KR20010057420A - Apparatus for supplying the back-up gas in fluidized bed reactor - Google Patents

Apparatus for supplying the back-up gas in fluidized bed reactor Download PDF

Info

Publication number
KR20010057420A
KR20010057420A KR1019990060749A KR19990060749A KR20010057420A KR 20010057420 A KR20010057420 A KR 20010057420A KR 1019990060749 A KR1019990060749 A KR 1019990060749A KR 19990060749 A KR19990060749 A KR 19990060749A KR 20010057420 A KR20010057420 A KR 20010057420A
Authority
KR
South Korea
Prior art keywords
ore
gas
reduction
furnace
flow
Prior art date
Application number
KR1019990060749A
Other languages
Korean (ko)
Other versions
KR100332927B1 (en
Inventor
정선광
최낙준
김행구
강흥원
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
암루쉬 만프레드, 프로머 우어줄라
뵈스트-알핀 인두스트리안라겐바우 게엠바하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원, 암루쉬 만프레드, 프로머 우어줄라, 뵈스트-알핀 인두스트리안라겐바우 게엠바하 filed Critical 이구택
Priority to KR1019990060749A priority Critical patent/KR100332927B1/en
Priority to UA2001074557A priority patent/UA70348C2/en
Priority to US09/869,725 priority patent/US6736876B1/en
Priority to AU14200/01A priority patent/AU755507B2/en
Priority to EP00976417A priority patent/EP1163375B1/en
Priority to DE60021064T priority patent/DE60021064T2/en
Priority to AT00976417T priority patent/ATE298806T1/en
Priority to BR0007280-0A priority patent/BR0007280A/en
Priority to CA002358425A priority patent/CA2358425C/en
Priority to PCT/KR2000/001257 priority patent/WO2001032941A1/en
Priority to RU2001118469/02A priority patent/RU2218418C2/en
Priority to JP2001535619A priority patent/JP3506690B2/en
Publication of KR20010057420A publication Critical patent/KR20010057420A/en
Application granted granted Critical
Publication of KR100332927B1 publication Critical patent/KR100332927B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE: A supplying apparatus for back-up gas of a flow type reduction furnace capable of solving defluidization simply and stably by detecting pressure difference and temperature change generated when a nozzle is clogged and back-up supplying nitrogen gas to the lower part of a reactor is provided, which can normalize operations quickly and makes it possible to stably perform long-term operations. CONSTITUTION: This supplying apparatus comprises: exhaust pipe differential pressure gauges(25)(35)(45) for detecting pressure difference and temperature gauges(26)(36)(46) for detecting reducing gas temperature placed at ore discharge pipes(23)(33)(43); furnace differential pressure gauges(27)(37)(47) for detecting pressure difference of the upper and lower part of distribution plates(24)(34)(44); and nitrogen gas lines(29)(39)(49) having on-off valves(28)(38)(48) to supply nitrogen gas to a preheating furnace(40), a preparatory reduction furnace(30) and a final reduction furnace.

Description

유동환원로의 백업가스 공급장치{APPARATUS FOR SUPPLYING THE BACK-UP GAS IN FLUIDIZED BED REACTOR}Back-up gas supply device for fluidized-reduction reactor {APPARATUS FOR SUPPLYING THE BACK-UP GAS IN FLUIDIZED BED REACTOR}

본 발명은 입도 범위가 넓은 분철광석을 이용하여 용선을 제조하는 다단 유동환원로의 용융환원공정에 있어서 유동층 환원로의 비정상적인 조업시 신속히 이를 해결함으로서 안정적인 정상조업으로 신속하게 전환하여 장시간 조업을 수행하기 위한 것으로, 보다 상세히는 다단 유동환원로에서 철광석은 상부의 광석장입빈에서 예열로, 예비환원로 및 최종환원로 거치면서 용융가스화로로 광석이 최종장입되는 공정에서 각 반응기의 측벽으로 차례로 장입 및 배출되고, 반면에 환원가스는 용융가스화로에서 발생되어 최종환원로, 예비환원로 및 예열로로 연결된 가스배출관을 통하여 각 반응기의 하부로 공급되어 분산판을 통과하여 장입된 광석과 상호 교류하면서 환원반응을 연속적으로 진행시킨 후 최종환원 생성물인 환원철을 생산하여 용융가스화로로 장입하는 공정에서 각 반응기의 분산판차압의 증가로 정상적인 반응기내에서의 유동층 형성 및 광석흐름을 이루지 못할 경우 이를 신속히 해결하여 정상조업인 조업으로 전환하여 장시간 조업이 가능하게 할 수 있도록 개선된 유동환원로의 백업가스 공급장치에 관한 것이다.The present invention is to solve the abnormal operation of the fluidized bed reduction furnace in the molten reduction process of the multi-stage flow reduction furnace for manufacturing molten iron using a wide range of particle size ore to quickly switch to a stable normal operation to perform a long time operation In more detail, in the multi-stage flow reduction reactor, iron ore is charged to the side wall of each reactor in turn in the process of final charging of the ore into the melt gasification furnace while passing through the preheating furnace, the preliminary reduction reactor and the final reduction furnace. On the other hand, the reducing gas is generated in the molten gasifier and supplied to the lower part of each reactor through the gas discharge pipe connected to the final reduction, preliminary and preheating furnaces, and is reduced while interacting with the ore charged through the dispersion plate. After the reaction proceeds continuously, molten gas is produced by producing reduced iron, the final reduction product. In the process of charging the furnace, if the fluidized bed formation and the ore flow cannot be achieved in the normal reactor due to the increase of the differential plate pressure of each reactor, the solution is quickly solved and converted into the normal operation to enable long-term operation. The present invention relates to a back-up gas supply apparatus for a flow reduction reactor.

일반적으로 지금까지 철광석을 환원하여 용선을 생산하는 방법으로는 고로를 이용하는 방법이 주로 이용되었다. 그러나 이러한 고로법은 제조공정의 효율성을 위하여 원료를 전처리하여 사용되고 있다.In general, a method of using a blast furnace has been mainly used as a method of producing molten iron by reducing iron ore. However, this blast furnace method is used to pre-process the raw material for the efficiency of the manufacturing process.

즉, 철광석은 통기성과 환원성을 향상시키기 위하여 소결공정을 거쳐 생산된 소결광의 형태로 고로에 장입되며, 열원인 동시에 환원제로서 사용되는 코크스는 강점결탄의 건류하기 위한 코킹공정이 필수적이다.In other words, iron ore is charged into the blast furnace in the form of sintered ore produced through a sintering process to improve breathability and reducibility, and coke used as a heat source and a reducing agent is essential to coking strong coking coal.

이에 따라, 이러한 원료의 전처리 공정은 막대한 투자비용이 필요한 부대설비를 갖추어야 할뿐만 아니라 전세계적으로 강화되고 있는 환경규제와 관련하여 많은 문제에 직면하고 있다. 아울러 세계 철광석 매장량의 70%이상을 차지하는 미분 철광석의 효과적인 활용이 요구되며, 코크스 제조원료인 강점결탄은 그 부존량이 적을 뿐만 아니라 지정학적으로 편재되어 있으므로 철강수요의 증대에 따른 수급상의 문제가 날로 심각해지고 있다.Accordingly, the pretreatment of such raw materials not only has to have additional facilities requiring huge investment costs, but also faces many problems with environmental regulations that are being strengthened around the world. In addition, the effective utilization of fine iron ore, which accounts for more than 70% of the world's iron ore reserves, is required, and coking coking raw material coking coal is not only low in amount but also geopolitically distributed, so the supply and demand problems are increasing due to the increase in steel demand. have.

이러한 고로법의 문제를 극복하고 분철광석과 일반탄의 사전처리 없이 직접 사용하는 새로운 용선제조 방법으로 근래에 용융환원법이 대두되고 있으며 그 대표적인 예가 미국특허 제 4,978,378호를 들수 있다.In order to overcome the problems of the blast furnace method and to use the molten iron ore and without the pre-treatment of ordinary coal directly melt melting method has emerged in recent years, a typical example is US Patent No. 4,978,378.

상기 미국특허 제 4,978,378호에 제시된 방법은 원철광석과 일반탄을 직접 사용하므로써 기존의 고로법과 비교하여 소결공정 및 코킹공정등 원료의 전처리 생략으로 공정 및 설비의 단순화를 달성할 수 있었다.In the method described in US Patent No. 4,978,378, the use of raw iron ore and coal can be used to simplify the process and equipment by omitting the pretreatment of raw materials such as the sintering process and the coking process, compared to the existing blast furnace method.

상기 공정은 도 1에 나타난 바와 같이 장입된 석탄의 가스화에 의한 환원가스제조와 환원광의 용융을 담당하는 용융가스화로(10)와 상기 용융가스화로(10)에서 발생한 환원가스를 사용하여 철광석을 간접환원 시킬수 있도록 예열로(40), 예비환원로(30) 및 최종환원로(20)로 이루어진 다단 유동환원로(100) 및 그 부대시설로 구분할 수 있다.As shown in FIG. 1, the indirect iron ore is indirectly formed using a melting gasifier 10 and a reducing gas generated in the molten gasifier 10 that are responsible for producing a reducing gas and melting a reduced ore by gasification of charged coal as shown in FIG. 1. It can be divided into a multi-stage flow reduction reactor (100) consisting of a preheating furnace 40, a preliminary reduction reactor (30) and a final reduction reactor (20) and its auxiliary facilities to reduce.

즉, 이러한 다단 유동환원로(100)에서는 장입빈(60)내의 광석이 광석장입관(63), 제 1,2 및 3광석배출관(23)(33)(43)을 통하여 예열로(40), 예비환원로(30) 및 최종환원로(20)를 거치면서 유동환원되어 용융가스화로(10)로 장입되고, 상기 용융가스화로(10)에서 생성된 환원가스는 상승관(11),제1,2가스배출관(22)(32)을 통하여 최종환원로(20), 예비환원로(30)및 예열로(40) 하부로 통입되어 각 반응기(20)(30) (40)의 제 1,2 및 3분산판(24)(34)(44)을 통하여 유동층으로 공급되어 용철을 제조하고, 환원공정을 마친 가스는 가스배출관(42),습식제진기(50),배가스관(51)및 플레어스택(flare stack)를 통하여 외부로 배출된다.That is, in this multi-stage flow reduction path 100, the ore in the charging bin 60 is preheated through the ore loading pipe 63, the first and second ore and the third ore discharge pipes 23, 33, 43. In addition, the flow is reduced through the preliminary reduction path 30 and the final reduction path 20 and charged into the melt gasifier 10, the reducing gas generated in the melt gasifier 10 is the rising pipe (11), The first and second gas discharge pipes 22 and 32 are introduced into the final reduction path 20, the preliminary reduction path 30, and the preheating path 40, respectively, so that the first reactors 20, 30, and 40 are first. Gas is supplied to the fluidized bed through the 2 and 3 dispersion plates 24, 34 and 44 to produce molten iron, and the finished gas is gas discharge pipe 42, wet damper 50, exhaust gas pipe 51 and It is discharged to the outside through a flare stack.

이러한 유동환원로(100)를 이용한 환원공정은 철광석과 환원가스의 접촉상태에 따라 이동층 및 유동층식으로 구분할 수 있는데, 입도분포가 넓은 철광석은 유동환원로에 장입하고 환원가스는 각 반응기(20)(30)(40)하부의 분산판(44)(34)(24)을 통하여 보내어 철광석을 유동시키면서 환원하는 유동층식이 이러한 분철광석을 환원하는 적절한 방법으로 알려져 있다.The reduction process using the flow reduction reactor 100 can be divided into a moving bed and a fluidized bed type according to the contact state of the iron ore and reducing gas, the iron ore having a wide particle size distribution is charged into the flow reduction reactor and the reducing gas is each reactor (20). A fluidized bed equation, which is sent through the dispersion plates 44, 34 and 24 underneath (30) and (40) to reduce the flow of iron ore, is known as a suitable method for reducing such iron ore.

이와 같은 입도분포가 넓은 철광석을 효과적으로 환원한 후 용융가스화로 (10)로 장입시키기 위해서는 다수개의 원추형 유동환원로인 예열로(40), 예비환원로 (30)및 최종환원로(20)를 거치는 것이 주로 이용되었다.In order to effectively reduce the iron ore having such a large particle size distribution and then charge it into the melting gasifier 10, a plurality of conical flow reduction furnaces, including a preheating furnace 40, a preliminary reduction reactor 30, and a final reduction reactor 20, may be used. Mainly used.

그러나, 상기 용융가스화로(10)에서 생성된 환원가스는 다량의 더스트(Dust)를 함유하여 각 반응기(40)(30)(20)의 분산판(44)(34)(24)을 통과하도록 각 반응기(40)(30)(20)내로 공급되는 과정에서 상기 분산판(44)(34)(24)에 형성된 노즐에 점차 더스트가 축적될 뿐만 아니라 조업불안정으로 광석의 비유동화로 낙광이 발생하여 극심한 경우 상기 분산판(44)(34)(24)의 노즐막힘으로 정상적인 가스흐름이 불가능하여 극단적인 경우는 조업을 중단되어야만 하였다.However, the reducing gas generated in the melt gasifier 10 contains a large amount of dust to pass through the dispersion plates 44, 34, 24 of each reactor 40, 30, 20. In addition, dust is accumulated in the nozzles formed in the dispersion plates 44, 34, and 24 in the process of being supplied into each of the reactors 40, 30, and 20. In the extreme case, normal gas flow was not possible due to the clogging of the nozzles of the dispersion plates 44, 34 and 24. In extreme cases, the operation had to be stopped.

이와 같은 문제점을 해결하기 위하여 일본 특개평 9-157719에서는 낙광탱크를 설치하여 조업불안정으로 발생된 분산판하부로 떨어진 낙광을 처리하였다.In order to solve such a problem, Japanese Unexamined Patent Publication No. 9-157719 installed a dropping tank to handle falling falls caused by unstable operation.

그러나 다단으로 이루어진 유동환원로에서 조업 불안정에 따른 광석장입 및 배출과 각 반응기내 광석 유동문제는 조업의 안정성과 효율성이 저하될 뿐만 아니라 조업중단도 발생할 수 있는 것이었다.However, in the multi-stage flow reduction reactor, ore loading and discharge due to unstable operation and ore flow problems in each reactor could not only reduce the stability and efficiency of the operation but also cause the operation to stop.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해서 안출된 것으로서, 그 목적은, 정상적인 유동층형성 및 광석흐름이 이루어지도록 노즐막힘시 발생되는 차압, 온도변화를 검지하여 질소가스를 반응기 하부로 백업공급함으로서 비유동화현상을 간단하고 안정적으로 해결하여 신속한 조업정상화 및 안정적인 장기간 조업을 수행할수 있는 유동환원로의 백업가스 공급장치를 제공하고자 한다.Accordingly, the present invention has been made to solve the above problems, the object of the present invention is to detect the differential pressure and temperature change generated when the nozzle clogged so that the normal fluidized bed formation and ore flow is made, back-up supply of nitrogen gas to the bottom of the reactor By providing a simple and stable solution to the non-fluidization phenomena, it is intended to provide a back-up gas supply device for a flow reduction path that can perform normal operation and stable long-term operation.

도 1은 일반적인 유동환원로를 도시한 개략도,1 is a schematic diagram showing a general flow reduction path,

도 2는 본 발명에 따른 백업가스 공급장치를 채용한 유동환원로를 도시한 구성도.Figure 2 is a block diagram showing a flow reduction path employing a backup gas supply apparatus according to the present invention.

* 도면의 주요부분에 대한 부호의 설명** Explanation of symbols for the main parts of the drawings *

10 .... 용융가스화로 20 ..... 최종환원로10 .... Melt Gasification Furnace 20 ..... Final Reduction Furnace

30 .... 예비환원로 40 ..... 예열로30 .... preliminary reduction furnace 40 ..... preheating furnace

50 .... 습식제진기 60 ..... 광석장입빈50 .... Wet vibration damper 60 ..... ore loading bin

11 .... 환원가스 상승관 51 ..... 배가스관11 .... reducing gas riser 51 ..... flue gas

21,31,41 .... 제 1,2및 3조절밸브 22,32 ..... 제 1,2가스배출관21, 31, 41 .... 1st, 2nd and 3rd control valves 22, 32 ..... 1st, 2nd gas exhaust pipe

23,33,43 .... 제 1,2및 3광석배출관 24,34,44 .... 제 1,2및 3분산판23, 33, 43 .... 1,2, and 3 ore discharge pipes 24, 34, 44 .... 1,2, and 3 dispersion plates

25,35,45 .... 제 1,2및 3배출관차압계 26,36,46 .... 제 1,2및 3온도계25, 35, 45 .... 1,2,3 discharge pipe differential pressure gauge 26,36,46 .... 1,2,3,3 Thermometer

27,37,47 .... 제 1,2및 3로차압계 29,39,49 .... 제 1,2및 3질소가스라인27,37,47 .... 1st, 2nd and 3rd differential pressure gauges 29,39,49 .... 1st, 2nd and 3rd nitrogen gas lines

상기 목적을 달성하기 위한 기술적인 구성으로서 본 발명은,The present invention as a technical configuration for achieving the above object,

장입빈내의 광석은 광석장입관, 제 1,2 및 3광석배출관을 통하여 예열로, 예비환원로 및 최종환원로를 거치면서 유동환원되어 용융가스화로로 장입되고, 용융가스화로에서 생성된 환원가스는 상승관, 제 1,2가스배출관을 통하여 최종환원로, 예비환원로 및 예열로 하부로 통입되어 각 반응기의 제 1,2 및 3 분산판을 통하여 유동층으로 공급되어 용철을 제조하고, 환원공정을 마친 가스는 습식제진기를 통하여 배출되는 유동환원로설비에 있어서,The ore in the charging bin is flow-reduced through the preheating, preliminary and final reduction paths through the ore charge pipes, the first and second ore discharge pipes, charged into the melt gasifier, and the reducing gas produced in the melt gasifier. Is fed into the bottom of the final reduction, preliminary and preheating furnaces through the riser, the first and second gas discharge pipes and supplied to the fluidized bed through the first, second and third dispersion plates of each reactor to produce molten iron. The finished gas is discharged through the wet vibration suppressor in the

상기 광석의 공급흐름을 제어할수 있도록 제 1,2 및 3조절밸브를 갖는 제 1,2및 3광석배출관에는 입구단과 출구단사이의 압력차를 검출하는 제 1,2 및 3배출관차압계와, 가스역류시 역류된 환원가스온도를 검출하는 제 1,2및 3온도계가 각각 장착되며, 상기 제 1,2및 3분산판의 상,하부 압력차를 검출하는 제 1,2및 3로차압계를 각각 갖추고, 상기 상승관, 제 1,2가스배출관에는 비정상적인 온도상승변화 및 압력차를 검지한 상기 제 1,2 및 3온도계와 제 1,2 및 3배출관차압계와 제 1,2 및 3로차압계의 검지신호에 의해서 개방작동되어 질소가스를 상기 예열로, 예비환원로 및 최종환원로내로 공급할수 있도록 제 1,2 및 3개폐밸브를 갖는 제 1,2 및 3질소가스라인을 연결구성함을 특징으로 하는 유동환원로의 백업가스 공급장치를 마련함에 의한다.The first, second and third ore discharge pipes having the first, second and third control valves for controlling the supply flow of the ore include first and second discharge pipe pressure gauges for detecting a pressure difference between an inlet end and an outlet end; The first, second, and third thermometers for detecting the reversed gas temperature at the time of backflow are mounted, respectively, and the first, second, and third furnace pressure gauges for detecting the upper and lower pressure differentials of the first, second, and third dispersion plates, respectively. And the first and second gas discharge pipes of the first, second and third thermometers, the first and the second and third discharge pipe pressure gauges, and the first and second and third furnace pressure gauges that detect abnormal temperature rises and pressure differences. The first, second and third nitrogen gas lines having first, second and third opening and closing valves for connecting nitrogen gas to the preheating, preliminary and final reduction paths by the detection signal. By providing a back-up gas supply device for the flow reduction path.

이하, 본 발명에 대하여 첨부된 도면에 따라서 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 유동환원로의 백업가스 공급장치를 도시한 구성도로서, 본 발명의 백업가스공급장치(1)는 제 1,2 및 3분산판(24)(34)(44)의 노즐막힘, 제 1,2 및 3광석배출관(23)(33)(43)을 통한 환원가스의 역류 및 비유동화발생을 억제할수 있도록 질소가스를 유동환원로(100)를 구성하는 예열로(40), 예비환원로(30) 및 최종환원로(20)의 하부측으로 백업공급하여 비유동화를 방지하는 것이다. 즉, 광석이 장입된 광석장입빈(60)으로부터 공급된 광석을 예열로(40), 예비환원로(30), 최종환원로(20) 및 용융가스화로(10)측으로 연속적으로 공급하는 제 1,2및 3광석배출관(23)(33)(43)에는 상기 예열로(40)에서 예비환원로(30)측으로, 상기 예비환원로(30)에서 최종환원로(20)측으로, 상기 최종환원로(20)에서 용융가스화로(10)측으로의 광석흐름을 적절히 제어할수 있도록 제 1,2및 3조절밸브(21)(31)(41)가 장착된다.2 is a block diagram showing a backup gas supply apparatus for a flow reduction path according to the present invention, the backup gas supply device 1 of the present invention is the first, second and third dispersion plates 24, 34, 44 Preheating furnace constituting the nitrogen gas flow reducing reactor 100 to suppress the clogging of the nozzle, the reverse flow of the reducing gas through the first, second and third ore discharge pipes (23, 33, 43) and non-fluidization ( 40), backup supply to the lower side of the preliminary reduction path 30 and the final reduction path 20 to prevent defluidization. That is, the first supply of the ore supplied from the ore charging bin 60 into which the ore is loaded is continuously supplied to the preheating furnace 40, the preliminary reduction reactor 30, the final reduction reactor 20, and the melt gasifier 10. , 2 and 3 ore discharge pipes 23, 33, 43 in the preheating furnace 40 to the preliminary reduction path 30 side, from the preliminary reduction path 30 to the final reduction path 20 side, the final reduction First, second and third control valves 21, 31 and 41 are mounted to properly control the ore flow from the furnace 20 to the molten gasifier 10 side.

그리고, 상기 제 1,2 및 3광석배출관(23)(33)(43)에는 각 관내부의 입구단과 출구단사이에서의 압력차를 검출할 수 있도록 제 1,2및 3배출관차압계(25)(35)(45)를 갖추고, 상기 제 1,2및 3조절밸브(21)(31)(41)의 전단에는 상기 제 1,2 및 3분산판(24)(34)(34)에 형성된 노즐막힘시 환원가스가 제 1,2 및 3광석배출관(23)(33) (43)을 통하여 역류할 때 이를 통하여 역류되는 환원가스의 급격한 온도변화를 검출할수 있도록 제 1,2 및 3온도계(26)(36)(46)가 각각 장착된다.In addition, the first, second and third ore discharge pipes 23, 33 and 43 have first, second and third discharge pipe pressure gauges 25 (to detect the pressure difference between the inlet and outlet ends of the respective inner tubes. 35 and 45, nozzles formed in the first, second and third dispersion plates 24, 34 and 34 at the front end of the first, second and third regulating valves 21, 31 and 41. When clogged reducing gas flows back through the first, second, and third ore discharge pipes 23, 33, 43, the first, second, and third thermometers 26 may detect a sudden change in temperature of the reducing gas that flows back therethrough. 36 and 46 are respectively mounted.

또한, 노즐막힘에 의한 상기 예열로(40), 예비환원로(30) 및 최종환원로(20)내에서 비유동화가 발생될 때 상기 제 1,2및 3분산판(24)(34)(44)의 상하부에서의 압력차를 검출할 수 있도록 제 1,2 및 3로차압계(27)(37)(47)를 각각 갖추어 구성한다.In addition, when the non-fluidization occurs in the preheating furnace 40, the preliminary reduction path 30 and the final reduction path 20 due to the nozzle clogging, the first, second and third dispersion plates 24, 34 ( The first, second, and third low-pressure manometers 27, 37, 47 are provided so as to be able to detect the pressure difference in the upper and lower parts of 44.

한편, 상기 용융가스화로(10)의 환원가스가 공급되는 상기 상승관(11), 제 1,2가스배출관(22)(32)에는 상기 제 1,2 및 3온도계(26)(36)(46)와 제 1,2 및 3배출관차압계(25)(35)(45)에 의하여 제 1,2 및 3광석배출관(23)(33)(43)내에서 비정상적인 온도상승이 검출되고, 설정이상의 압력차가 검출되고, 상기 제 1,2 및 3로차압계(27)(37)(47)에 의해서 상기 제 1,2 및 3분산판(24)(34)(44)에서 설정이상의 압력차가 검출될 때 발생하는 검출신호에 의해서 개방작동되는 제 1,2 및 3개폐밸브(28)(38)(48)을 갖는 제 1,2 및 3질소가스라인(29)(39)(49)을 갖추어 구성한다.Meanwhile, the first, second and third thermometers 26 and 36 (the first and the third gas discharge pipes 22 and 32 to which the reducing gas of the molten gasifier 10 is supplied) are provided. 46 and the first, second, and third discharge pipe pressure gauges 25, 35, 45 detect abnormal temperature rises in the first, second, and third ore discharge pipes 23, 33, 43; The pressure difference is detected, and the pressure difference greater than or equal to the set value is detected in the first, second, and third dispersion plates 24, 34, 44 by the first, second, and third road pressure gauges 27, 37, 47. First, second, and third nitrogen gas lines 29, 39, 49 having first, second, and third open / close valves 28, 38, and 48 that are opened by a detection signal generated at the time. do.

이에 따라, 상기 개폐밸브(28)(38)(48)의 개방작동시 질소가스는 상기 예열로(40), 예비환원로(30) 및 최종환원로(20)의 하부측으로 백업(back-up)공급되면서 막혀진 제 1,2 및 3분산판(24)(34)(44)의 노즐공을 뚫어 로내부에서의 비유동화를해결하여 정상적인 조업을 가능하게 한다.Accordingly, the nitrogen gas in the opening operation of the open / close valves 28, 38, and 48 is backed up to the lower side of the preheating furnace 40, the preliminary reduction passage 30, and the final reduction passage 20. Through the nozzle holes of the first, second, and third dispersion plates 24, 34, and 44 blocked while being supplied, the fluidization in the furnace is solved to enable normal operation.

상기한 구성을 갖는 본 발명의 작용 및 효과에 대하여 이하 설명한다.The operation and effects of the present invention having the above-described configuration will be described below.

먼저, 유동환원로(100)에서의 용철제조공정은 도 2에 도시한 바와같이 장입빈(60)으로부터 광석장입관(63)을 통하여 광석이 예열로(40), 예비환원로(30) 및 최종환원로(20)를 거치면서 유동환원되어 용융가스화로(10)로 장입되고, 상기 용융가스화로(10)에서 생성된 환원가스가 상승관(11)을 통하여 최종환원로(20), 예비환원로(30) 및 예열로(40) 하부로 통입되어 각 반응기(20)(30)(40)내에 설치된 제 1, 2, 3 분산판(24)(34)(44)을 통하여 유동층을 형성하도록 하부에서 상부로 고르게 분산되면서 장입된 광석은 환원가스에 의해서 환원반응되는 것이다.First, the molten iron manufacturing process in the flow reduction path 100 is the ore preheating furnace 40, the preliminary reduction path 30 and the ore through the ore charging pipe 63 from the charging bin 60 as shown in FIG. The flow is reduced while passing through the final reduction path 20 and charged into the melt gasifier 10, the reducing gas generated in the melt gasifier 10 is the final reduction path 20, preliminary through the rising pipe (11) It is introduced into the lower part of the reduction furnace 30 and the preheating furnace 40 to form a fluidized bed through the first, second, and third dispersion plates 24, 34, 44 installed in each reactor 20, 30, 40. The ore charged while being evenly distributed from the bottom to the top is to be reduced by the reducing gas.

상기 예열로(40)측으로 광석장입을 시작할 경우 제 3광석배출관(43)의 제 3개폐밸브(41)는 개방되어 있기 때문에 환원가스의 흐름은 제 2가스배출관(32)을 통하여 상기 예열로(40)하부로 공급됨과 동시에 상기 제 3광석배출관(43)을 통하여 다량의 가스가 흐르게 된다.When the ore loading starts to the preheating furnace 40 side, the third opening and closing valve 41 of the third ore discharge pipe 43 is open, so that the flow of reducing gas is transferred to the preheating furnace through the second gas discharge pipe 32. At the same time as being supplied to the lower portion, a large amount of gas flows through the third ore discharge pipe 43.

이에 따라, 상기 예열로(40)에서는 장입된 광석이 원활하게 유동되지 못하고 제 3분산판(44)위로 광석이 가라앉아 상기 제 3분산판(44)의 노즐을 막아 버리게 되고, 상기 제 3분산판(44)에서의 차압이 증가하는 비유동화 현상이 발생하여 광석의 효과적인 예열이 불가능하며, 더욱이 상기 분산판(44)차압의 증가는 이곳에서의 광석밀도의 증가를 의미하게 된다. 이로 인하여 광석장입빈(60)에서 예열로(40)측으로 광석을 투입하는 광석장입관(63)의 출구가 막힘으로서 더 이상의 광석장입은 이루어지지 못하고, 이로 인하여 조업을 진행을 시킬수 없는 중대한 문제점을 야기하게된다.Accordingly, in the preheating furnace 40, the charged ore does not flow smoothly, and the ore sinks on the third dispersion plate 44 to block the nozzle of the third dispersion plate 44, and thus the third dispersion. The non-fluidization phenomenon in which the differential pressure increases in the plate 44 occurs, so that the effective preheating of the ore is impossible, and further, the increase in the differential pressure of the dispersion plate 44 means an increase in the ore density therein. Due to this, the exit of the ore charge tube 63, which injects the ore from the ore charge bin 60 to the preheating furnace 40 side, is blocked, so that no more ore charges can be made, thereby making it impossible to proceed with the operation. Cause.

따라서, 초기에 상기 예열로(40)에 광석을 채울 때는 환원가스가 상기 예열로(40)의 제 3분산판(44)하부로만 흐를 수 있도록 제 3 광석배출관(43)의 제 3조절밸브(41)를 닫은 상태에서 광석을 상기 예열로(40)로 장입하여 원활한 유동층이 형성되도록 하고, 상기 예열로(40)에서의 유동층의 높이가 점차 증가하여 제 3광석배출관(43)입구단까지 상승할 때, 상기 제 3조절밸브(41)를 점차 개방하여 광석을 제 3광석배출관(43)을 통해 배출시켜 상기 예비환원로(30)의 유동층을 확보한다.Therefore, when initially filling the ore in the preheating furnace 40, the third control valve of the third ore discharge pipe 43 so that the reducing gas flows only to the lower portion of the third dispersion plate 44 of the preheating furnace 40 ( 41) the ore is charged into the preheating furnace 40 in a closed state, so that a smooth fluidized bed is formed, and the height of the fluidized bed in the preheating furnace 40 gradually increases to rise to the inlet end of the third ore discharge pipe 43. When the third control valve 41 is gradually opened to discharge the ore through the third ore discharge pipe 43 to secure the fluidized bed of the preliminary reduction path (30).

그리고, 상기 유동층높이가 제 3광석배출관(43)의 출구단 보다 높게 형성되면 상기 제 3조절밸브(41)를 개방하여도 예열로(40)에서 제 3광석배출관(43)을 통하여 광석이 원활히 배출되면서 환원가스가 역류하지 않는 상태가 되기 때문에 그 이후에는 지속적으로 제 3조절밸브(41)를 개방하여 예열로(40)에서 예비환원로(3)로 연속적인 광석의 배출과 장입이 이루어지게 된다.And, if the fluidized bed height is formed higher than the outlet end of the third ore discharge pipe 43, the ore smoothly through the third ore discharge pipe 43 in the preheating furnace 40 even when the third control valve 41 is opened. Since the reducing gas does not flow back while being discharged, thereafter, the third control valve 41 is continuously opened to continuously discharge and charge the ore from the preheating furnace 40 to the preliminary reduction reactor 3. do.

상기와 같이 조업을 수행하여 상기 예비환원로(30)의 유동층 높이가 제 2광석배출관(33)의 입구단 높이까지 증가하면 제 2조절밸브(31)를 점차 개방하여 예비환원로(30)내에 유동층을 형성시키고, 상기 예비환원로(20)의 유동층 높이가 제 2 광석배출관(33)의 출구단보다 높게 증가되어 제 2 조절밸브(31)를 개방하여도 제 2 광석배출관(33)을 통하녀 환원가스의 역류없이 지속적으로 광석배출이 가능할 경우 상기 제 2조절밸브(31)를 개방하여 연속적으로 원활한 광석 배출/장입이 이루어지도록 한다.By performing the operation as described above, if the height of the fluidized bed of the preliminary reduction path 30 increases to the inlet end height of the second ore discharge pipe 33, the second control valve 31 is gradually opened to the preliminary reduction path 30. A fluidized bed is formed, and the height of the fluidized bed of the preliminary reduction path 20 is increased to be higher than that of the outlet of the second ore discharge pipe 33 so that the second control valve 31 is opened to pass through the second ore discharge pipe 33. When the ore discharge is continuously possible without the backflow of the maid reducing gas, the second control valve 31 is opened to continuously discharge or charge the ore continuously.

상기와 같이 조업을 수행하여 최종환원로(20)의 유동층 높이가 제 1광석배출관(21)입구단 높이까지 증가하고 제 1광석배출관(23)입구단까지 유동층이 형성되면 제 1조절밸브(21)를 주기적으로 개방하여 용융가스화로(10)로 광석을 배출하는 과정에서 상기 최종환원로(20)의 유동층 높이가 제 1광석배출관(23)출구단 보다 높게 증가되어 제 1조절밸브(21)를 개방하여도 광석의 배출 및 가스의 역류 없이 지속적으로 배출이 가능할 경우 제 1조절밸브(21)를 개방하여 연속적으로 원활한 광석 배출이 이루어지도록 한다.By performing the operation as described above, when the fluidized bed height of the final reduction path 20 increases to the inlet end height of the first ore discharge pipe 21 and the fluidized bed is formed to the inlet end of the first ore discharge pipe 23, the first control valve 21 is formed. In the process of discharging the ore to the molten gasifier 10 by periodically opening the), the height of the fluidized bed of the final reduction path 20 is increased to be higher than the exit end of the first ore discharge pipe 23 and the first control valve 21. Even if it is open, if the discharge is possible continuously without the discharge of ore and the backflow of gas to open the first control valve 21 to ensure a smooth ore discharge continuously.

상기와 같은 조업초기에서 각 반응기(20)(30)(40)로 광석을 장입/배출시키는 과정 및 각 광석배출관(23)(33)(43)의 제 1,2 및 3조절밸브(21)(31)(41)를 개방하여 정상적인 조업을 수행하는 과정에서 환원가스내에 포함된 다량의 더스트나 반응기(20)(30)(40)내에 장입된 광석의 유동현상이 불안하여 이때 생성된 낙광에 의해 각 반응기(20)(30)(40)의 제 1,2 및 3분산판(24)(34)(44)에 형성된 노즐이 점차 폐쇄되면, 상기 제 1,2 및 3분산판(24)(34)(44)을 경계로 그 상,하부의 압력차인 차압이 증가함을 제 1,2 및 3차압계(27)(37)(47)에 의해서 검출된다.The process of charging or discharging ore into each reactor 20, 30 and 40 at the beginning of the operation and the first, second and third control valves 21 of the ore discharge pipes 23, 33 and 43 (31) (41) in the course of performing normal operation by the large amount of dust contained in the reducing gas or the flow phenomenon of the ore charged in the reactor 20, 30, 40 is unstable due to the falling light generated at this time When the nozzles formed in the first, second, and third dispersion plates 24, 34, 44 of each of the reactors 20, 30, and 40 are gradually closed, the first, second, and third dispersion plates 24 are closed. The first, second, and third pressure gauges 27, 37, and 47 detect the increase in the differential pressure, which is the pressure difference between the upper and lower portions, at the boundary between (34) and (44).

상기와 같이, 상기 제 1,2 및 3차압계(27)(37)(47)에서 검출된 차압값이 일정값 이상으로 증가하면, 상기 제 1,2 및 3분산판(24)(34)(44) 상부에서의 광석유동현상이 불안정하고 제 1,2 및 3광석배출관(23)(33)(3)을 통한 광석의 배출 및 장입도 매우 불안정하기 때문에 정상적인 조업이 불가능하고, 심한 경우는 환원가스의 흐름이 각 반응기(20)(30)(40) 하부로 통입되어 제 1,2 및 3분산판(24)(34)(44)을 거쳐 유동층으로 공급되지 않고 각 광석배출관(23)(33)(43)을 통한 환원가스의 흐름이 발생하여 광석의 배출 및 장입은 물론 상부 유동층에서 유동에 필요한 환원가스가 제 1,2 및 3분산판(24)(34)(44)을 통하지 않고 공급되므로 비유동화 현상이 발생하게 된다.As described above, when the differential pressure value detected by the first, second, and third pressure gauges 27, 37, 47 increases to a predetermined value or more, the first, second, and third dispersion plates 24, 34 ( 44) Normal operation is impossible because the ore flow phenomenon in the upper part is unstable and the discharge and charging of ore through the first, second and third ore discharge pipes 23, 33 and 3 is also very unstable, and in severe cases, reduction The flow of gas is introduced into the lower portion of each reactor 20, 30, 40, and is not supplied to the fluidized bed through the first, second, and third dispersion plates 24, 34, 44, and each ore discharge pipe 23 ( 33) (43) flow of reducing gas occurs so that the reducing gas necessary for the discharge and charging of ore as well as the flow in the upper fluidized bed does not pass through the first, second and third dispersion plates 24, 34, 44. As it is supplied, non-fluidization phenomenon occurs.

결국에는 각 반응기(20)(30)(30)의 하부인 제 1,2 및 3분산판(24)(34)(44) 직상부에서만 유동층을 형성하여 분산판의 노즐 막힘을 가속화시키게 되며, 심할 경우 광석이 제 1,2 및 3광석배출관(23)(33)(34)을 통하여 상부의 광석장입빈(60), 반응기(20)(30)측으로 환원가스와 같이 역류하여 하부 반응기(20)(30)(40)의 유동층은 소멸되는 반면에, 상부 반응기(20)(30)(40)의 유동층량은 급증하지만 광석유동은 원활하지 못하여 정상적인 조업이 불가능하게 되고, 조업중단의 심각한 상황까지 발전하는 경우가 발생하게된다.Eventually, a fluidized bed is formed only directly above the first, second, and third dispersion plates 24, 34, 44, which are lower portions of each reactor 20, 30, 30, thereby accelerating nozzle clogging of the dispersion plate. In severe cases, the ore flows through the first, second, and third ore discharge pipes 23, 33, and 34 back into the upper ore charge bin 60 and the reactor 20, 30 in the same manner as the reducing gas, and then the lower reactor 20 While the fluidized bed of (30) (40) is extinguished, the fluidized bed volume of the upper reactor (20) (30) (40) is rapidly increasing, but the ore flow is not smooth, and normal operation is impossible, and the serious situation of operation stoppage If you develop until it happens.

따라서, 조업중 각 광석배출관(23)(33)(43)으로 환원가스의 흐름이 발생되면 이에 장착된 제 1,2 및 3조절밸브(21)(31)(41)를 닫아 이를 통한 환원가스 및 광석의 역류를 방지하는 것이 가능하지만 일반적으로 제 1,2 및 3광석배출관(23)(33)(43)으로의 환원가스 역류가 발생하면 그 환원가스는 고온이므로 갑작스런 온도증가를 수반하고, 이에 따라 상기 제 1,2 및 3조절밸브(21)(31)(41)의 작동이 원활히 이루어지지 않아 환원가스의 역류를 차단하지 못하고 그대로 방치하여 결국에는 조업을 중단해야하는 경우가 발생할수 있다.Therefore, when a flow of reducing gas is generated in each of the ore discharge pipes 23, 33 and 43 during operation, the first and second control valves 21, 31 and 41 mounted thereon are closed to reduce the gas. And it is possible to prevent the reverse flow of the ore, but in general, if the reducing gas backflow to the first, second and third ore discharge pipes (23) (33) (43) occurs, the reducing gas is a high temperature, accompanied by a sudden increase in temperature, Accordingly, the operation of the first, second, and third control valves 21, 31, 41 may not be performed smoothly, and thus, the reverse flow of the reducing gas may not be blocked, and the operation may be left as it is.

상기와 같이, 상기 제 1,2 및 3분산판(24)(34)(44)의 노즐이 더스트 및 낙광에 의해서 막히면서 정상조업시 상기 제 1,2 및 3분산판(24)(34)(44)의 상,하부에서의 압력차가 100 내지 300mmbar를 유지하던 압력차가 300mmbar 이상으로 급격히증가하면, 이는 상기 제 1,2 및 3로차압계(27)(37)(47)에서 검지하게 되고, 검지된 검출신호에 의해서 제 1,2 및 3조절밸브(21)(31)(41)는 닫힘작동되어 광석장입이 이루어지는 제 1,2 및 3광석배출관(23)(33)(43)의 통로는 폐쇄됨으로서 이를 통한 광석장입 및 가스공급은 이루어지지 않는다.As described above, the nozzles of the first, second and third dispersion plates 24, 34 and 44 are blocked by dust and falling clouds, and the first, second and third dispersion plates 24 and 34 during normal operation. When the pressure difference in the upper and lower portions of the upper and lower parts of 44 is increased to 300 mmbar or more rapidly, this is detected by the first, second and third pressure gauges 27, 37, 47, and the detection. The first, second, and third ore discharge pipes 23, 33, 43, in which the first, second, and third control valves 21, 31, 41 are closed and the ore is loaded by the detected detection signals, As it is closed, ore loading and gas supply through it are not made.

이와 동시에, 설정된 압력차이상을 검지한 제 1,2 및 3차압계(27)(37)(47)의 검지신호에 의해서 상기 제 1,2 및 3질소가스라인(29)(39)(49)에 장착된 제 1,2 및 3개폐밸브(28)(38)(48)가 개방되기 때문에, 개방된 제 1,2 및 3질소가스라인(29)(39)(49)을 통하여 질소가스를 각 반응기(20)(30)(40)측으로 백업공급하여 제 1,2 및 3분산판(24)(34)(44)을 퍼지(Purge)하면서 차압을 저하시킨다. 이때, 유동에 필요한 가스가 공급되어 제 1,2 및 3분산판(24)(34)(44)의 막힘현상이 해소되고, 최소한의 유동상태가 유지된 후에는 해당하는 제 1,2 및 3조절밸브(21)(31)(41)를 닫고, 질소공급을 중단하여 정상적인 환원가스흐름을 유지하면서 다시 정상적인 조업을 수행한다.At the same time, the first, second and third nitrogen gas lines 29, 39, 49 are detected by detection signals of the first, second, and third pressure gauges 27, 37, 47 that detect abnormality of the set pressure difference. Since the first, second, and third open / close valves 28, 38, and 48 mounted on the valves are opened, nitrogen gas is discharged through the open first, second, and third nitrogen gas lines 29, 39, and 49. The differential pressure is lowered while purging the first, second and third dispersion plates 24, 34, 44 by back-up supply to each reactor 20, 30, 40 side. At this time, the gas required for the flow is supplied to block the clogging phenomenon of the first, second and third dispersion plates 24, 34, 44, and after the minimum flow state is maintained, the corresponding first, second, and third Close the control valve (21) (31) (41), and stops the nitrogen supply to perform normal operation again while maintaining the normal reducing gas flow.

또한, 조업중 상기 제 1,2 및 3분산판(24)(34)(44)의 노즐 막힘현상에 의해서 비유동화가 발생하면서 상기 제 1,2 및 3광석배출관(23)(33)(34)을 통한 환원가스의 역류현상이 발생하면, 하부측 반응기로부터 역류하는 환원가스에 의해서 상기 제 1,2 및 3광석배출관(23)(33)(43)내 입구단과 출구단사이의 압력차가 발생하게 된다. 이때, 상기 제 1,2 및 3광석배출관(23)(33)(43)에 장착된 제 1,2 및 3배출관차압계(25)(35)(45)에 의해서 상기 관내에서의 입구단과 출구단사이의 압력차가 100mmbar이하로 급격히 저하됨을 검지하면, 상기 제 1,2 및3배출관차압계(25)(35)(45)의 검출신호에 의해서 해당하는 제 1,2및 3조절밸브(21)(31)(41)는 즉시 닫아야 하지만 정상적인 작동이 불가능할 경우 제 1,2 및 3개폐밸브(28)(38)(38)가 개방되어 상기 예열로(40), 예비환원로(30) 및 최종환원로(20)의 하부측으로 질소가스가 퍼징공급된다. 그리고, 유동에 필요한 가스가 반응기(20)(30)(40)하부측으로 공급되어 제 1,2 및 3분산판(24)(34)(44)의 막힘현상이 해소되고, 최소한의 유동상태가 유지되면서 상기와 마찬가지로 해당하는 제 1,2 및 3조절밸브(21)(31)(41)가 닫아지면 질소가스의 공급을 중단하여 정상적인 환원가스흐름을 유지하면서 다시 정상적인 조업을 수행한다.In addition, the fluidization occurs due to nozzle clogging of the first, second and third dispersion plates 24, 34, 44 during operation, and the first, second, and third ore discharge pipes 23, 33, 34 When the reverse flow phenomenon of the reducing gas through () occurs, the pressure difference between the inlet end and the outlet end in the first, second and third ore discharge pipes 23, 33, 43 is generated by the reducing gas flowing back from the lower side reactor. Done. At this time, the inlet and outlet ends of the first, second, and third ore discharge pipes 23, 33, 43 are installed by the first, second, and third discharge pipe pressure gauges 25, 35, 45. When the pressure difference between the first and second and third discharge pressure gauges 25, 35 and 45 is detected, the pressure difference between the first and the second and third control valves 21 ( 31) (41) should be closed immediately, but if normal operation is not possible, the first, second and third opening and closing valves 28, 38, 38 will be opened to open the preheating furnace 40, the preliminary reduction passage 30 and the final reduction. Nitrogen gas is purged and supplied to the lower side of the furnace 20. Then, the gas required for the flow is supplied to the lower side of the reactor 20, 30, 40, the clogging phenomenon of the first, second and third dispersion plates 24, 34, 44 is eliminated, and the minimum flow state As described above, when the corresponding first, second, and third control valves 21, 31, and 41 are closed, the supply of nitrogen gas is stopped to maintain normal reducing gas flow to perform normal operation again.

그리고, 조업중 상기 제 1,2 및 3광석배출관(23)(33)(43)을 통한 환원가스의 역류가 발생되면서 상기 제 1,2 및 3광석배출관(23)(33)(43)내에 장착된 제 1,2 및 3온도계(26)(36)(46)에 의해서 검지되는 가스온도가 설정된 온도변화값 50℃이상으로 급격히 증가됨이 검지되면, 이를 검지한 상기 제 1,2 및 3온도계(26)(36)(46)의 검출신호에 의해서 해당하는 제 1,2 및 3개폐밸브(28)(38)(38)가 개방되어 상기 예열로(40), 예비환원로(30) 및 최종환원로(20)의 하부측으로 질소가스가 퍼징공급된다.In addition, the reverse flow of reducing gas through the first, second, and third ore discharge pipes 23, 33, 43 occurs during operation, and thus, in the first, second, and third ore discharge pipes 23, 33, 43. If it is detected that the gas temperature detected by the first, second, and third thermometers 26, 36, 46 is rapidly increased above a set temperature change value of 50 ° C, the first, second, and third thermometers that detect the gas temperature are detected. The corresponding first, second and third open / close valves 28, 38, 38 are opened by the detection signals of (26), (36), (46), and the preheating passage (40), the preliminary reduction passage (30) and Nitrogen gas is purged and supplied to the lower side of the final reduction path 20.

그리고, 유동에 필요한 가스가 반응기(20)(30)(40)하부측으로 공급되어 제 1,2 및 3분산판(24)(34)(44)의 막힘현상이 해소되고, 최소한의 유동상태가 유지된 후에는 상기와 마찬가지로 해당하는 제 1,2 및 3조절밸브(21)(31)(41)를 닫아 질소가스의 공급을 중단하여 정상적인 환원가스흐름을 유지하면서 다시 정상적인 조업을 수행한다.Then, the gas required for the flow is supplied to the lower side of the reactor 20, 30, 40, the clogging phenomenon of the first, second and third dispersion plates 24, 34, 44 is eliminated, and the minimum flow state After the maintenance, as described above, the corresponding first, second and third control valves 21, 31, and 41 are closed to stop the supply of nitrogen gas to perform normal operation again while maintaining a normal reducing gas flow.

상기와 같이 하여 각 반응기(20)(30)(40)내로 정상적으로 환원가스흐름이 이루어지고, 상기 분산판(24)(34)(44)의 상하부에서 차압값, 상기 제 1,2 및 3광석배출관(23)(33)(43)내에서의 차압값 및 온도변화가 정상적으로 복귀되고, 유동층높이가 정상화되면, 상기 제 1, 2, 3 광석배출관(23)(33)(43)에 설치된 제 1,2 및 3조절밸브(21)(31)(41)를 모두 개방하여 각 반응기(10)(20)(30)(40)로의 광석 장입과 배출을 연속적이고 원활한 정상상태로 하여 조업을 안정적으로 수행할 수 있다.As described above, a reducing gas flow is normally performed into each of the reactors 20, 30, and 40, and the differential pressure values at the upper and lower portions of the dispersion plates 24, 34 and 44, and the first, second and third ores. When the differential pressure value and the temperature change in the discharge pipes 23, 33, 43 are normally returned, and the fluidized bed height is normalized, the first and second ore ore discharge pipes 23, 33, 43 are installed in the Stable operation by opening the 1,2 and 3 control valves 21, 31 and 41 to continuously and smoothly normal ore charging and discharging to each reactor 10, 20, 30 and 40. It can be done with

<실시예><Example>

1) 유동환원로의 사양 및 조건1) Specifications and conditions of the liquid return path

가. 예열로(40), 예비환원로(30), 최종환원로(20)end. Preheating Furnace (40), Preliminary Reduction Furnace (30), Final Reduction Furnace (20)

- 축소부(분산판(24)(34)(44)) 내경 : 0.3m-Reduction part (distribution plate 24, 34, 44) inner diameter: 0.3m

- 확대부 내경 : 0.7m-Enlarged part inner diameter: 0.7m

- 원추형 하부 각도 : 4도-Conical bottom angle: 4 degrees

- 경사부 높이(분산판 표면에서) : 4.0m-Slope height (on the surface of the dispersion plate): 4.0m

- 원통형 상부 높이 : 2.5m-Cylindrical upper height: 2.5m

- 분산판 하부 깊이 : 3.0m-Depth of dispersion plate: 3.0m

나. 원료I. Raw material

a) 분철광석(-8mm)a) iron ore (-8mm)

- 화학적 조성 : T. Fe : 62.17%, FeO : 0.51%, SiO2 : 5.5%,-Chemical composition: T. Fe: 62.17%, FeO: 0.51%, SiO2: 5.5%,

TiO2 : 0.11%, Mn : 0.05%, S :0.012%, P : 0.65%,TiO2: 0.11%, Mn: 0.05%, S: 0.012%, P: 0.65%,

결정수 : 2.32%Decisions: 2.32%

- 입도 분포 : -0.05mm : 4.6%, 0.05∼0.15mm : 5.4%,-Particle size distribution: -0.05mm: 4.6%, 0.05 ~ 0.15mm: 5.4%,

0.15∼0.5mm : 16.8%, 0.5∼4.75mm : 59.4%,0.15-0.5mm: 16.8%, 0.5-4.75mm: 59.4%,

4.75∼8mm : 13.8%4.75-8mm: 13.8%

b)가스b) gas

- 화학조성 : CO : 65%, H2 : 25%, CO2 : 5%, N2 : 5%-Chemical composition: CO: 65%, H2: 25%, CO2: 5%, N2: 5%

- 유동환원로내 온도 : 최종환원로(20): 850℃,-Temperature in the flow reduction furnace: Final reduction furnace (20): 850 ℃,

예비환원로(30) : 800℃,Preliminary reduction furnace (30): 800 ℃,

예열로(40) : 750℃Preheating Furnace 40: 750 ℃

- 유속 : 정상상태: 1.7 m/s(분산판)-Flow rate: Steady state: 1.7 m / s (distributed plate)

- 압력 : 2.5∼3.0 bar,g-Pressure: 2.5 ~ 3.0 bar, g

실험조건Experimental condition 평균정상조업시(hr)Average normal operation (hr) 정상조업재개시간(hr)Normal restart time (hr) 실험 1Experiment 1 종래Conventional 6060 120120 실험 2Experiment 2 본 발명The present invention 240240 55

상기와 같은 유동환원로(100)의 사양, 조건및 실험조건으로 분체광석을 환원반응하여 조사한 결과, 초기 각 반응기로의 광석장입과 각 반응기에서 유동층 높이를 일정하게 유지하고, 제 1,2및 3광석배출관(23)(33)(43)의 각 조절밸브(21)(31) (41)를 개방하여 연속적인 장입/배출이 이루어지는 과정에서 발생하는 제 1,2및 3분산판(24)(34)(44)에서의 차압증가와 제 1,2및 3광석배출관(23)(33)(43)을 통한 환원가스 및 광석의 역류가 발생하여 반응기(20)(30)(40)내에서 비유동화가 발생할때, 상기 제 1,2및 3광석배출관(23)(33)(43)내에서의 온도변화, 차압변화를 검출하는 제 1,2및 3온도계(26)(36)(46), 제 1,2및 3배출관차압계(25)(35)(45)와, 상기 제 1,2및 3분산판(24)(34)(44)의 상,하부차압값을 검지하는 제 1,2및 3로차압계(27)(37)(47)의 검지신호에 의해서 해당하는 질소가스라인(29)(39)(49)의 개폐밸브(28)(38)(48)를 개방하여 상기 각 반응기(20)(30)(40)의 하부측으로 질소가스를 백업공급하여 지속적인 유동층을 형성 유지하면서 정상조업을 재개할수 있는 것이다.As a result of the reduction reaction of the powder ore according to the specifications, conditions and experimental conditions of the fluid reduction reactor 100 as described above, ore loading into each reactor and the fluidized bed height in each reactor were kept constant, the first and the second and The first, second and third dispersion plates 24 generated in the process of continuous charging / discharging by opening each control valve 21, 31, 41 of the three-ore discharge pipes 23, 33, 43. Increasing the differential pressure in (34) and (44) and backflow of reducing gas and ore through the first, second and third ore discharge pipes (23), (33) and (43) occur in the reactor (20) (30) (40). In the first and second and third ore discharge pipes 23, 33 and 43, when the non-fluidization occurs, the first and second and third thermometers 26 and 36 which detect the change in temperature and the differential pressure. 46) The first, second and third discharge pressure gauges 25, 35, 45 and the first, second, and third dispersion plates 24, 34, 44 detect the upper and lower differential pressure values. Of the nitrogen gas lines 29, 39 and 49 corresponding to the detection signals of the 1,2 and 3 road differential pressure gauges 27, 37 and 47. And by opening the waste valve 28, 38, 48, Backup supplying nitrogen gas to the lower side of each of the reactors 20, 30, 40, which will be resumed the normal operation while maintaining forms a continuous fluid bed.

따라서, 조업불안정 발생시 상기와 같은 신속한 대처로 상기한 표 1에 도시한 바와같이, 조업지속시간이 대폭 연장되는 반면에, 조업재개 시간이 획기적으로 감소하여 전체적으로는 정상조업을 안정적으로 장시간동안 수행하여 설비 가동율 및 조업생산성을 크게 향상시킬수 있는 것이다.Accordingly, as shown in Table 1 above, when the operation instability occurs, the operation duration is greatly extended, while the operation restart time is drastically reduced, and the overall operation is performed stably for a long time. It can greatly improve facility utilization rate and operation productivity.

이때, 가스이용율은 약 30∼35%, 가스원단위는 1300∼1500 N㎥/ton-ore이고, 예열로(40)에서 예비환원로(30)로 장입되는 철광석의 환원율은 10∼15%이고, 상기 예비환원로(30)에서 배출되어 최종환원로(20)로 장입되는 철광석의 환원율은 30∼40%이고, 상기 최종환원로(20)에서 용융가스화로(10)로 장입되는 환원철의 환원율은 85∼90%로 나타나고, 일시적인 조업불안정도 신속히 대처하여 해결함으로써 유동환원로는 안정적이고 장시간동안의 조업이 가능해지는 것이다.In this case, the gas utilization rate is about 30 to 35%, the gas source unit is 1300 to 1500 Nm 3 / ton-ore, the reduction rate of iron ore charged from the preheating furnace 40 to the preliminary reduction reactor 30 is 10 to 15%, The reduction rate of iron ore discharged from the preliminary reduction reactor 30 and charged into the final reduction reactor 20 is 30 to 40%, and the reduction rate of the reduced iron charged into the melt gasification furnace 10 in the final reduction reactor 20 is It is 85 ~ 90%, and it is possible to deal with the temporary operation instability quickly and solve it, so that the flow reduction path can be stable and operate for a long time.

상술한 바와같은 본 발명에 의하면, 철광석을 상부의 광석장입빈에서 예열로, 예비환원로 및 최종환원로를 거치면서 용융가스화로로 최종장입하고, 용융가스화로에서 발생된 환원가스를 최종환원로, 예비환원로 및 예열로의 분산판으로 통과시켜 장입된 광석과 상호 교류하면서 환원반응을 연속적으로 진행시킨 후 최종환원 생성물인 환원철을 생산하여 용융가스화로로 장입하는 공정에서 각 반응기에 장착된 분산판의 노즐막힘으로 인하여 차압이 증가하고, 이로 인하여 정상적으로 반응기내에서의 유동층 형성 및 광석흐름을 이루지 못하는 경우, 차단판 상하부에서의 차압변화, 광석배출관에서의 온도,차압변화를 검출하는 각 반응기에 해당하는 로차압계, 배출관차압계및 온도계를 갖추어 설정값이상의 차압,온도변화시 해당하는 질소가스라인을 개방하여 해당하는 각 반응기의 하부측으로 질소가스를 백업공급함으로서, 각 반응기내에서의 분산판 막힘현상, 환원가스의 역류및 비유동화를 신속히 해결할수 있기 때문에, 조업불안정을 효과적으로 방지하고, 정상조업인 조업으로 신속하게 전환할 수 있으며, 장시간 조업이 가능하게 할 수 있어 작업생산성을 현저히 향상시킬수 있는 효과가 얻어진다.According to the present invention as described above, the iron ore is finally charged into the melt gasifier through the preheating, pre-reduction and final reduction in the ore charging bin of the upper, and reducing gas generated in the molten gasifier to the final reduction furnace Through the pre-reduction furnace and pre-heater distribution plates, continuously reacting with the charged ore and continuously proceed with the reduction reaction, and then produce the reduced iron, the final reduction product, and load it into the melt gasifier. If the differential pressure increases due to the blockage of the plate, and this causes the fluidized bed formation and the ore flow in the reactor to fail, the differential pressure in the upper and lower part of the blocking plate, the temperature in the ore discharge pipe, and the differential pressure change are applied to each reactor. Equipped with the appropriate low differential pressure gauge, discharge pipe differential pressure gauge and thermometer, and the corresponding nitrogen gas line when the differential pressure and temperature change over the set value By opening and backing up nitrogen gas to the lower side of each reactor, it is possible to quickly solve dispersion plate clogging, reverse flow and non-fluidization of reducing gas in each reactor, thereby effectively preventing unstable operation and It is possible to switch quickly to an operation and to enable a long time operation, thereby achieving an effect of remarkably improving work productivity.

Claims (5)

장입빈(60)내의 광석은 광석장입관(63), 제 1,2 및 3광석배출관(23)(33)(43)을 통하여 예열로(40), 예비환원로(30) 및 최종환원로(20)를 거치면서 유동환원되어 용융가스화로(10)로 장입되고, 용융가스화로(10)에서 생성된 환원가스는 상승관(11), 제1,2가스배출관(22)(32)을 통하여 최종환원로(20), 예비환원로(30)및 예열로(40) 하부로 통입되어 각 반응기(20)(30)(40)의 제 1,2 및 3 분산판(24)(34)(44)을 통하여 유동층으로 공급되어 용철을 제조하고, 환원공정을 마친 가스는 습식제진기(50)를 통하여 배출되는 유동환원로설비에 있어서,The ore in the charging bin 60 is preheated 40, preliminary reduction path 30 and the final reduction path through the ore charge pipe 63, the first, second and third ore discharge pipes 23, 33, 43 Flow-reduced while passing through the (20) is charged into the melt gasifier 10, the reducing gas generated in the melt gasifier 10 is the rising pipe (11), the first and second gas discharge pipe (22) (32) Through the final reduction path 20, the preliminary reduction path 30 and the preheating furnace 40 through the first through the first and second dispersion plates 24, 34 of each reactor 20, 30, 40 In the fluidized-bed reactor that is supplied to the fluidized bed through (44) to produce molten iron, the gas after the reduction process is discharged through the wet damper (50), 상기 광석의 공급흐름을 제어할수 있도록 제 1,2 및 3조절밸브(21)(31)(41)를 갖는 제 1,2및 3광석배출관(23)(33)(43)에는 입구단과 출구단사이의 압력차를 검출하는 제 1,2 및 3배출관차압계(25)(35)(45)와, 가스역류시 역류된 환원가스온도를 검출하는 제 1,2및 3온도계(26)(36)(46)가 각각 장착되며, 상기 제 1,2및 3분산판(24)(34)(44)의 상,하부 압력차를 검출하는 제 1,2및 3로차압계(27)(37)(47)를 각각 갖추고, 상기 상승관(11), 제 1,2가스배출관(22)(32)에는 비정상적인 온도상승변화 및 압력차를 검지한 상기 제 1,2 및 3온도계(26)(36)(46)와 제 1,2 및 3배출관차압계(25)(35)(45)와 제 1,2 및 3로차압계(27)(37)(47)의 검지신호에 의해서 개방작동되어 질소가스를 상기 예열로(40), 예비환원로(30) 및 최종환원로(20)내로 공급할수 있도록 제 1,2 및 3개폐밸브(28)(38)(48)를 갖는 제 1,2 및 3질소가스라인(29)(39)(49)을 연결구성함을 특징으로 하는 유동환원로의 백업가스 공급장치.Inlet and outlet ends of the first and second or third ore discharge pipes 23, 33 and 43 having first and second and third control valves 21, 31 and 41 to control the supply flow of the ore. First, second and third discharge tube pressure gauges 25, 35 and 45 for detecting the pressure difference between the first and third and third and third and third and third thermometers 26 and 36 for detecting the reducing gas temperature backflowed during gas backflow. The first, second, and third road differential pressure gauges 27, 37 (37), respectively, are mounted to detect upper and lower pressure differentials of the first, second, and third dispersion plates 24, 34, 44. 47, respectively, and the riser 11 and the first and second gas discharge pipes 22 and 32 each of the first, second, and third thermometers 26 and 36 that detect abnormal temperature rise changes and pressure differences. (46) and open operation by detection signals of the first, second and third discharge pipe pressure gauges 25, 35, 45 and the first, second, and third low pressure differential pressure gauges 27, 37, 47. The first, second, and third nitrogens having first, second, and third open / close valves (28, 38, 48) to be supplied into the preheating furnace (40), the preliminary reduction passage (30), and the final reduction passage (20). Gasra Back gas supply apparatus for the flow reduction reactor characterized in that the phosphorus (29) (39) (49) is connected. 제 1항에 있어서,The method of claim 1, 상기 제 1,2및 3로차압계(27)(37)(47)는 상기 제 1,2 및 3분산판(24)(34)(44)의 노즐이 더스트 및 낙광에 의해서 막히는 노즐막힘시 상기 제 1,2 및 3분산판(24)(34)(44)의 상,하부에서의 압력차가 300mmbar 이상으로 급격히 증가함을 검지할때, 해당하는 각 반응기(20)(30)(40)하부측으로 제 1,2및 3질소가스라인 (29)(39) (49)를 통하여 질소가스를 공급하도록 상기 제 1,2및 3개폐밸브(28)(38)(48)을 개방작동하고, 상기 제 1,2 및 3조절밸브(21)(31)(41)를 닫힘작동하는 검출신호를 발생함을 특징으로 하는 유동환원로의 백업가스 공급장치.The first, second, and third low pressure differential pressure gauges 27, 37, and 47 are formed when the nozzles of the first, second, and third dispersion plates 24, 34, 44 are blocked by dust and falling clouds. When detecting that the pressure difference in the upper and lower portions of the first, second, and third dispersion plates 24, 34, 44 rapidly increases to 300 mmbar or more, the corresponding reactors 20, 30, 40 lower Open the first, second and third open / close valves 28, 38, and 48 to supply nitrogen gas through the first, second, and third nitrogen gas lines 29, 39, 49 to the side; A backup gas supply device for a flow reduction reactor, characterized in that for generating a detection signal for closing the first, second and third control valves (21) (31) (41). 제 1항에 있어서,The method of claim 1, 상기 제 1,2 및 3배출관차압계(25)(35)(45)는 환원가스 역류시 상기 제 1,2및 3광석배출관(23)(33)(43)에서의 입구단과 출구단사이의 압력차가 100mmbar이하로 급격히 저하됨을 검지할때, 해당하는 각 반응기(20)(30)(40)하부측으로 제 1,2및 3질소가스라인 (29)(39) (49)를 통하여 질소가스를 공급하도록 상기 제 1,2및 3개폐밸브(28)(38)(48)을 개방작동하고, 상기 제 1,2 및 3조절밸브(21)(31)(41)를 닫힘작동하는 검출신호를 발생함을 특징으로 하는 유동환원로의 백업가스 공급장치.The first, second and third discharge pipe differential pressure gauges 25, 35 and 45 are pressures between the inlet and outlet ends of the first, second and third ore discharge pipes 23, 33 and 43 during the reducing gas backflow. When detecting that the difference sharply drops below 100 mmbar, nitrogen gas is supplied through the first, second, and third nitrogen gas lines 29, 39, 49 to the lower portions of the corresponding reactors 20, 30, 40. Open the first, second and third open / close valves 28, 38, and 48 so as to generate a detection signal for closing the first, second, and third control valves 21, 31, 41; Back-up gas supply apparatus for the fluidized reduction furnace, characterized in that. 제 1항에 있어서,The method of claim 1, 상기 제 1,2 및 3온도계(26)(36)(46)는 환원가스 역류시 상기 제 1,2및 3광석배출관(23)(33)(43)에서 검지되는 가스온도가 설정된 온도변화값 50℃이상으로 급격히 증가될때, 해당하는 각 반응기(20)(30)(40)하부측으로 제 1,2및 3질소가스라인 (29)(39) (49)를 통하여 질소가스를 공급하도록 상기 제 1,2및 3개폐밸브(28)(38)(48)을 개방작동하고, 상기 제 1,2 및 3조절밸브(21)(31)(41)를 닫힘작동하는 검출신호를 발생함을 특징으로 하는 유동환원로의 백업가스 공급장치.The first, second, and third thermometers 26, 36, and 46 are temperature change values at which gas temperatures detected by the first, second, and third ore discharge pipes 23, 33, 43 are set when the reducing gas flows back. When rapidly increasing above 50 DEG C, the first and second nitrogen gas lines 29, 39 and 49 are supplied to the lower side of each of the corresponding reactors 20, 30 and 40 to supply nitrogen gas. It is characterized by generating a detection signal for opening the first and second opening and closing valves 28, 38, and 48, and closing the first, second and third adjustment valves 21, 31, and 41. Back-up gas supply device for the flow reduction path. 제 1항에 있어서The method of claim 1 상기 제 1,2및 3조절밸브(21)(31)(21)는 초기에 상기 예열로,예비환원로및 최종환원로(20)(30)(40)에 광석을 채울 때는 환원가스가 각 반응기(20)(30)(40)의 제 1,2및 3분산판(24)(34)(44)하부로만 흐를 수 있도록 닫힘상태를 유지하여 광석을 각 반응기(20)(30)(40)로 장입하여 원활한 유동층이 형성되도록 하고, 상기 예열로, 예비환원로, 최종환원로(20)(30)(40)에서의 유동층의 높이가 점차 증가하여 제 1,2및 3광석배출관(23)(33)(43)입구단까지 상승할 때는 점차 개방되어 광석을 배출시켜 상기 예열로, 예비환원로및 최종환원로(20)(30)(40)의 유동층을 확보함을 특징으로 하는 유동환원로의 백업가스 공급장치.The first, second and third control valves 21, 31 and 21 are initially filled with ore gas in the preheating, preliminary and final reduction paths 20, 30 and 40 when filling the ore. The ore is kept closed so that only the bottoms of the first, second, and third dispersion plates 24, 34, 44 of the reactors 20, 30, 40 can flow. ), And the height of the fluidized bed in the preheating furnace, the preliminary reduction furnace, the final reduction passages 20, 30, and 40 is gradually increased, so as to form a smooth fluidized bed. (33) (43) As it rises up to the inlet end, it is gradually opened to discharge the ore to secure the fluidized bed of the preheating, preliminary and final reduction paths (20, 30, 40) Back-up gas supply device of the reduction furnace.
KR1019990060749A 1999-11-04 1999-12-23 Apparatus for supplying the back-up gas in fluidized bed reactor KR100332927B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1019990060749A KR100332927B1 (en) 1999-12-23 1999-12-23 Apparatus for supplying the back-up gas in fluidized bed reactor
UA2001074557A UA70348C2 (en) 1999-11-04 2000-03-11 Fluidized bed reduction reactor and a method for stabilization of fluidized bed in such reactor
AU14200/01A AU755507B2 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor
EP00976417A EP1163375B1 (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor for reducing fine iron ore and supplying the reduced ore to a melter-gasifier
DE60021064T DE60021064T2 (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor for reducing fine iron ore and feeding the reduced ore to a melt gasifier
AT00976417T ATE298806T1 (en) 1999-11-04 2000-11-03 FLUIDIZED BED REDUCTION REACTOR FOR REDUCING FINE IRON ORE AND FEEDING THE REDUCED ORE TO A MELTING GASIFIER
US09/869,725 US6736876B1 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor and method
BR0007280-0A BR0007280A (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor and fluidized bed stabilization method for fluidized bed reactor
CA002358425A CA2358425C (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor
PCT/KR2000/001257 WO2001032941A1 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor
RU2001118469/02A RU2218418C2 (en) 1999-11-04 2000-11-03 Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
JP2001535619A JP3506690B2 (en) 1999-11-04 2000-11-03 Fluidized bed collapse prevention device for fluidized bed reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990060749A KR100332927B1 (en) 1999-12-23 1999-12-23 Apparatus for supplying the back-up gas in fluidized bed reactor

Publications (2)

Publication Number Publication Date
KR20010057420A true KR20010057420A (en) 2001-07-04
KR100332927B1 KR100332927B1 (en) 2002-04-20

Family

ID=19628455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990060749A KR100332927B1 (en) 1999-11-04 1999-12-23 Apparatus for supplying the back-up gas in fluidized bed reactor

Country Status (1)

Country Link
KR (1) KR100332927B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703558B1 (en) * 2005-11-23 2007-04-03 주식회사 포스코 Nitrogen gas injection control device of a burden dispenser at the blast furnace with bell-less top and a method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2356058C3 (en) * 1973-11-09 1980-08-28 Thyssen Industrie Ag, 4300 Essen Fluidized bed furnace for the incineration of partially dewatered sludge
JPH0637658B2 (en) * 1990-02-22 1994-05-18 昭二 林 Sticking prevention method in high temperature fluidized bed reduction of iron ore
JP2536217B2 (en) * 1990-02-27 1996-09-18 日本鋼管株式会社 Device for removing dust adhering to the lower surface of the dispersion plate of the preliminary reduction furnace in the smelting reduction facility
JP2968603B2 (en) * 1991-03-29 1999-10-25 新日本製鐵株式会社 Reduced ore discharge device of fluidized bed reduction furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703558B1 (en) * 2005-11-23 2007-04-03 주식회사 포스코 Nitrogen gas injection control device of a burden dispenser at the blast furnace with bell-less top and a method thereof

Also Published As

Publication number Publication date
KR100332927B1 (en) 2002-04-20

Similar Documents

Publication Publication Date Title
KR100732461B1 (en) Method for manufacturing molten irons for improving charging and discharging of fine iron ores and apparatus using the same
JP4966317B2 (en) Molten iron manufacturing equipment
KR100332927B1 (en) Apparatus for supplying the back-up gas in fluidized bed reactor
RU2218418C2 (en) Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
KR100431863B1 (en) Apparatus for cleaning dispersion plate in fluid-bed reducing furnace
RU2001118469A (en) Fluid bed disruption prevention device for a fluidized bed reduction reactor
KR100362684B1 (en) device for adjusting the differential pressure of distributor in fluidized bed
KR100391914B1 (en) Process for coal based ironmaking to reduce loss of fine ore
KR100340582B1 (en) device for preventing blockage of burner chamber in coal based ironmaking equipment
KR100236187B1 (en) Apparatus and method for the injection of the reduced fine iron
TW493005B (en) Method of operating a fusion gasifier
CN114480766B (en) Method for restraining reverse gas channeling of coal gas and restraining gas of European smelting furnace shaft furnace
KR100376499B1 (en) Apparatus for discharging through standpipe in fluidized bed reactor
KR20040056091A (en) A multi-fluidized bed reacor having a emergency standpipe
JP2003502503A (en) Two-stage fluidized bed type fine iron ore reduction device and reduction method using the device
KR20040056093A (en) Method of reducing pressure peak in coal and fine iron ore based ironmaking process
JP2501662B2 (en) Control method of ore retention in circulating fluidized bed preliminary reduction furnace
KR100466634B1 (en) Method of producing liquid iron or liquid steel precursors
KR20010065007A (en) Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking and fine ore

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140404

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee