KR20010056962A - Method of treating dye containing waste water - Google Patents

Method of treating dye containing waste water Download PDF

Info

Publication number
KR20010056962A
KR20010056962A KR1019990058663A KR19990058663A KR20010056962A KR 20010056962 A KR20010056962 A KR 20010056962A KR 1019990058663 A KR1019990058663 A KR 1019990058663A KR 19990058663 A KR19990058663 A KR 19990058663A KR 20010056962 A KR20010056962 A KR 20010056962A
Authority
KR
South Korea
Prior art keywords
wastewater
upflow
sludge blanket
anaerobic sludge
dye
Prior art date
Application number
KR1019990058663A
Other languages
Korean (ko)
Other versions
KR100325024B1 (en
Inventor
차명철
최문진
Original Assignee
김동우
주식회사 환경비젼이십일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동우, 주식회사 환경비젼이십일 filed Critical 김동우
Priority to KR1019990058663A priority Critical patent/KR100325024B1/en
Publication of KR20010056962A publication Critical patent/KR20010056962A/en
Application granted granted Critical
Publication of KR100325024B1 publication Critical patent/KR100325024B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors

Abstract

PURPOSE: A method of dyeing wastewater is provided, which can reduce color intensity effectively and decompose nonbiodegradable polymer organics contained in dyeing wastewater, by an upflow anaerobic sludge blanket process (UASB) and so can discharge treated water of good quality. CONSTITUTION: The method comprises as follows: (i) adjust the pH of dyeing wastewater; (ii) hydrolyze and ferment organic acid of the pH adjusted dyeing wastewater through an upflow anaerobic sludge blanket process (UASB) (2); (iii) contact the dyeing wastewater passed the UASB to air at an air contact tank (3); (iv) hydrolyze and ferment organic acid of the air contacted dyeing wastewater through an upflow packed bed bioreactor (UFPB) (4); and (v) aerobic treat the wastewater passed the UFPB (4) at an aeration tank (5); (vi) coagulate the aerobic treated wastewater at a coagulation tank (7).

Description

염색폐수처리방법{Method of treating dye containing waste water}Method of treating dye containing waste water
[발명이 속하는 기술분야][TECHNICAL FIELD OF THE INVENTION]
본 발명은 염색폐수처리방법에 관한 것으로, 보다 상세하게는 난분해성 유기화합물이 다량 함유된 염색폐수를 처리하는 경제적이며 처리효율이 높은 염색폐수처리방법에 관한 것이다.The present invention relates to a dyeing wastewater treatment method, and more particularly, to an economical and highly efficient dyeing wastewater treatment method for treating a dyeing wastewater containing a large amount of hardly decomposable organic compounds.
[종래기술][Private Technology]
염색폐수의 특징Characteristics of Dye Wastewater
일반적으로 염색폐수라 함은 염색정리공업의 구성공정인 전분제거공정, 정련공정, 표백공정, 광택가공공정, 염색공정, 마무리공정 등을 통해 발생되는 폐수를 말한다. 염색폐수는 발생량과 수질의 변동이 심하고 염료, PVA, 합성세제, 호제(糊劑)등의 난분해성 유기화합물이 고농도로 존재하며, 고온(40℃), 강알칼리(pH 11∼12.5)의 특성을 지니고 있다.In general, dyeing wastewater refers to wastewater generated through starch removal, refining, bleaching, polishing, dyeing, and finishing, which are components of the dyeing and cleaning industry. Dyeing wastewater has high fluctuations in the amount of water generated and water quality, and high concentrations of hardly decomposable organic compounds such as dyes, PVA, synthetic detergents, and scavengers. It has characteristics of high temperature (40 ℃) and strong alkali (pH 11 ~ 12.5). I have it.
염색폐수에 함유된 염료의 특성을 정리하면 하기 표 1과 같다.Table 1 summarizes the characteristics of the dye contained in the dye wastewater.
구분division 염료분류Dye Classification 주요대상 섬유, 소재Main target fiber, material 화학구조, 염색상 특징Chemical structure, staining features
비수용성Water-insoluble 분산염료Disperse Dyes 폴리에스테르Polyester 불용성, 분산계로 염색분자내에 공액 이중결합 자외선 구역에서 흡수Absorption in conjugated double bond UV region in dye molecules by insoluble and dispersing system
분산형 형광염료Disperse Fluorescent Dyes 폴리에스테르Polyester
수용성염료Water Soluble Dye 양이온 염료Cationic dye 아크릴, CDPAcrylic, CDP 4급 암모늄염 또는 카르보늄기Quaternary ammonium salt or carbonium group
산성 염료Acid dyes 나이론, 견, 양모Nylon, silk, wool 설폰산기Sulfonic acid
금속함유 산성염료Acid dyes containing metal 나이론, 양모Nylon, wool 크롬, 코발트 착염구조Chromium, cobalt complex structure
직접 염료Direct dyes 면, 레이온, 종이Cotton, rayon, paper 폴리아조, 설폰산기Polyazo, Sulfonate
반응성 염료Reactive dyes 면, 레이온Cotton rayon 반응기(-OH와 반응), 설폰산기Reactor (reaction with -OH), sulfonic acid group
황화 염료Sulfide dyes 면, 레이온Cotton rayon Na2S에 의한 환원. 용해염색Reduction with Na 2 S. Dissolution Dyeing
수용성 형광염료Water soluble fluorescent dyes 면, 종이, 세제Cotton, paper, detergent 스틸벤 구조, 공액 2중결합Stilben structure, conjugated double bond
환원성 염료Reducing dyes -- Vat dyesVat dyes
또한 유기화합물이 염료로 활용되기 위해서는 발색단과 조색단을 포함하여야 한다. 대표적 염료의 화학구조는 하기 표 2와 같다.In addition, organic compounds must include chromophores and chromophores in order to be used as dyes. Chemical structures of representative dyes are shown in Table 2 below.
또한 상기 염료에 포함된 발색단 및 조색단의 종류는 하기와 같다.In addition, the types of chromophores and chromophores included in the dye are as follows.
[발색단][Chromophore]
아조기(azo) 니트로기(nitro) 카르보닐기(carbonyl)Azo nitro carbonyl
[조색단][Color palette]
아미노기(amino) 수산기(hydroxy)Amino hydroxy
-NH2-OH-NH 2 -OH
종래의 염색폐수처리방식 및 그 문제점Conventional dye wastewater treatment method and its problems
기존의 염색폐수 처리방식은 유기물제거를 위한 폭기(활성슬러지)와 난분해성 물질제거 및 탈색을 위한 약품산화를 주요공정으로 구성되어 있다. 국내의 대표적인 염색폐수 처리공정의 실례는 도 1과 같다.Conventional dye wastewater treatment consists of aeration (activated sludge) for organic matter removal, chemical oxidation for removal of hardly decomposable substances and discoloration. An example of a typical dyeing wastewater treatment process in Korea is shown in FIG. 1.
도 1과 같은 기존의 염색폐수처리공정의 문제점은 약품비의 과다, 슬러지의 대량발생, 그럼에도 불구하고 처리수질의 불량등으로 요약할 수 있다.Problems of the conventional dyeing wastewater treatment process as shown in Figure 1 can be summarized as an excessive amount of chemicals, a large amount of sludge, nevertheless poor treatment water quality.
도 1에서 안산 B염색공단의 경우, pH 12 이상의 강알카리 폐수를 후단의 호기성 생물학적처리에 유리한 조건을 형성하기 위하여 H2SO4를 투입해 pH 7로 중화시키는 공정을 적용하였기 때문에 pH 조정에 소비되는 약품비가 과다하게 된다. 한편, 순산소폭기방식의 호기성처리후 적용된 Fenton 산화법은 산성조건에서 과산화수소(H2O2)를 산화제로 하고 철염(FeCl2)을 촉매로 사용하여 난분해성 유기물 및 색도를 제거하는 방식이다. Fenton 산화법은 유기물 및 색도제거에 효과적이지만 슬러지 생산량이 일반 응집침전보다 대량으로 발생하여 슬러지 처리비용이 증가할 뿐만 아니라 산화제인 과산화수소(H2O2)의 가격이 비싸서 전반적인 유지관리비가 과도한 문제점이 있다.In the case of Ansan B dyeing complex in FIG. 1, since the process of neutralizing the strong alkaline wastewater of pH 12 or more to pH 7 by adding H 2 SO 4 to form a favorable condition for the aerobic biological treatment of the latter stage is used for pH adjustment The drug costs become excessive. Meanwhile, the Fenton oxidation method applied after the aerobic treatment of the pure oxygen aeration method is a method of removing hardly decomposable organic matter and color using hydrogen peroxide (H 2 O 2 ) as an oxidizing agent and iron salt (FeCl 2 ) as a catalyst under acidic conditions. Fenton oxidation process is an organic substance, and overall maintenance costs are excessive issue price is expensive and the effective, but the hydrogen peroxide (H 2 O 2) as well as being an oxidizing agent to the sludge production occurs in large quantities of sludge treatment cost increase than the normal flocculation on Color Removal .
또한 도 1에서 대구 K사의 경우, 높은 pH 범위에서 적정처리효율을 유지하는 MgCl2응집침전방식을 적용하였는데, 이 경우 물과의 반응을 통해 HCl이 생성되어 pH가 저하되므로 NaOH를 투입하여 pH를 상승시키는 방식으로 운영되고 있다. 본 방식은 오염농도가 높은 원폐수를 직접 응집침전함에 따라 약품량이 과다하고, 슬러지발생량이 증가할 뿐만 아니라 pH 조정을 위한 약품비가 추가적으로 소요되는 문제점이 있다.In addition, in the case of Daegu K in Figure 1, MgCl 2 coagulation sedimentation method that maintains the proper treatment efficiency in the high pH range was applied, in which case HCl is generated through the reaction with water, the pH is lowered, so the pH is added by NaOH It is operating in an ascending manner. This method has a problem in that the amount of chemicals is excessively increased and sludge generation is increased as well as the chemical cost for pH adjustment is increased by directly flocculating sedimentation of the raw wastewater with high pollution concentration.
또한, 후처리로 적용된 염소계 산화법은 주로 차염산, 표백분등을 사용하며, 표백작용을 이용한 폐수의 색도제거가 주목적으로 난분해성 유기물의 제거에는 비효율적이다. 염소계 산화법에 의한 탈색은 색도제거율이 낮을 뿐만 아니라 탈색된 색이 복원되거나 오히려 착색도가 높아지는 부작용 때문에 사용에 제약을 받는 문제점이 있다. 특히, 탈색제가 염색폐수 중 유기물질과 반응하여 하기 반응식 1과 같은 경로를 통해 유독한 환경호르몬 물질인 유기염화물을 생성시킬 가능성이 매우 높다.In addition, the chlorine-based oxidation method applied as a post-treatment mainly uses the hydrochloric acid, bleaching powder, etc., the color removal of the waste water by the bleaching action is mainly ineffective for the removal of hardly decomposable organic matter. Decolorization by the chlorine-based oxidation method has a low color removal rate, there is a problem in that the use of the color due to the side effect of the decolored color is restored or rather the coloration is increased. In particular, it is very likely that the decolorant reacts with the organic material in the dyeing wastewater to produce organic chloride, which is a toxic environmental hormone substance, through the path as in Scheme 1 below.
[반응식 1]Scheme 1
한편, 도 1의 두 가지 공정에서 생물학적처리방식으로 사용된 순산소폭기와 활성슬러지공법은 일반적인 하수처리에는 효과적인 유기물제거 방식이지만 염색폐수와 같이 고분자 유기화합물이 대량 함유된 난분해성 폐수의 처리에는 매우 부적절한 방식이다. 예를 들어, 염색폐수의 경우 총 유기물농도를 나타내는 CODcr이 약 2,000mg/l임에 비해 생물학적 분해가 용이한 유기물농도를 나타내는 BOD는 100mg/l에 불과하다. 즉, 염색폐수에 함유된 유기물의 대부분이 일반적인 생물학적처리로는 적정수준의 처리효과를 달성할 수 없는 것이다.On the other hand, the pure oxygen aeration and activated sludge method used in the biological treatment method in the two processes of Figure 1 is an effective organic material removal method for general sewage treatment, but very inadequate for the treatment of hardly degradable wastewater containing a large amount of organic polymer compounds, such as dyeing wastewater That's the way. For example, in the case of dyed wastewater, the CODcr representing the total organic concentration is about 2,000 mg / l, whereas the BOD representing the organic concentration that is easily biodegradable is only 100 mg / l. In other words, most of the organic matter contained in the dye wastewater is not able to achieve an appropriate level of treatment effect by the general biological treatment.
또한 염색폐수는 각 염색공장의 공정구성, 가동시간 등에 따라 수질 및 수량에 변동이 심하므로 특정 공장에서 성공적인 폐수처리방식이 다른 공장에서는 성공한다는 보장이 없다. 따라서, 염색폐수가 갖는 전반적 특성에 적합하며 수질 및 수량의 변동에 유연하게 대처할 수 있는 보편적 폐수처리방식의 발명이 시급한 실정이다.In addition, since the water quality and quantity fluctuate depending on the process configuration and operating time of each dyeing plant, there is no guarantee that a successful wastewater treatment method in one plant will succeed in another plant. Therefore, there is an urgent need for the invention of a universal wastewater treatment method that is suitable for the overall characteristics of dyeing wastewater and can flexibly cope with variations in water quality and quantity.
상기와 같은 문제점을 해결하기 위하여 본 발명은 혐기성 생물학적 처리과정에서 염색폐수의 난분해성 유기물질을 분해가 용이한 물질로 전환시키고, 색도유발 물질을 제거한 후 호기성 처리과정과 응집침전과정을 통해 염색폐수의 수질 및 수량변동에 유연하게 대처하면서 효율적이며 경제적인 방법으로 염색폐수를 처리하는 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention converts the non-degradable organic material of the dyeing wastewater into an easily decomposable substance in the anaerobic biological treatment, removes the chromaticity-inducing substance, and then, the dyeing wastewater through the aerobic treatment process and the coagulation sedimentation process. The aim is to provide a method for treating dyed wastewater in an efficient and economical way, while flexibly coping with fluctuations in water quality and quantity.
도 1은 종래의 염색폐수처리방법이고,1 is a conventional dyeing wastewater treatment method,
도 2는 2단의 상향류식 혐기성 슬러지 블랭킷 공정을 주공정으로 하는 염색폐수처리방법의 공정도이고,2 is a process chart of the dyeing wastewater treatment method using a two-stage upflow anaerobic sludge blanket process as a main process;
도 3은 상향류식 혐기성 슬러지 블랭킷 공정과 상향류식 충진상 생물반응조를 주공정으로 하는 염색페수처리방법의 공정도이고,3 is a process diagram of the dyeing wastewater treatment method using the upflow anaerobic sludge blanket process and the upflow packed bed bioreactor as main processes,
도 4는 실시예 1에 따른 염색폐수의 색도와 pH의 변화를 준석한 결과이고,4 is a result of qualitative change in chromaticity and pH of the dyeing wastewater according to Example 1,
도 5는 실시예 2에 적용된 공정의 모식도를 나타낸 것이고,Figure 5 shows a schematic diagram of the process applied in Example 2,
도 6은 실시예 2에서 각 단계의 염색폐수 흡광도를 분석한 결과이다.Figure 6 is the result of analyzing the dye wastewater absorbance of each step in Example 2.
상기 목적을 달성하기 위하여, 본 발명은 (a) 유입된 염색폐수의 pH를 조정하는 단계, (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계, (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 공기와 접촉시키는 단계, (d) 상기 공기와 접촉시킨 염색폐수를 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계, (e) 상기 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 호기성 처리하는 단계 및 (f) 상기 호기성 처리된 염색폐수를 응집침전시키는 단계를 포함하는 것을 특징으로 하는 염색폐수처리방법을 제공한다.In order to achieve the above object, the present invention is (a) adjusting the pH of the introduced dye wastewater, (b) hydrolysis and organic acid fermentation through the first upflow anaerobic sludge blanket process for adjusting the pH (C) contacting the dyed wastewater that has passed through the first upflow anaerobic sludge blanket process with air, and (d) hydrolyzing the dyed wastewater in contact with the air through a second upflow anaerobic sludge blanket process. And fermenting an organic acid, (e) aerobic treatment of the dyed wastewater that has passed the second upflow anaerobic sludge blanket process, and (f) flocculating the aerobic dyed wastewater. Dye wastewater treatment method is provided.
또한 본 발명은 (a) 유입된 환원성 염료가 다량 함유된 염색폐수의 pH를 조정하는 단계, (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계, (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계, (d) 상기 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 호기성 처리하는 단계 및 (e) 상기 호기성 처리된 염색폐수를 응집침전시키는 단계를 포함하는 것을 특징으로 하는 염색폐수처리방법을 제공한다.In another aspect, the present invention (a) adjusting the pH of the dyeing wastewater containing a large amount of reducing dye introduced, (b) hydrolysis and organic acid fermentation through the first upflow anaerobic sludge blanket process for adjusting the pH (C) hydrolysing and organic acid fermenting the dyeing wastewater passed through the first upflow anaerobic sludge blanket process through a second upflow anaerobic sludge blanket process, and (d) the second upflow anaerobic sludge blanket process It provides a dyeing wastewater treatment method comprising the step of aerobic treatment of the dyeing wastewater that has passed the process and (e) agglomerated sedimentation of the aerobic treated dyeing wastewater.
또한 본 발명은 (a) 유입된 염색폐수의 pH를 조정하는 단계, (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계, (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 공기와 접촉시키는 단계, (d) 상기 공기와 접촉시킨 염색폐수를 상향류식 충진상 생물반응조에서 가수분해 및 유기산 발효시키는 단계 및 (e) 상기 상향류식 충진상 생물반응조를 통과한 염색폐수를 호기성 처리하는 단계를 포함하는 것을 특징으로 하는 염색폐수처리방법을 제공한다.In another aspect, the present invention (a) adjusting the pH of the dyeing wastewater introduced, (b) hydrolyzing and organic acid fermentation through the first upflow anaerobic sludge blanket process for adjusting the pH, (c) Contacting the dyed wastewater that has passed through the first upflow anaerobic sludge blanket process with air, (d) hydrolyzing and organic acid fermenting the dyed wastewater in contact with the air in an upflow packed bed bioreactor and (e) It provides a dyeing wastewater treatment method comprising the step of aerobic treatment of the dyeing wastewater passed through the upflow packed bed bioreactor.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 염색폐수처리방법은 유입된 염색폐수의 pH를 조정하여 1차 및 2차 상향류식 혐기성 슬러지 블랭킷 공정(Upflow Anaerobic Sludge Blanket Process, 이하 "UASB"라 한다)을 이용한 가수분해 및 유기산 발효과정을 통하여 난분해성 물질을 분해가 용이한 물질로 전환시키고, 색도유발 물질을 제거한다. 이후 연속되는 호기성 생물학적 처리공정에서 분해가 용이한 상태로 전환된 유기물질을 제거하고, 후단의 응집침전공정을 통해 잔류 유기물질 및 색도유발 물질을 최종적으로 제거한다. 도 2는 상기 염색폐수처리방법의 개략적인 공정도를 나타낸 것이다.The dyeing wastewater treatment method of the present invention is hydrolyzed and organic acid fermentation process using the primary and secondary upflow anaerobic sludge blanket process (hereinafter referred to as "UASB") by adjusting the pH of the introduced dye wastewater. Through the conversion of the hardly decomposable substance into an easily decomposable substance, the color-inducing substance is removed. Subsequently, organic substances converted to easy decomposition are removed in a continuous aerobic biological process, and residual organic substances and chromaticity-inducing substances are finally removed through a coagulation sedimentation process at a later stage. Figure 2 shows a schematic process diagram of the dye wastewater treatment method.
또한 상기 2단의 UASB 공정을 거치는 염색폐수처리방법에서 1차 UASB를 통과한 염색폐수를 공기와 접촉시키는 단계는 염색폐수가 환원성 염료를 다량 함유하고 있을 경우에는 공기접촉단계를 포함하지 않는다. 환원성 염료는 설폰기가 없어 가수분해에 의한 pH 저하 정도가 미미하므로 공기접촉단계를 거치게하여 pH를 상승시키는 긍정적 영향보다는 오히려 폐수의 재발색을 야기시키는 부정적 영향이 크다고 할 수 있다.In addition, in the dyeing wastewater treatment method of the two-stage UASB process, the step of contacting the dyeing wastewater passing through the primary UASB with air does not include an air contacting step when the dyeing wastewater contains a large amount of reducing dye. Reducing dyes do not have a sulfone group, so the degree of pH decrease due to hydrolysis is insignificant. Therefore, the negative effect of recoloring the wastewater is greater than the positive effect of raising the pH through the air contact step.
또한 본 발명의 또 다른 염색폐수처리방법은 유입된 염색폐수의 pH를 조정하여 UASB로 처리한 후, 폐과립 활성탄을 충진한 상향류식 충진상 생물반응조(Upflow Packed-bed Bioreactor, 이하 "UFPB"라 한다)에 적용하여 가수분해 및 유기산 발효과정을 강화시킴으로써 난분해성 물질이 분해가 용이 물질로 전환하도록 하며, 색도 유발물질 제거기능을 증가시킨다. 이후 연속되는 호기성 생물학적 처리공정에서 분해가 용이한 상태로 전환된 유기물질을 제거한다. 또한 상기 염색처리방법에서는 안전한 처리수질 확보를 위하여 응집침전공정은 적용할 수도 있다. 도 3은 상기 염색폐수처리방법의 개략적인 공정도를 나타낸 것이다.In addition, another dyeing wastewater treatment method of the present invention is treated with UASB by adjusting the pH of the inflowing dyeing wastewater, followed by an Upflow Packed-bed Bioreactor (hereinafter referred to as "UFPB") filled with waste granular activated carbon. By strengthening the hydrolysis and organic acid fermentation process, the hardly decomposable substance is converted into an easily decomposable substance, and the color removing agent is removed. Subsequent aerobic biological processes remove the organic material that has been converted to easy decomposition. In addition, in the dyeing treatment method, a flocculation sedimentation process may be applied to secure a safe treatment water quality. Figure 3 shows a schematic process diagram of the dye wastewater treatment method.
혐기성 미생물은 난분해성 물질에 대한 분해력이 높고 독성물질에 대한 내성이 강한 특징을 지니고 있다. 혐기성 생물학적처리는 산소가 공급되지 않는 상태에서 유기물질이 CO2와 CH4로 분해되는 과정이라고 간단히 정의할 수 있으나, 실제적으로는 기질에 따른 반응경로 및 관련 미생물이 정확히 규명되지 않은 복잡한 반응이다. 일반적으로 혐기성 분해는 가수분해, 산형성, 메탄형성과정으로 이루어지는데 메탄형성과정까지 진행되기 위해서는 상당히 긴 체류시간이 필요하며, 또한 난분해성 유기물의 경우 메탄형성이 매우 어렵다.Anaerobic microorganisms are characterized by high degradability to hardly decomposable substances and strong resistance to toxic substances. Anaerobic biological treatment can simply be defined as the process in which organic matter is decomposed into CO 2 and CH 4 in the absence of oxygen, but in reality it is a complex reaction in which the reaction pathway and related microorganisms are not precisely identified. In general, anaerobic decomposition consists of hydrolysis, acid formation, and methane formation process, which requires a very long residence time in order to proceed to the methane formation process.
본 발명에서는 혐기성 처리과정에서 가수분해 및 산형성 단계까지만 진행시켜 색도 유발물질을 제거하고 난분해성물질을 분해용이한 물질로 전환시키는 것을 주공정으로 하며, 하기와 같은 처리 메카니즘의 활용한다.In the present invention, the main process is to remove the color causing agent and convert the hardly decomposable substance into an easily decomposable substance by proceeding only to the hydrolysis and acid formation step in the anaerobic treatment process, and utilize the following treatment mechanism.
설폰기의 가수분해Hydrolysis of sulfone groups
친수성 관능기인 설폰기(-SO3Na)를 함유한 수용성 염료는 혐기성 가수분해에 의하여 설폰기가 제거됨에 따라 비수용성으로 전환된다. 고분자의 염료분자는 비수용성으로 전환됨에 따라 침전물로 석출되며, 저분자의 염료분자는 약품응집침전에 의해 쉽게 제거될 수 있는 콜로이드상 물질로 변하게 된다. 한편, 생성된 NaSO4에 의하여 pH가 저하된다. 상기 반응과정은 반응식 2와 같다.Water-soluble dyes containing a hydrophilic functional sulfone group (-SO 3 Na) are converted to water insoluble as the sulfone group is removed by anaerobic hydrolysis. As the dye molecules of the polymer are converted into water-insoluble, they precipitate as precipitates, and the low-molecular dye molecules become colloidal materials that can be easily removed by chemical flocculation. On the other hand, pH is lowered by the produced NaSO 4 . The reaction process is the same as in Scheme 2.
[반응식 2]Scheme 2
유기물의 산발효Acid Fermentation of Organics
염색폐수중의 기타 미분해성 유기물은 하기 반응식 3과 같은 경로로 유기산으로 발효되며 수소(H2)와 CO2의 부산물을 생성한다.Other undegradable organics in the dye wastewater are fermented into organic acids by the same route as in Scheme 3 below to produce by-products of hydrogen (H 2 ) and CO 2 .
[반응식 3]Scheme 3
C6H12O6+ 2H2O → 2CH3COOH + 4H2+ 2CO2 C 6 H 12 O 6 + 2H 2 O → 2CH 3 COOH + 4H 2 + 2CO 2
아조기 염료의 환원탈색Reduction bleaching of azo dyes
염료의 주요 발색관능기인 아조기는 수소와 결합하는 환원반응에 의해 분해됨으로써 탈색되며, 그 반응과정은 하기 반응식 4와 같다.Azo groups, which are the main coloring functional group of the dye, are decolorized by decomposition by a reduction reaction combined with hydrogen, and the reaction process is shown in Scheme 4 below.
[반응식 4]Scheme 4
황산의 환원반응Reduction of Sulfuric Acid
가수분해에 의해 생성된 SO4 -2는 유기산과 황 환원박테리아에 의해 환원반응을 이루면서 하기 반응식 5의 경로로 S-로 전환된다.The SO 4 -2 produced by the hydrolysis is converted to S by a path of the following Reaction Scheme 5 while reducing the reaction by the organic acid and the sulfur reducing bacterium.
[반응식 5]Scheme 5
CH3COOH + SO4 -2→ CO2+ HS-+ HCO3 -+ H2O CH 3 COOH + SO 4 -2 → CO 2 + HS - + HCO 3 - + H 2 O
HH 22 S의 산화반응Oxidation of S
황 환원반응에 의해 생성된 S-는 수중 용존산소에 의해하기 반응식 6의 경로를 통하여 S고형물로 산화된다. 이러한 반응의 진행을 위하여 1차 UASB와 2차 UASB사이에 염색폐수를 공기와 접촉시키는 단계를 포함하는 것이 바람직하다.S produced by the sulfur reduction reaction is oxidized to S solids by the dissolved oxygen in water through the route of Scheme 6 below. It is preferable to include contacting the dyeing wastewater with air between the primary UASB and the secondary UASB for the progress of the reaction.
[반응식 6]Scheme 6
2H2S + O2→ 2H2O + 2S↓2H 2 S + O 2 → 2H 2 O + 2S ↓
본 발명에 포함되는 단계들을 상세히 살펴보면 하기와 같다.Looking at the steps included in the present invention in detail.
pH 조정 단계(도 2의 1, 도 3의 1) pH adjustment step (1 in FIG. 2, 1 in FIG. 3)
일반적으로 혐기성처리에 적당한 pH 범위는 중성으로 알려져 있으나 설폰기를 함유한 염색폐수의 가수분해를 위해 최적의 pH 범위는 9∼10이다. 종래에 염색폐수의 처리에 있어 혐기성공정이 제외되었던 가장 큰 이유는 폐수의 pH가 12 이상이고 이러한 폐수를 혐기성공정에 적당하다고 알려진 pH 7까지 저하시키는데 약품소모량이 과다하게 소모될 뿐만 아니라 처리효율도 낮았기 때문이다. 이에 본 발명은 염색폐수의 특성을 정확히 파악해 pH 12 이상의 폐수를 pH 9∼10까지 저하시켜 약품소모량을 감소시키는 한편 설폰기 함유 유기물의 가수분해에 최적의 조건을 제공한다.In general, a suitable pH range for anaerobic treatment is known to be neutral, but the optimal pH range for hydrolysis of the dyeing wastewater containing sulfone groups is 9-10. The main reason why the anaerobic process was excluded in the treatment of dye wastewater in the past is that the pH of the wastewater is more than 12 and lowers the wastewater to pH 7 which is known to be suitable for the anaerobic process. Because it was low. Therefore, the present invention accurately grasps the characteristics of the dyeing wastewater, and lowers the wastewater of pH 12 or more to pH 9 to 10 to reduce the amount of chemical consumption while providing optimum conditions for hydrolysis of the sulfone group-containing organic matter.
1차 UASB에서 가수분해 및 유기산 발효시키는 단계(도 2의 2, 도 3의 2) Hydrolysis and Organic Acid Fermentation in Primary UASB (2 in FIG. 2, 2 in FIG. 3)
pH 9∼10으로 조정되어 유입된 폐수를 체류시간 최대 4시간정도 혐기성 상태에서 가수분해시킨다. 본 공정에서의 CODcr 제거율은 25 내지 30%, 색도제거율은 70 내지 80%이다. 본 단계에서 CODcr 제거율이 낮은 이유는 난분해성 유기물질을 가수분해을 통해 분해가 용이한 상태로 전환시켜 후속되는 호기성처리에서 대량 제거하는데 목적이 있으며, UASB에서 긴 체류시간을 거쳐 CODcr의 완전제거를 목표로 하지 않기 때문이다. 본 단계에서 색도제거율이 70 내지 80%에 이르는 결과는 염료분자가 가수분해에 의하여 염료중간체로 전환되기 때문이다. 또한 본 단계에서 설폰기가 제거됨에 따라 비수용성으로 전환된 염료분자는 침전물로 석출된다. 또한 본 단계에서 검은색의 염색폐수는 1차 UASB를 거치면서 황색 혹은 갈색의 염료중간체로 전환되므로 오렌지색을 띠게 된다.The pH of the wastewater adjusted to 9-10 is hydrolyzed under anaerobic conditions for up to 4 hours of residence time. CODcr removal rate in this process is 25 to 30%, chromaticity removal rate is 70 to 80%. The reason why the CODcr removal rate is low in this step is to convert the hardly decomposable organic material into easy decomposition state through hydrolysis and to remove it in large quantities in the subsequent aerobic treatment, and aims to completely remove the CODcr after a long residence time in UASB. Because it does not. In this step, the color removal rate reaches 70 to 80% because the dye molecules are converted into dye intermediates by hydrolysis. In addition, as the sulfone group is removed in this step, the dye molecules converted into water-insoluble precipitate as precipitates. Also, in this step, the black dye wastewater is converted to yellow or brown dye intermediate through the first UASB, thus becoming orange.
공기접촉단계(도 2의 3, 도 3의 3) Air contact step (3 in FIG. 2, 3 in FIG. 3)
상기 1차 UASB에서 염색폐수의 혐기성 가수분해가 진행되면 NaHSO4가 생성되어 pH가 저하된다. 또한 가수분해에서 생성된 SO4 -2는 유기산과 황환원박테리아에 의해 대량의 H2S를 형성시킨다. H2S는 pH를 저하시키고 미생물에 독성을 유발하므로 1차 UASB 유출수를 공기접촉조로 유입시켜 H2S를 산화시킨 후 2차 UASB로 공급한다. pH 7정도로 저하된 1차 UASB 유출수는 공기접촉조를 거치면 pH 8.5로 상승한다.When anaerobic hydrolysis of the dyeing wastewater proceeds in the first UASB, NaHSO 4 is generated to lower the pH. In addition, SO 4 -2 generated in hydrolysis forms a large amount of H 2 S by organic acids and sulfur reduction bacteria. Since H 2 S lowers pH and causes toxicity to microorganisms, the primary UASB effluent is introduced into the air contact tank to oxidize H 2 S and then supplied to the secondary UASB. The primary UASB effluent, reduced to pH 7, rises to pH 8.5 through an air contact bath.
한편, 염색폐수 중에 환원성 염료(Vat dyes)가 다량 포함되어 있을 경우에는 공기접촉조를 설치하지 않는 것이 유리하다. 환원성 염료는 혐기성상태에서 H2와 반응하여 환원된 후 가수분해가 이루어지는데 가수분해에 소요되는 시간이 매우 길다. 환원성 염료는 환원되면서 탈색이 이루어지나 완전 가수분해 전에 공기와 접촉하여 산화가 이루어지면 색이 다시 복구된다. 또한, 환원성 염료는 설폰기가 없어 가수분해에 의한 pH 저하 정도가 미미하므로 공기접촉조를 설치하여 pH를 상승시키는 긍정적 영향보다는 오히려 폐수의 재발색을 야기시키는 부정적 영향이 크다고 할 수 있다.On the other hand, when a large amount of reducing dyes (Vat dyes) are contained in the dyeing waste water, it is advantageous not to install an air contact tank. The reducing dye reacts with H 2 in the anaerobic state to be reduced and then hydrolyzed, which takes a long time for hydrolysis. Reducible dyes are reduced in color by reduction, but the color is restored when they are oxidized in contact with air before complete hydrolysis. In addition, the reducing dye does not have a sulfonic group, so the degree of pH decrease due to hydrolysis is insignificant. Therefore, it may be said that the negative effect of recoloring the wastewater is greater than the positive effect of raising the pH by installing an air contact tank.
대표적 환원성 염료인 인디고졸(Indigosol O)의 산화환원반응에 따른 분자구조 및 색상의 변화는 하기 반응식 7과 같다.The change in molecular structure and color according to redox reaction of Indigosol O, a typical reducing dye, is shown in Scheme 7 below.
[반응식 7]Scheme 7
2차 UASB에서 가수분해 및 유기산 발효시키는 단계(도 2의 4) Hydrolysis and Organic Acid Fermentation in Secondary UASB (4 in FIG. 2)
본 단계는 공기접촉조 유출수에 대해 혐기성 가수분해 및 유기산 발효를 진행시키는 공정으로서 1차 UASB와 기능이 유사하나 조색단인 아미노기를 제거하는데 주목적이 있다. 본 공정의 체류시간은 최대 10시간이 바람직하며, 유입되는 공기접촉조 유출수의 CODcr을 25 내지 30% 정도 제거한다. 1차 UASB와 2차 UASB를 거친 처리수의 원폐수 대비 CODcr 제거율은 45 내지 50%이며, 색도제거율은 약 80% 정도이다.This step is to proceed anaerobic hydrolysis and organic acid fermentation for the air contact tank effluent, and the main purpose is to remove the amino group, which is similar in function to the primary UASB, but is crude. The residence time of this process is preferably up to 10 hours, and removes about 25 to 30% of the CODcr of the incoming air contact tank effluent. The CODcr removal rate is 45 to 50% and the chromaticity removal rate is about 80% compared to the raw waste water of the first UASB and the second UASB.
UFPB에서 가수분해 및 유기산 발효시키는 단계(도 3의 4) Hydrolysis and Organic Acid Fermentation in UFPB (4 in FIG. 3)
본 발명에서 적용되는 UFPB는 활성탄이 충진된 UFPB가 바람직하며, 상기 활성탄은 대기오염방지시설에서 사용 후 폐기시킨 과립 활성탄을 사용하여도 좋다. 활성탄을 충진시키면 혐기성분해에 필요한 미생물이 활성탄에 대량 축적되어 생물막을 형성할 뿐만 아니라 유기물을 흡착하게 된다. 결과적으로 유기물이 반응기에 농축되어 오염물의 실제 체류시간이 증가하게 되고 이러한 오염물은 활성탄에 고농도로 축적된 미생물에 의해 지속적으로 가수분해 및 유기산 발효과정을 거치게 된다. 특히, 환원성 염료가 다량 함유되어 혐기성 가수분해에 필요한 시간이 많이 소요되는 폐수의 경우 UFPB를 적용하면 효과적이다.The UFPB applied in the present invention is preferably UFPB filled with activated carbon, and the activated carbon may be granular activated carbon discarded after use in an air pollution prevention facility. When activated carbon is charged, microorganisms necessary for anaerobic decomposition accumulate in activated carbon to form biofilms and adsorb organic substances. As a result, the organic matter is concentrated in the reactor, which increases the actual residence time of the contaminants. The contaminants are continuously subjected to hydrolysis and organic acid fermentation by microorganisms accumulated in high concentration on activated carbon. In particular, the use of UFPB is effective in the case of waste water containing a large amount of reducing dyes, which requires a long time for anaerobic hydrolysis.
호기성처리 단계(도 2의 5와 6, 도 3의 5와 6) Aerobic treatment steps (5 and 6 of FIG. 2, 5 and 6 of FIG. 3)
상기 1차 및 2차 UASB공정 또는 UASB 및 UFPB공정에서 혐기성 가수분해와 유기산 발효과정을 통해 분해가 용이한 물질로 변화된 유기물을 호기성 상태에서 대량 제거한다. 이때 사용되는 호기성처리공정은 일반적인 활성슬러지나 SBR(연속회분식반응조)등 모두 가능하다. 호기성처리공정의 수리학적 체류시간은 최대 12시간이고, 2차 UASB 유출수에 포함된 CODcr의 약 80% 정도를 제거하며, 색도는 본 공정을 통해 제거되지 않는다. 1차 및 2차 UASB 공정, 호기성처리공정을 거친 처리수의 원폐수 대비 CODcr 제거율은 85 내지 90%이다.In the first and second UASB process or UASB and UFPB process, a large amount of organic matter changed to an easily decomposable substance through anaerobic hydrolysis and organic acid fermentation is removed in aerobic state. At this time, the aerobic treatment process can be used such as general activated sludge or SBR (continuous batch reactor). The hydraulic residence time of the aerobic treatment process is up to 12 hours and removes about 80% of the CODcr contained in the secondary UASB effluent, and the chromaticity is not removed through this process. The CODcr removal rate is 85 to 90% of the raw waste water of the treated water after the first and second UASB and aerobic treatment processes.
본 발명에서는 염색폐수 처리공정을 혐기성처리 후 호기성처리로 구성하여 염색폐수 중 포함된 계면활성제를 혐기성처리에서 계면활성제의 성질을 변화시키므로 호기성처리시 거품이 발생하지 않는다. 혐기성처리 없이 호기성처리를 실시하는 기존의 염색폐수처리공정에서는 과도한 거품으로 인해 운전상 문제가 발생한다.In the present invention, the dye wastewater treatment process is composed of aerobic treatment after anaerobic treatment to change the properties of the surfactant in the anaerobic treatment of the surfactant contained in the dyeing wastewater does not generate bubbles during aerobic treatment. Existing dyeing wastewater treatment process that performs aerobic treatment without anaerobic treatment causes operational problems due to excessive foaming.
응집침전공정(도 2의 7과 8, 도 3의 7과 8) Coagulation sedimentation process (7 and 8 of Figure 2, 7 and 8 of Figure 3)
염색폐수를 직접 응집침전시킬 경우 부유물질 및 콜로이드성 물질은 제거할 수 있으나 용해성 염료는 약품응집이 되지 않으므로 색도 제거의 효과는 한계가 있다. 그러나 본 발명에서는 1차 및 2차 UASB에서 용해성 염료를 가수분해에 의해 콜로이드성 염료중간체로 전환시키기 때문에 색도를 용이하게 제거할 수 있다. 또한, 호기성처리를 거치면서 다량의 유기물이 제거되므로 응집에 소모되는 약품량을 감소시키는 부대효과를 가져온다. 본 발명에서는 일반적인 응집제인 황산알루미늄(Al2(SO4)3)의 50∼60mg/l의 소량만 투입하여 상기 호기성 처리를 한 염색폐수의 색도를 15% 정도를 제거함과 동시에 CODcr의 약 45% 정도를 제거한다.In case of directly flocculating sedimentation wastewater, suspended solids and colloidal substances can be removed, but since the soluble dyes do not become agglomerate, the effect of color removal is limited. However, in the present invention, since the soluble dye is converted into the colloidal dye intermediate by hydrolysis in the primary and secondary UASB, chromaticity can be easily removed. In addition, a large amount of organic matter is removed during the aerobic treatment, resulting in a side effect of reducing the amount of chemicals consumed in flocculation. In the present invention, only a small amount of 50 to 60 mg / l of aluminum sulfate (Al 2 (SO 4 ) 3 ), which is a general flocculant, removes about 15% of the chromaticity of the aerobic treated wastewater and at about 45% of CODcr. Remove the degree.
본 발명에 의하여 염색폐수를 처리한 경우 염색폐수 원액을 기준으로 하여 볼 때 최종공정인 응집침전을 거친 방류수의 총 CODcr 제거율은 90 내지 97%, 색도 제거율은 약 95% 정도로서 기존의 염색폐수처리방식을 대체할 수 있는 매우 효과적인 처리공정이다.In the case of treating the dyeing wastewater according to the present invention, the total CODcr removal rate of the discharged water after coagulation sedimentation is 90 to 97% and the color removal rate is about 95% based on the dyeing wastewater stock solution. It is a very effective treatment that can replace.
또한, 도 3의 UASB, UFPB, 호기성처리까지만 시행하고 응집침전을 생략하여도 제 1 도의 전체공정을 거쳐 염색폐수를 처리하였을 경우와 비교할 때 CODcr 제거율은 차이가 없으며, 색도 제거율은 오히려 더 높게 나타난다. 그러므로 본 발명의 사용자가 도 3의 공정을 선택할 경우에는 응집침전과정을 생략하여도 무방하며, 단지, 매우 양호한 수질을 원할 경우에만 선택적으로 적용하면 될 것이다.In addition, even if only the UASB, UFPB, aerobic treatment of FIG. 3 and coagulation sedimentation were omitted, the CODcr removal rate was not different, and the chromaticity removal rate was higher than that of the dye wastewater treated through the entire process of FIG. . Therefore, when the user of the present invention selects the process of FIG. 3, the coagulation sedimentation process may be omitted, and only if a very good water quality is desired.
이하 본 발명의 실시예를 기재한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로서 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described. However, the following examples are intended to illustrate the invention and the present invention is not limited to the following examples.
[실시예 1]Example 1
본격적인 연속식 실험에 앞서 혐기성처리의 염색폐수 처리능력을 판단하기위하여 500ml의 삼각플라스크에 염색폐수를 300ml 주입시키고 혐기성 소화상등액 5ml를 접종한 후 30℃에서 진동배양 하면서 폐수의 색도와 pH의 변화를 분석하였다. 상기 분석의 결과를 도 4에 나타내었다.In order to determine the capacity of the anaerobic dyeing wastewater treatment prior to the continuous experiment, 300ml of the dyeing wastewater was injected into a 500ml Erlenmeyer flask, and 5ml of the anaerobic digestive supernatant was inoculated and vibrated at 30 ° C to change the color and pH of the wastewater. Analyzed. The results of the analysis are shown in FIG. 4.
도 4에서 색도는 약 80% 정도 감소하여 염색폐수의 색도제거에 혐기성 처리방법이 유효함을 알 수 있었다.In FIG. 4, the color was reduced by about 80%, indicating that the anaerobic treatment method was effective for removing the color of the dyeing wastewater.
[실시예 2]Example 2
상기 실시예 1의 회분식 간이실험을 통해 혐기성처리에 의한 염색폐수의 색도 제거능력을 확인한 후 안산시 B염색공단 폐수와 대구시 K사 염색폐수를 대상으로 6개월간 처리용량 2ℓ/일의 실험실규모(bench scale)의 연속식 실험을 실시하였다. 폐수의 평균수질, 공정구성 및 실험방법은 표 3과 같다. 본 실시예에 적용된 공정의 모식도는 도 5와 같다.After confirming the color removal ability of the dyeing wastewater by anaerobic treatment through the batch simple test of Example 1, the laboratory scale of 6L treatment capacity for 2 months / dose for the B dyeing industrial wastewater in Ansan-si and K company dyeing wastewater in Daegu-si (bench scale) ) Continuous experiments were carried out. The average water quality, process composition and experimental method of wastewater are shown in Table 3. The schematic diagram of the process applied to the present Example is as FIG.
평균수질(mg/l)Average water quality (mg / l) pHpH Temp(℃)Temp (℃) CODcrCODcr BODBOD SSSS NH3-NNH 3 -N TPTP
12.512.5 4040 1,8501,850 200200 5050 88 44
공정구성Process composition 유입 - pH조정조 - 1차 UASB - 공기접촉조 - 2차 UASB -폭기 및 침전조 - 응집 및 침전조 - 방류Inflow-pH adjustment tank-1st UASB-Air contact tank-2nd UASB-Aeration and sedimentation tank-Agglomeration and sedimentation tank-Discharge
실험방법Experiment method ·pH 조정조에서 H2SO4를 투입하여 pH를 9.5∼10으로 조정·1차 및 2차 UASB반응조를 수욕조에 넣어 40℃로 온도 유지·1차 UASB 체류시간 4시간·2차 UASB 체류시간 10시간·호기성반응조 체류시간 12시간·응집조 및 침전조 총체류시간 3시간Adjust the pH to 9.5-10 by adding H 2 SO 4 in the pH control tank.Put the first and second UASB reaction tanks in a water bath to maintain the temperature at 40 ° C. 10 hours, aerobic reaction tank residence time 12 hours, coagulation tank and settling tank total residence time 3 hours
본 실시예에서 각 단계의 색도제거효과를 파악하기 위하여 원폐수, 1차 및 2차 UASB-폭기조유출수(혐기-호기처리), 최종처리수(응집침전처리)를 가시광선 400∼700nm의 범위에서 흡광도를 분석하였다. 상기 분석한 흡광도의 변화는 도 6과같다. 도 6에서 혐기-호기처리를 거치면서 색도의 대부분이 제거되고 마지막 약품응집침전처리를 통해 잔류색도가 제거됨을 알 수 있다.In order to grasp the color removal effect of each step in the present embodiment, the raw waste water, the primary and the secondary UASB-aeration tank effluent (anaerobic-aerobic treatment), and the final treated water (coagulation sedimentation treatment) in the visible light 400 ~ 700nm range Absorbance was analyzed. The change in absorbance analyzed above is shown in FIG. 6. In Figure 6 it can be seen that through the anaerobic-aerobic treatment, most of the chromaticity is removed and the residual chromaticity is removed through the final drug flocculation settling treatment.
또한 6개월 연속실험의 CODcr 및 색도제거율은 표 4와 같다.In addition, the CODcr and chromaticity removal rate of the 6-month continuous experiment are shown in Table 4.
구분division 원폐수Wastewater 1차 UASBPrimary UASB 공기접촉조Air contact tank 2차 UASB2nd UASB 폭기Aeration 응집침전Coagulation precipitation
CODcr(mg/l)CODcr (mg / l) 1,8501,850 1,3501,350 -- 1,0001,000 200200 110110
CODcr제거율CODcr removal rate 공정별By process -- 27%27% -- 26%26% 80%80% 45%45%
누적accumulate -- 27%27% -- 46%46% 89%89% 94%94%
색도제거율Chromaticity Removal Rate 누적accumulate -- 75%75% -- 80%80% 80%80% 95%95%
pHpH 1010 7.37.3 8.58.5 7.57.5 8.38.3 6.16.1
상기 표 4에서 알 수 있듯이 본 발명에 의한 공정으로 염색폐수를 처리하였을 경우 CODcr 94%, 색도 95%의 매우 높은 제거율을 나타내었다.As can be seen in Table 4, when the dyeing wastewater was treated by the process according to the present invention, CODcr 94% and chromaticity 95% showed very high removal rates.
[실험 1][Experiment 1]
염색폐수에서 가장 문제가 되는 색도제거능력을 비교하기 위하여 본 발명에서 제안한 두 가지 염색폐수처리방법을 대상으로 다음과 같은 실험을 실시하였으며 실험의 결과는 표 5와 같다.In order to compare the color removal ability which is the most problematic problem in the dyeing wastewater, the following experiments were performed on the two dyeing wastewater treatment methods proposed in the present invention, and the results of the experiment are shown in Table 5.
공정 1 : 도 2의 처리공정Step 1: Treatment Step of FIG.
공정 2 : 도 3의 처리공정 중 후단의 응집침전을 생략한 공정Step 2: the step of eliminating the coagulation sedimentation at the rear end of the treatment step of FIG.
실험방법 : 상기 실시예 2와 동일한 방법 (공정 2의 UFPB의 체류시간 10시간)Experimental Method: The same method as in Example 2 (10 hours residence time of UFPB in Step 2)
단위 : 색도(도)Unit: Chromaticity (degrees)
공정fair 원수enemy 폭기조/침전조유출수Aeration Tank / Sedimentation Tank Runoff 응집조/침전조유출수Flocculation tank / sedimentation tank effluent 비고Remarks
공정 1Process 1 800800 110110 7070 색도가 800인 원수는 일반적인 염색폐수이며, 색도가 2,839인 원수는 환원성염료가 다량포함된 염색폐수임Raw water with a chromaticity of 800 is a general dyeing wastewater, and raw water with a chromaticity of 2,839 is a dyeing wastewater containing a large amount of reducing dyes.
2,8392,839 939939 493493
공정 2Process 2 800800 6060 --
2,8392,839 193193 --
상기 표 5에서 알 수 있듯이 공정 2의 색도 제거능력이 공정 1에 비해 우수한 것으로 나타났으며, 특히 환원성염료가 다량 혼합된 염색폐수일 경우 공정 2가 절대적으로 우수했다. 그 이유는 공정 2에서 적용한 활성탄 충진 UFPB에서 난분해성 정도가 심한 환원성염료의 가수분해가 진행되었기 때문이다.As can be seen in Table 5, the color removal ability of the process 2 was found to be superior to that of the process 1, especially in the case of the dye wastewater mixed with a large amount of reducing dye, the process 2 was absolutely excellent. The reason for this is that hydrolyzation of highly reducing reducing dyes proceeded in the activated carbon-filled UFPB applied in Step 2.
그러므로, 염색폐수의 성상과 경제성등을 고려하여 본 발명에서 제시한 두 가지 공정을 근간으로 최적의 처리시스템의 구축이 가능하다.Therefore, it is possible to construct an optimal treatment system based on the two processes proposed in the present invention in consideration of the properties and economics of the dyeing wastewater.
상기에서 살펴본 바와 같이 본 발명에 따른 염색폐수처리방법은 효과적으로 염색폐수의 색도를 낮추고, 염색폐수 내에 존재하는 난분해성 고분자 유기물을 분해하여 양질의 방류수를 배출하는 것을 가능하게 하였다.As described above, the dyeing wastewater treatment method according to the present invention effectively lowered the chromaticity of the dyeing wastewater, and made it possible to discharge high quality effluent by decomposing the hardly decomposable polymer organic matter present in the dyeing wastewater.

Claims (10)

  1. (a) 유입된 염색폐수의 pH를 조정하는 단계;(a) adjusting the pH of the introduced dye wastewater;
    (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계;(b) hydrolyzing and fermenting the organic acid through the first upflow anaerobic sludge blanket process to adjust the pH adjustment;
    (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 공기와 접촉시키는 단계;(c) contacting the dyed wastewater that has passed through the first upflow anaerobic sludge blanket process with air;
    (d) 상기 공기와 접촉시킨 염색폐수를 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계;(d) hydrolyzing and fermenting the organic acid through the second upflow anaerobic sludge blanket process in contact with the air;
    (e) 상기 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 호기성 처리하는 단계; 및(e) aerobic treatment of the dyed wastewater that has passed the second upflow anaerobic sludge blanket process; And
    (f) 상기 호기성 처리된 염색폐수를 응집침전시키는 단계;(f) flocculating the aerobic dyed dye wastewater;
    를 포함하는 것을 특징으로 하는 염색폐수처리방법.Dyeing wastewater treatment method comprising a.
  2. (a) 환원성 염료가 다량 함유된 염색폐수를 유입시켜 pH를 조정하는 단계;(a) adjusting the pH by introducing a dye wastewater containing a large amount of reducing dye;
    (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계;(b) hydrolyzing and fermenting the organic acid through the first upflow anaerobic sludge blanket process to adjust the pH adjustment;
    (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계;(c) hydrolyzing and organic acid fermenting the dyeing wastewater that has passed the first upflow anaerobic sludge blanket process through a second upflow anaerobic sludge blanket process;
    (d) 상기 2차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 호기성 처리하는 단계; 및(d) aerobic treatment of the dyed wastewater having passed through the second upflow anaerobic sludge blanket process; And
    (e) 상기 호기성 처리된 염색폐수를 응집침전시키는 단계;(e) flocculating the aerobic dyed dye wastewater;
    를 포함하는 것을 특징으로 하는 염색폐수처리방법.Dyeing wastewater treatment method comprising a.
  3. (a) 염색폐수를 유입시켜 pH를 조정하는 단계;(a) introducing a dye wastewater to adjust pH;
    (b) 상기 pH를 조정한 염색폐수를 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통하여 가수분해 및 유기산 발효시키는 단계;(b) hydrolyzing and fermenting the organic acid through the first upflow anaerobic sludge blanket process to adjust the pH adjustment;
    (c) 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정을 통과한 염색폐수를 공기와 접촉시키는 단계;(c) contacting the dyed wastewater that has passed through the first upflow anaerobic sludge blanket process with air;
    (d) 상기 공기와 접촉시킨 염색폐수를 상향류식 충진상 생물반응조에서 가수분해 및 유기산 발효시키는 단계; 및(d) hydrolysis and organic acid fermentation of the dye wastewater contacted with air in an upflow packed bed bioreactor; And
    (e) 상기 상향류식 충진상 생물반응조를 통과한 염색폐수를 호기성 처리하는 단계;(e) aerobic treatment of the dye wastewater that has passed through the upflow packed bed bioreactor;
    를 포함하는 것을 특징으로 하는 염색폐수처리방법.Dyeing wastewater treatment method comprising a.
  4. 제 3항에 있어서, 상기 호기성처리 단계를 거친 염색폐수를 응집침전시키는 단계를 더욱 포함하는 것을 특징으로 하는 염색폐수처리방법.The method of claim 3, further comprising the step of flocculating sedimentation of the dyed wastewater having undergone the aerobic treatment step.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 (a)의 pH를 조정하는 단계에서 상기 염색폐수를 pH 9∼10으로 조정하여, 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정에서 혐기성 가수분해를 알칼리조건에서 진행시키는 것을 특징으로 하는 염색폐수처리방법.The anaerobic hydrolysis of any one of claims 1 to 4, wherein the dyeing wastewater is adjusted to pH 9 to 10 in the step of adjusting the pH of (a), in the first upflow anaerobic sludge blanket process. Dyeing wastewater treatment method characterized in that to proceed in alkaline conditions.
  6. 제 1항, 제 3항 및 제 4항 중 어느 한 항에 있어서, 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정에서 생성된 H2S를 공기접촉단계에서 탈기시키는 것을 특징으로 하는 염색폐수처리방법.The method of any one of claims 1, 3, and 4, wherein the H 2 S generated in the first upflow anaerobic sludge blanket process is degassed in an air contacting step.
  7. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 유입된 염색폐수내의 염료분자의 화학적 구조가 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정, 2차 상향류식 혐기성 슬러지 블랭킷 공정 또는 상향류식 충진상 생물반응조를 통과하면서 용해성 염료에서 콜로이드 또는 비수용성 중간체로 전환되어 침전물로 석출되거나 또는 상기 응집침전단계에서 제거되는 것을 특징으로 하는 염색폐수처리방법.The method according to any one of claims 1 to 4, wherein the chemical structure of the dye molecules in the introduced dye wastewater is the first upflow anaerobic anaerobic sludge blanket process, the second upflow anaerobic sludge blanket process or upflow packed phase organisms. Dyeing wastewater treatment method characterized in that it is converted into a colloid or a water-insoluble intermediate in the soluble dye while passing through the reactor to precipitate as a precipitate or removed in the flocculation sedimentation step.
  8. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 유입된 염색폐수내의 발색관능기인 아조기가 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정, 2차 상향류식 혐기성 슬러지 블랭킷 공정 또는 상향류식 충진상 생물반응조에서 혐기성 유기산발효를 통해 제공된 수소를 제공받아 환원분해되는 것을 특징으로 하는 염색폐수처리방법.The method according to any one of claims 1 to 4, wherein the azo group, which is a color functional group in the introduced dye wastewater, is the first upflow anaerobic sludge blanket process, the second upflow anaerobic sludge blanket process, or the upflow packed bed bioreactor. Dyeing wastewater treatment method characterized in that the reduction is provided by receiving hydrogen provided through anaerobic organic acid fermentation.
  9. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 유입된 염색폐수내의 고분자 난분해성 유기물질이 상기 1차 상향류식 혐기성 슬러지 블랭킷 공정, 2차 상향류식 혐기성 슬러지 블랭킷 공정 또는 상향류식 충진상 생물반응조에서 저분자의 분해용이성 유기물질로 전환되어 호기성처리단계에서 제거되는 것을 특징으로 하는 염색폐수처리방법.The method according to any one of claims 1 to 4, wherein the polymer hardly decomposable organic material in the introduced dye wastewater is subjected to the first upflow anaerobic sludge blanket process, the second upflow anaerobic sludge blanket process, or the upflow packed phase organism. Dyeing wastewater treatment method characterized in that the low-molecular-weight organic material is converted in the reaction tank is removed in the aerobic treatment step.
  10. 제 3항 또는 제 4항에 있어서, 상기 상향류식 충진상 생물반응조는 활성탄을 충진한 상향류식 충진상 생물반응조인 것을 특징으로 하는 염색폐수처리방법.The method of claim 3 or 4, wherein the upflow packed bed bioreactor is an upflow packed bed bioreactor filled with activated carbon.
KR1019990058663A 1999-12-17 1999-12-17 Method of treating dye containing waste water KR100325024B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990058663A KR100325024B1 (en) 1999-12-17 1999-12-17 Method of treating dye containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990058663A KR100325024B1 (en) 1999-12-17 1999-12-17 Method of treating dye containing waste water

Publications (2)

Publication Number Publication Date
KR20010056962A true KR20010056962A (en) 2001-07-04
KR100325024B1 KR100325024B1 (en) 2002-02-25

Family

ID=19626649

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990058663A KR100325024B1 (en) 1999-12-17 1999-12-17 Method of treating dye containing waste water

Country Status (1)

Country Link
KR (1) KR100325024B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371499B1 (en) * 2000-02-29 2003-02-06 새한환경기술 (주) Process of dyeing wastewater treatment by Anaerobic-Aerobic-Coagulation
WO2009124426A1 (en) * 2008-04-08 2009-10-15 南京大学 A method for treating pharmaceutical mixed wastewater in chemical industry park
CN101602564B (en) * 2009-07-21 2011-07-20 南京大学 Method for treating coking wastewater
CN103011506A (en) * 2012-12-12 2013-04-03 山东绿健生物技术有限公司 Treatment method of xylose production wastewater
CN103043861A (en) * 2012-12-30 2013-04-17 惠州市保家环境工程有限公司 Textile wastewater treatment method
CN103043857A (en) * 2012-12-19 2013-04-17 绍兴县江滨水处理有限公司 Method and device for treating printing and dyeing wastewater by using macroporous adsorption resin
CN103232134A (en) * 2013-04-09 2013-08-07 苏州市东宏环保科技有限公司 Wastewater treatment method suitable for chemical industry
CN103304058A (en) * 2013-06-25 2013-09-18 安徽雪龙纤维科技股份有限公司 Treatment method of cotton pulp wastewater
KR101379374B1 (en) * 2013-07-22 2014-03-31 주식회사 수처리월드 Reducing ironsalt processing method of dyeing wastewater
CN103739150A (en) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 Medicinal auxiliary material production wastewater treatment technology
CN103739159A (en) * 2013-12-24 2014-04-23 广州中国科学院沈阳自动化研究所分所 Domestication method of novel anaerobic hydrolytic acidification sludge for treating printing and dyeing wastewater raw water and application
CN104724892A (en) * 2015-03-30 2015-06-24 湖州华鼎贸易有限公司 Treatment method of acidic dye industrial wastewater
CN104743737A (en) * 2014-11-28 2015-07-01 广州新滔水质净化有限公司 Industrial printing and dyeing wastewater treatment method
CN104829046A (en) * 2015-04-21 2015-08-12 南通大恒环境工程有限公司 Treatment method for printing, dyeing and desizing wastewater with high concentration
CN105174665A (en) * 2015-10-30 2015-12-23 朱忠良 Treatment method for dyeing and printing effluent
CN105601029A (en) * 2015-12-17 2016-05-25 福建凤竹纺织科技股份有限公司 Process for printing and dyeing wastewater treatment
CN106746154A (en) * 2015-11-19 2017-05-31 张家港市宏盛贸易有限公司 It is applied to the fan assembly of textile waste processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422969A (en) * 2019-08-30 2019-11-08 四川拓璞环保科技有限公司 Liquid crystal display material production wastewater treatment system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078989A (en) * 1993-06-25 1995-01-13 Denka Consult & Eng Co Ltd Method and apparatus for decolorizing of colored waste water
JP3438747B2 (en) * 1994-06-29 2003-08-18 ソニー株式会社 Disc playback device
KR100271849B1 (en) * 1994-10-27 2000-11-15 류재근 Biological treatment method and apparatus for dyeing waste water using two-stage anaerobic treatment
KR19990038487A (en) * 1997-11-05 1999-06-05 정해호 Fiber dyeing wastewater treatment method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371499B1 (en) * 2000-02-29 2003-02-06 새한환경기술 (주) Process of dyeing wastewater treatment by Anaerobic-Aerobic-Coagulation
WO2009124426A1 (en) * 2008-04-08 2009-10-15 南京大学 A method for treating pharmaceutical mixed wastewater in chemical industry park
CN101254993B (en) * 2008-04-08 2010-06-02 南京大学 Treatment method of pharmaceutical chemical industry park hybrid waste water
CN101602564B (en) * 2009-07-21 2011-07-20 南京大学 Method for treating coking wastewater
CN103011506A (en) * 2012-12-12 2013-04-03 山东绿健生物技术有限公司 Treatment method of xylose production wastewater
CN103043857A (en) * 2012-12-19 2013-04-17 绍兴县江滨水处理有限公司 Method and device for treating printing and dyeing wastewater by using macroporous adsorption resin
CN103043861A (en) * 2012-12-30 2013-04-17 惠州市保家环境工程有限公司 Textile wastewater treatment method
CN103232134A (en) * 2013-04-09 2013-08-07 苏州市东宏环保科技有限公司 Wastewater treatment method suitable for chemical industry
CN103304058B (en) * 2013-06-25 2016-01-27 安徽雪龙纤维科技股份有限公司 A kind for the treatment of process of cotton pulp wastewater
CN103304058A (en) * 2013-06-25 2013-09-18 安徽雪龙纤维科技股份有限公司 Treatment method of cotton pulp wastewater
KR101379374B1 (en) * 2013-07-22 2014-03-31 주식회사 수처리월드 Reducing ironsalt processing method of dyeing wastewater
CN103739150A (en) * 2013-11-15 2014-04-23 安徽省绿巨人环境技术有限公司 Medicinal auxiliary material production wastewater treatment technology
CN103739159B (en) * 2013-12-24 2016-03-23 广州中国科学院沈阳自动化研究所分所 The acclimation method of the anaerobic hydrolysis-acidification mud of the former water of a kind for the treatment of of dyeing and printing and application
CN103739159A (en) * 2013-12-24 2014-04-23 广州中国科学院沈阳自动化研究所分所 Domestication method of novel anaerobic hydrolytic acidification sludge for treating printing and dyeing wastewater raw water and application
CN104743737A (en) * 2014-11-28 2015-07-01 广州新滔水质净化有限公司 Industrial printing and dyeing wastewater treatment method
CN104743737B (en) * 2014-11-28 2017-01-04 广州新滔水质净化有限公司 A kind of processing method of dyeing wastewater
CN104724892A (en) * 2015-03-30 2015-06-24 湖州华鼎贸易有限公司 Treatment method of acidic dye industrial wastewater
CN104829046A (en) * 2015-04-21 2015-08-12 南通大恒环境工程有限公司 Treatment method for printing, dyeing and desizing wastewater with high concentration
CN105174665A (en) * 2015-10-30 2015-12-23 朱忠良 Treatment method for dyeing and printing effluent
CN106746154A (en) * 2015-11-19 2017-05-31 张家港市宏盛贸易有限公司 It is applied to the fan assembly of textile waste processing system
CN105601029A (en) * 2015-12-17 2016-05-25 福建凤竹纺织科技股份有限公司 Process for printing and dyeing wastewater treatment
CN105601029B (en) * 2015-12-17 2018-06-15 福建凤竹纺织科技股份有限公司 A kind for the treatment of process of dyeing waste water

Also Published As

Publication number Publication date
KR100325024B1 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
KR100325024B1 (en) Method of treating dye containing waste water
El-Gohary et al. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process
Manu et al. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time
Manu et al. Anaerobic decolorisation of simulated textile wastewater containing azo dyes
Gonçalves* et al. Biological treatment of effluent containing textile dyes
CN101698530B (en) Method for waste water treatment by Fenton reaction
US8715509B2 (en) Tanning wastewater treatment and reuse apparatus and method therefor
Georgiou et al. Microbial immobilization in a two-stage fixed-bed-reactor pilot plant for on-site anaerobic decolorization of textile wastewater
Shoukat et al. Hybrid anaerobic-aerobic biological treatment for real textile wastewater
García-Montaño et al. Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal
García-Montaño et al. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor
CN205328814U (en) Handle alkaline dye wastewater's device
CN101638279A (en) Method for treating sulfur-containing printing and dyeing wastewater
CN102730907B (en) Deep treatment method for printing and dyeing industry production waste water
CN1884148A (en) Process for treating dyeing waste water with high COD value and high colour
Bali et al. Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu (II) system for decolorization of Remazol Turquoise Blue G-133
CN106242178A (en) A kind of cloth dyeing industrial sewage processes technique
CN104291532A (en) Treatment method and equipment of beta-naphthol production wastewater
CN101891319A (en) Alkaline printing and dyeing wastewater materialization pretreatment method and system
CN105693019A (en) System and method for treating wastewater containing nitrobenzene, aniline and cyclohexylamine
CN102329050B (en) Process and device for efficiently treating wheat straw pulp intermediate wastewater by alkaline method
DE10143600A1 (en) Biological treatment of dye-containing waste water from the textile and leather industry comprises adding ozone and optionally hydrogen peroxide to the treated water and recycling it as process water
CN105541005A (en) Degradation-resistant salt chemical wastewater deep treatment method
Arimi et al. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes
CN105036418A (en) Treatment technique of printing ink wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050202

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee