002-07-05

Similar Documents

Publication Publication Date Title
JP2004251612A (en) Absorber pipe for solar heating
CN101498517B (en) Solar high-temperature vacuum heat-collecting tube
KR100342981B1 (en) Connecting structure of evacuated solar heat pipe with sealing filler and inner fin-typed manifolder with silicon ring
CN201003869Y (en) Line-focusing solar energy vacuum heat-collecting pipe
JPS5846365Y2 (en) solar collector
CN101551168B (en) Pressure type internal concentrating heat pipe collector
KR100368135B1 (en) Evacuated tube solar collector for industry use
WO2019127596A1 (en) Same-plane pipe arrangement glass heat pipe heat collection core vacuum heat collection pipe module
CN107191715A (en) High temperature rotary joint
CN107143707A (en) Butt sealing formula high temperature pipe and dock swivel joint
CN101762083A (en) Diathermanous solar heat collecting element of radial elastic metal body for cover glass
CN2913965Y (en) Line focusing metallic flow passage solar energy vacuum thermal-collecting tube
WO2019127600A1 (en) Horizontal transversely disposed bent and stacked heat pipe heat collection core evacuated tube module
CN207196978U (en) Stabilizing energy-saving type photo-thermal field
KR100704750B1 (en) The evacuated tubular solar collector using U-tube adopting a plate fin
WO2009000129A1 (en) A solar vacuum heat-collecting tube
CN103011572B (en) Heat collecting pipe sealing device and vacuum heat collecting pipe employing same
CN106500365A (en) A kind of high-temperature heat-collection pipe and solar energy heat collector
CN207112163U (en) Connect sleeve and high temperature rotary joint
WO2019127595A1 (en) Horizontal transverse bent stacked pipe opening diagonal arrangement heat collection core vacuum heat collection pipe module
CN1573255A (en) Heat transferring core bar of solar energy collector
JPS596215Y2 (en) solar collector
CN101118095A (en) Double-layer glass vacuum metal pipe type solar heat-collector
CN218723368U (en) Novel heat transfer pipe structure
CN107191716A (en) Connect sleeve and high temperature rotary joint

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 18