KR20010056826A - Preparation of polyester - Google Patents

Preparation of polyester Download PDF

Info

Publication number
KR20010056826A
KR20010056826A KR1019990058451A KR19990058451A KR20010056826A KR 20010056826 A KR20010056826 A KR 20010056826A KR 1019990058451 A KR1019990058451 A KR 1019990058451A KR 19990058451 A KR19990058451 A KR 19990058451A KR 20010056826 A KR20010056826 A KR 20010056826A
Authority
KR
South Korea
Prior art keywords
ethylene glycol
polyester
polymerization process
esterification
centrifugation
Prior art date
Application number
KR1019990058451A
Other languages
Korean (ko)
Inventor
이휘석
Original Assignee
구광시
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구광시, 주식회사 코오롱 filed Critical 구광시
Priority to KR1019990058451A priority Critical patent/KR20010056826A/en
Publication of KR20010056826A publication Critical patent/KR20010056826A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Abstract

PURPOSE: A process for producing high quality polyester is provided for dividing untreated ethyleneglycol from impurity as a by-product in a preferred efficiency to reuse it in the polymerization process. CONSTITUTION: The process for preparing high quality polyester comprises providing terephthalic acid and/or its ester derivative and ethylene glycol as raw material into an esterification reactor; introducing the obtained low polymer into a polycondensation reactor; using centrifugal separator to precipitate impurities of the ethylene glycol containing efflux from the esterification and/or polycondensation reactors and to purify the ethylene glycol; and reusing the purified product in the polymerization process. The centrifugal separator satisfies the equation of >=T 2e(exp7)Z(exp1.8401), wherein Z and T represent the efficiency of centrifugal separation and the resident time in the separator, respectively.

Description

폴리에스테르의 제조방법{Preparation of polyester}Production method of polyester {Preparation of polyester}

본 발명은 폴리에스테르 수지를 제조하는 방법에 관한 것으로서, 보다 구체적으로는 중합공정에 투입되어 반응되지 않고 회수되어 나오는 에틸렌글리콜을 이와 함께 회수되는 불순물과 개선된 효율로 분리하여 중합에 재사용할 수 있게 하는 폴리에스테르의 제조방법에 관한 것이다.The present invention relates to a method for producing a polyester resin, and more particularly, to remove ethylene glycol that is recovered without being reacted by being introduced into a polymerization process and separated from impurities with improved efficiency and reused in polymerization. It is related with the manufacturing method of polyester.

폴리에스테르 수지의 중합 방법은 원료에 따라 직접 중합법과 에스테르 교환법으로 분류하거나, 또는 제조공정에 따라 배치중합과 연속 중합법으로도 분류하기도 한다. 폴리에스테르가 폴리에틸렌테레프탈레이트인 경우를 예로 들어 설명하면,직접 중합법(소위, TPA법)은 원료로 테레프탈산(TPA)과 에틸렌글리콜(EG)을 사용하고, 에스테르 교환법(소위 DMT법)은 디메틸테레프탈레이트(DMT)와 에틸렌글리콜을 사용한다. 공업적으로 생산되는 제조공정은 배치 중합법의 경우 직접 중합법과 에스테르 교환법이 모두 사용되고 있으나, 연속 중합법에 있어서는 직접중합법이 주로 사용되고 있다.The polymerization method of the polyester resin may be classified into a direct polymerization method and a transesterification method depending on raw materials, or may also be classified into a batch polymerization and a continuous polymerization method according to a manufacturing process. For example, when polyester is polyethylene terephthalate, the direct polymerization method (so-called TPA method) uses terephthalic acid (TPA) and ethylene glycol (EG) as raw materials, and the transesterification method (so-called DMT method) is dimethyl tere. Phthalates (DMT) and ethylene glycol are used. In the industrial production process, both the direct polymerization method and the transesterification method are used for the batch polymerization method, but the direct polymerization method is mainly used for the continuous polymerization method.

이러한 중합 반응은 보통 2단계로 진행되는데, 1단계 반응은 저중합체를 형성하는 에스테르 반응(또는 에스테르 교환반응)이고, 2단계 반응은 고중합체를 형성하는 중축합 반응이다. 이러한 중합반응중에서, 주로 중축합 반응단계에서는 중합 방법에 관계없이 원료로 투입된 에텔렌글리콜중 미반응물이 중축합 반응이 진행되면서 진공계로 재회수된다.This polymerization reaction usually proceeds in two stages, in which the first stage reaction is an ester reaction (or transesterification reaction) to form a oligomer, and the two stage reaction is a polycondensation reaction to form a high polymer. In this polymerization reaction, mainly in the polycondensation reaction step, the unreacted material in the ethylene glycol input as a raw material is recovered in a vacuum system as the polycondensation reaction proceeds regardless of the polymerization method.

중합 공정에서 회수되는 물질중에는 에텔렌글리콜 이외에도 반응 촉매와 내열제, 수분, 디에틸렌글리콜, 탄화물, 고형분(폴리에스테르 저중합체)등과 같은 물질(이하, '불순물'이라 한다.)을 다량 함유하고 있는 상태이므로 회수된 에텔렌글리콜을 중합 공정에 원료로 재사용하기 위해서는 불순물 정제가 필수적이다.In addition to the ethylene glycol, the material recovered in the polymerization process contains a large amount of substances (hereinafter referred to as 'impurities') such as reaction catalysts, heat-resistant agents, moisture, diethylene glycol, carbides, solids (polyester oligomers), and the like. Since it is a state, impurity purification is essential to reuse the recovered ethylene glycol as a raw material in the polymerization process.

부연하면, 폴리에스테르 중축합 단계에서 진공계로 재회수된 에틸렌글리콜내의 불순물중 수분은 원료로 중합 공정에 재투입되었을 때 에스테르화 반응단계의 정류탑으로 유출되며 일부는 최종 고분자내에 체류하면서 고분자의 물성을 저하시킬 것이나 그양이 매우 적은 관계로 최종 고분자의 물성 저하에 큰 영향은 끼치지는 않는다.In other words, the water in the impurities in the ethylene glycol recovered in the vacuum system in the polyester polycondensation step is discharged to the rectification column of the esterification step when re-introduced into the polymerization process as a raw material, and some of them stay in the final polymer and However, since the amount thereof is very small, the physical properties of the final polymer are not significantly affected.

그리고 금속촉매 및 내열제들은 잔존량과 활성도를 평가해 중합공정 촉매 투입량으로 보정이 가능하다. 그러나 탄화물 및 고형분들은 중합공정 내에서 제거할 수가 없고 최종 고분자에도 심각한 물성 저하를 야기시키므로 탄화물과 고형분 전량을 제거하는 것은 필수적이다.In addition, the metal catalyst and the heat-resistant agent can be corrected by the amount of the polymerization process catalyst by evaluating the remaining amount and activity. However, it is essential to remove carbides and solids since carbides and solids cannot be removed in the polymerization process and cause serious degradation in the final polymer.

종래, 상기한 목적으로 에틸렌글리콜과 불순물의 끓는점 차이를 이용한 정류법과 비중차이에 의한 침전법으로 에텔렌글리콜을 정제하여 원료로 공정에 재투입, 사용하는 방식이 제안되어 있다.Conventionally, a method of purifying ethylene glycol by the rectification method using the boiling point difference between ethylene glycol and impurities and the precipitation method by the specific gravity difference, and re-injecting the raw material into the process as a raw material has been proposed.

국내특허출원 공개 제95-18137호(출원번호 제94-35954호)에는 에틸렌글리콜과 불순물의 끓는점 차이를 이용하여 에틸렌글리콜을 회수하여 정제하는 정류법이 제시되어 있다. 그러나 이 방법은 에틸렌글리콜과 함께 회수되는 불순물을 분리하기 위하여 끓는점 이상의 온도에서 정류하므로 정제 효율은 우수하나, 정류를 위한 필요 설비비가 과다하고, 소비 열량이 매우 높아 에틸렌글리콜 회수 비용이 지나치게 비싼 단점이 있다.Korean Patent Application Publication No. 95-18137 (Application No. 94-35954) discloses a rectification method for recovering and purifying ethylene glycol using a difference in boiling point between ethylene glycol and impurities. However, this method is excellent in refining efficiency because it is rectified at a temperature above boiling point in order to separate impurities recovered with ethylene glycol, but the disadvantages of excessively expensive equipment cost and high heat consumption for ethylene glycol recovery are too high. have.

이러한 단점들을 개선하기 위한 시도로서 국내특허출원공개 제97-10824호(출원번호 제96-35262호)에는 에텔렌글리콜과 불순물의 비중차를 이용한 침전법이 제안된 바 있다. 이 방법의 특징은 회수된 에텔렌글리콜을 침전을 위한 저장조에 저장하여, 상등액은 원료로 재투입 사용하고, 침전물은 에틸렌글리콜의 함량이 높아 다시 정류법을 이용하여 분리함으로 상대적으로 정류 필요량을 줄여 에틸렌글리콜의 회수비용을 줄이고자 한 것이다. 그러나 이 방법에 있어 에틸렌글리콜과 공존하는 불순물중 비중의 차이가 큰 탄화물은 어느 정도 분리가 되지만, 비중 차이가 미미한 고형분은 침강속도가 낮아 과도한 침전시간이 필요하고, 동일량을 정제할경우 저장조가 필요침전시간 만큼 늘어나게 된다.In an attempt to remedy these shortcomings, Korean Patent Application Publication No. 97-10824 (Application No. 96-35262) has proposed a precipitation method using a specific gravity difference between ethylene glycol and impurities. The characteristic of this method is that the recovered ethylene glycol is stored in the storage tank for precipitation, the supernatant is used again as a raw material, and the precipitate is separated by using the rectification method because of the high content of ethylene glycol, thus reducing the need for rectification. To reduce the recovery cost of ethylene glycol. In this method, however, carbides with a large difference in specific gravity among the impurities coexisting with ethylene glycol can be separated to some extent, but solid contents having a small difference in specific gravity have a low sedimentation rate and require excessive settling time. This will increase the required settling time.

따라서 본 발명은 폴리에스테르 중합과정에서 회수된 물질중에서 에틸렌글리콜을 간단하면서도 경제적인 방법으로 고도의 순도로 정제하여 중합공정에 재사용할 수 있는 방법을 제공하는 것을 기술적 과제로 한다.Therefore, the present invention is to provide a method for refining ethylene glycol in a high purity in a simple yet economical manner in the material recovered in the polyester polymerization process to be reused in the polymerization process.

상기한 과제를 해결하기 위한 본 발명자의 연구에서 침강 속도를 높일 수 있는 고속 원심분리를 도입한 정제방법을 이용하면 보다 향상된 생산성 및 경제성으로 회수된 에틸렌글리콜을 고순도로 정제하여 중합과정에 안전하게 재사용할 수 있게 된다는 사실을 알게 되었다.In the present inventor's research for solving the above problems, by using a high-speed centrifugation purification method that can increase the sedimentation rate, the recovered ethylene glycol can be purified with high purity and safely reused in the polymerization process with improved productivity and economy. I found out that I could.

도 1은 본 발명에 따라 폴리에스테르 제조공정시 에틸렌글리콜-함유 유출물을 원신분리하여 고순도의 에틸렌글리콜을 회수하고 이를 중합공정에 재공급하는 공정을 개략적으로 나타낸 블록도이다. 여기서 CEG는 에틸렌글리콜-함유 유출물를 나타내며, PEG는 정제된 에틸렌글리콜을 나타낸다.1 is a block diagram schematically illustrating a process of recovering ethylene glycol of high purity by separating the ethylene glycol-containing effluent in the polyester manufacturing process according to the present invention and re-supplying it to the polymerization process. Where CEG stands for ethylene glycol-containing effluent and PEG stands for purified ethylene glycol.

그러므로 본 발명에 의하면 테레프탈산 및/또는 그 에스테르 형성성 유도체 및 에틸렌글리콜을 원료로 하여 에스테르화 반응장치에 공급하여 에스테르화 반응을 행하고, 얻어진 폴리에스테르 저중합체를 중축합 반응 장치에 공급하여 중축합함으로써 폴리에스테르를 제조하는 방법에 있어서, 에스테르화 반응장치 및/또는 중축합 반응장치로부터 배출되는 에틸렌글리콜-함유 유출물을 원심분리하여 불순물을 침강시키고 정제된 에틸렌글리콜을 중합공정에 재공급하는 것을 특징으로 하는 폴리에스테르 제조방법이 제공된다.Therefore, according to the present invention, terephthalic acid and / or its ester-forming derivative and ethylene glycol are used as raw materials to be fed to an esterification reaction to perform an esterification reaction, and the resulting polyester oligomer is fed to a polycondensation reaction apparatus to carry out polycondensation. A method for producing a polyester, characterized in that the ethylene glycol-containing effluent discharged from the esterification reactor and / or the polycondensation reactor is centrifuged to settle impurities and the purified ethylene glycol is fed back to the polymerization process. A polyester production method is provided.

또한 본 발명에 의하면 상기 원심분리가 수학식 1을 만족함과 동시에, 원심분리효과(Z)가 2000G (여기서 G는 중력가속도임) 이상, 체류시간(T)이 5분 이상을 만족하는 조건하의 고속 원심분리인 것을 특징으로 하는 폴리에스테르 제조방법이 제공된다:Further, according to the present invention, the centrifugation satisfies Equation 1, while the centrifugation effect (Z) is higher than 2000G (where G is gravity acceleration) and the retention time (T) satisfies at least 5 minutes. There is provided a process for producing a polyester characterized by centrifugation:

식중, Z는 원심분리효과를, T는 원심분리기내 체류시간(분)을 각각 나타낸다.In the formula, Z represents the centrifugal effect, and T represents the residence time in minutes in the centrifuge.

또한 본 발명에 의하면 폴리에스테르의 중합공정에서 유출되는 에틸렌글리콜이 재공급되어 제조되며, 칼라 b치가 1.6 내지 2.2이고, 디에틸렌글리콜 함량이 1.33중량% 이하인 것을 특징으로 하는 폴리에스테르 칩이 제공된다.In addition, the present invention provides a polyester chip characterized in that the ethylene glycol flowing out of the polymerization process of the polyester is re-supplied and manufactured, the color b value is 1.6 to 2.2, the diethylene glycol content is 1.33% by weight or less.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 폴리에스테르 수지 중합공정에 있어 중축합 반응단계에서 원료로 투입되었다가 진공계로 유출되어 나오는 에틸렌글리콜을 정제하여 수지 중합공정에 재공급하는데 있어 보다 효율적인 방법을 제시한 것이다.The present invention proposes a more efficient method for purifying ethylene glycol, which is introduced as a raw material in a polycondensation reaction step in a polyester resin polymerization process and then flows out into a vacuum system, to be re-supplied to the resin polymerization process.

본 발명에 의하면 원심분리의 원리를 이용하여 진공계로 유출되어 나오는 에틸렌글리콜-함유 물질로부터 탄화물 및 고형분 등과 같은 불순물을 분리하고 고 순도의 에틸렌 글리콜을 중합공정에 재공급하는 것을 요지로 한다.According to the present invention, it is essential to separate impurities such as carbides and solids from the ethylene glycol-containing material flowing out into the vacuum system using the principle of centrifugation, and to re-feed high purity ethylene glycol to the polymerization process.

원심분리란 원심력을 구동력으로 해서 유체 속에 현탁하는 고체 또는 액체의 미립자를 분리하는 조작을 말하는 것이다. 본 발명에서는 이러한 원심분리를 특별히 제어된 조건, 즉, 원심효과(Z) 2000G 이상, 체류시간(T) 5분 이상을 동시에 만족하는 조건하에서 수행한다.Centrifugation refers to an operation of separating the solid or liquid fine particles suspended in the fluid using the centrifugal force as the driving force. In the present invention such centrifugation is carried out under specially controlled conditions, i.e. , Centrifugal effect (Z) is performed under conditions satisfying at least 2000G and residence time (T) at least 5 minutes at the same time.

여기서 원심 효과(Z)는 원심력(F)과 중력(F)과의 비(F/F)를 말하며 원심 분리기에서 분리 구동력의 세기를 나타낸다.The centrifugal effect (Z) refers to the ratio (F circle / F in) of the centrifugal force (F W) and gravity (F in) represents the strength of the separation force in a centrifuge.

임의 질량(m)[Kg]의 입자가 임의 회전 반지름(r)[m]에서, 임의 각속도(ω)[s-¹]로 회전할 때, 이 입자에 걸리는 원심력은 수학식 2가 되고, 같은 질량의 입자에 걸리는 중력(F)은 수학식 3이 된다.When a particle of arbitrary mass (m) [Kg] rotates at an arbitrary rotation radius (r) [m] at an arbitrary angular velocity (ω) [s-¹], the centrifugal force applied to the particle becomes Equation 2, gravity applied to the particles of the mass (F in) is the equation (3).

따라서 원심 효과(Z)는 수학식 4가 된다.Therefore, the centrifugal effect Z becomes (4).

따라서 원심분리효과를 분당회전수로 나타내면 수학식 5와 같이 된다.Therefore, when the centrifugal effect is expressed in revolutions per minute, it is expressed by Equation 5.

수학식 5에서 알 수 있듯이 원심 분리 효과는 회전을 빠르게 하든지, 회전반경을 크게 할 경우 높게 나타난다. 또한 이러한 원심효과는 에틸렌글리콜의 침전속도에 의해 충분히 분리될 수 있게 하기 위해서는 적정 체류시간이 필요하다.As can be seen in Equation 5, the centrifugal separation effect is high when the rotation is accelerated or the rotation radius is increased. In addition, this centrifugal effect requires an appropriate residence time in order to be sufficiently separated by the precipitation rate of ethylene glycol.

본 발명에 따라, 원심효과(Z) 2000G 이상, 체류시간(T) 5분 이상을 동시에 만족하는 조건으로 에틸렌글리콜-함유 유출물을 원심분리하면 최소 입자의 평균 입경을 10μm 이하로 분리해낼 수 있어 고순도의 에틸렌글리콜을 중합공정에 재공급할 수 있게 된다. 만일, 원심효과가 2000G 이하일 경우 비중이 낮은 입자의 분리가 불가능하고, 체류시간이 5분 이하일 경우 원심효과가 충분히 적용되지 않아 원심분리가 되지 않는다.According to the invention Centrifugal separation of ethylene glycol-containing effluent under conditions satisfying at least 2000G of centrifugal effect (Z) and residence time (T) of at least 5 minutes can separate the average particle diameter of the minimum particles to 10 μm or less, resulting in high purity ethylene glycol Can be fed back to the polymerization process. If the centrifugal effect is less than 2000G, it is impossible to separate particles having a low specific gravity, and if the residence time is 5 minutes or less, the centrifugal effect is not sufficiently applied and the centrifugal separation is not performed.

이와 같은 본 발명에 따라 중합공정에서 유출되는 에틸렌글리콜을 재공급하여 제조하면 칼라 b치가 1.6 내지 2.2이고, 디에틸렌글리콜 함량이 1.33중량% 이하인 폴리에스테르 칩이 제조된다. 중합공정에서 유출되는 에틸렌글리콜을 재공급하여 제조한 폴리에스테르 칩이 디에틸렌글리콜(DEG)을 1.33중량% 보다 많은 양으로 함유하고 있으면 염색성 차이를 발생하여 이를 사용하여 제조한 섬유는 염반, 경사줄 등의 문제를 발생하고, 또한 칼라 b치가 1.6 미만이거나 또는 2.2를 초과하는경우에도 DEG 함량과 관련하여 설명한 바와 같은 문제점이 발생하기 쉽다.According to the present invention, when the ethylene glycol flowing out of the polymerization process is re-supplied to produce a polyester chip having a color b value of 1.6 to 2.2 and a diethylene glycol content of 1.33% by weight or less. If the polyester chip manufactured by re-feeding ethylene glycol flowing out from the polymerization process contains diethylene glycol (DEG) in an amount greater than 1.33% by weight, the dyeability difference occurs. And the like, and also when the color b value is less than 1.6 or more than 2.2, the problems as described with respect to the DEG content are likely to occur.

상기한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명은 하기 실시예로 국한되는 것은 아니다.Features and other advantages of the present invention as described above will become more apparent from the following examples. However, the present invention is not limited to the following examples.

[실시예 1 내지 3][Examples 1-3]

교반기와 정류관이 부착된 반응 용기에 테레프탈산(TPA) 860kg과 순수 에틸렌글리콜(이하, 'NEG'라 함.) 390kg을 투입하여 교반을 시작하고, 반응에 의해 생성된 물을 제거하면서 반응시켰다. 이렇게 해서 에스테르화 반응이 완료되면, 안티몬 화합물 0.030kg, 산화티탄 0.30kg, 인산 0.010kg을 첨가하여 20Torr 이하의 고진공 및 280℃의 고온에서 중축합하고, 일정점도에 도달하면 반응을 종결, 스파게티 상태료 토출하여 칩상의 폴리머를 얻었다. 한편, 상기 중축합공정의 진공계에서는 에틸렌글리콜-함유 유출물(이하, 'CEG'라 함)을 계외로 배출하였다. CEG는 원심분리기에 투입하여 표1에 나타낸 바와 같은 원심효과 및 체류시간의 조건으로 원심분리하여 정제하였고, 정제된 에틸렌글리콜(이하, 'REG'라 함.)은 상기한 폴리에스테르 제조공정에 재공급하였다. 재공급량은 NEG의 공급량과 동일하게 하였다. 즉 NEG:REG=1:1로 공급하여 폴리에스테르 칩을 제조하였다.860 kg of terephthalic acid (TPA) and 390 kg of pure ethylene glycol (hereinafter referred to as 'NEG') were added to the reaction vessel to which the stirrer and the rectifier tube were attached, and the stirring was started, and the reaction was performed while removing the water generated by the reaction. When the esterification reaction is completed in this way, 0.030 kg of antimony compound, 0.30 kg of titanium oxide, and 0.010 kg of phosphoric acid are added to polycondensate at high vacuum of 20 Torr or lower and high temperature of 280 ° C., and when the viscosity reaches a certain viscosity, the reaction is terminated. It discharged and the chip-like polymer was obtained. On the other hand, in the vacuum system of the polycondensation step, the ethylene glycol-containing effluent (hereinafter referred to as 'CEG') was discharged out of the system. CEG was purified by centrifugation in a centrifuge and centrifugal effect and retention time as shown in Table 1, and the purified ethylene glycol (hereinafter referred to as "REG") was returned to the above polyester manufacturing process. Supplied. The resupply amount was the same as that of NEG. In other words, NEG: REG = 1: 1 to prepare a polyester chip.

정제된 REG의 특성 및 제조된 칩의 특성을 비교하기 위하여 후술되는 방법으로 입도분포, 고유점도, 칼라b값 및 디에틸렌글리콜(DEG) 함량을 측정하였다. 측정결과는 표 1에 제시된다.Particle size distribution, intrinsic viscosity, color b value and diethylene glycol (DEG) content were measured by the method described below in order to compare the characteristics of the purified REG and the characteristics of the prepared chip. The measurement results are shown in Table 1.

- 입도 분포 : 미국 빅(BIC)사에서 제조판매되는 입도분포측정기(모델번호 BI-DCPH)를 이용, CEG 및 REG내 고형분의 평균 입경(㎛)측정-Particle size distribution: Measurement of average particle diameter (μm) of solids in CEG and REG using a particle size distribution analyzer (model number BI-DCPH) manufactured and sold by BIC

- 고유점도 : 용매인 오르쏘클로로페놀 25㎖에 칩 2.0g을 25℃에 녹여 점도 측정.-Intrinsic viscosity: Melt 2.0 g of chip in 25 ml of orthochlorophenol, a solvent, at 25 ° C to measure the viscosity.

- 칼라 b값 : 일본 미놀타에서 제조판매되는 색상측정기(모델번호 CR-200)를 이용, 칩의 b값을 측정.-Color b value: Measured b value of chip using color meter (model number CR-200) manufactured and sold in Minolta, Japan.

- DEG 함량 : 칩내 디에틸렌글리콜의 무게함량 측정. 메탄올로 칩을 가수분해시켜 가스 크로마토그래피(GC)로 측정. GC 칼럼은 카보왁스(CARBOWAX) 20M 10% 크로모솝(CHROMOSORB) W를 사용하며, 익스터날 스탠다드(EXTERNAL STANDARD)로 1,6-헥산디올 사용함.DEG content: Determination of the weight content of diethylene glycol in the chip. Hydrolysis of the chip with methanol measured by gas chromatography (GC). GC column uses CARBOWAX 20M 10% CHROMOSORB W and 1,6-hexanediol as EXTERNAL STANDARD.

[비교예 1 및 2][Comparative Examples 1 and 2]

CEG를 지름 1미터, 높이 3.5미터이 원기둥의 저장조에 3미터까지 채운 후 일정 침전시간 경과후 2미터 높이 이상을 REG로 회수하여 중합공정에 재공급한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that the CEG was filled with a cylinder of 1 meter in diameter and 3.5 meters in height to 3 meters in the cylinder, and after a certain precipitation time, more than 2 meters of height was recovered to REG and re-supplied to the polymerization process. It was.

[비교예 3]Comparative Example 3

증류법으로 통상의 가열시스템을 갖춘 정류관과 기액 분리를 위한 정류탑을 갖춘 공정에서 관온도 150℃, 진공도 12Torr로 운전하여 REG를 회수하여 중합공정에 재공급한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 except that the REG was recovered and re-supplied to the polymerization process by operating at a tube temperature of 150 ° C. and a vacuum degree of 12 Torr in a process equipped with a rectifying tube equipped with a conventional heating system and a rectifying tower for gas-liquid separation by distillation. Was repeated.

[비교예 4][Comparative Example 4]

CEG를 정제하지 않고 중합공정에 재공급한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that the CEG was resupplied to the polymerization process without purification.

[대조실험][Control experiment]

NEG 만을 중합공정에 공급하고 진공계로 유출되는 에틸렌글리콜을 계외로 완전히 배출시킨 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that only NEG was supplied to the polymerization process and ethylene glycol discharged to the vacuum system was completely discharged out of the system.

구분division 에틸렌글리콜Ethylene glycol 칩물성Chip property 방법Way 처리조건Treatment condition 입도분포(㎛)Particle Size Distribution (㎛) 고유점도Intrinsic viscosity 칼라b값Color b value DEG함량(wt%)DEG content (wt%) CEGCEG REGREG 대조contrast -- NEG만 사용Use only NEG 150150 -- 0.6400.640 1.51.5 1.031.03 실시예 1Example 1 원심분리Centrifugation 원심효과:2000G체류시간: 25분Centrifugal effect: 2000G Stay time: 25 minutes 150150 88 0.6400.640 1.61.6 1.101.10 실시예 2Example 2 원심분리Centrifugation 원심효과:3000G체류시간: 12분Centrifugal effect: 3000G Stay time: 12 minutes 150150 99 0.6420.642 1.61.6 1.111.11 실시예 3Example 3 원심분리Centrifugation 원심효과:4000G체류시간: 6분Centrifugal effect: 4000 G Stay time: 6 minutes 150150 66 0.6380.638 1.61.6 1.091.09 비교예 1Comparative Example 1 침전법Precipitation 침전시간:60분Settling time: 60 minutes 150150 120120 0.6380.638 2.62.6 1.151.15 비교예 2Comparative Example 2 침전법Precipitation 침전시간:120분Settling time: 120 minutes 150150 100100 0.6420.642 2.32.3 1.131.13 비교예 3Comparative Example 3 증류법distillation -- 150150 22 0.6410.641 1.61.6 1.351.35 비교예 4Comparative Example 4 -- 처리안함Do not process 150150 150150 0.6370.637 3.03.0 1.121.12

[평가][evaluation]

중합공정에서 회수된 에틸렌글리콜을 원심분리기에서 분리시켰을 경우 탄화물은 전량분리되었으며, 입자 분포도가 10μm이상의 고형분이 제거됨을 확인할 수 있었다.When the ethylene glycol recovered in the polymerization process was separated by a centrifuge, the total amount of carbides was separated, and the particle distribution was confirmed to remove more than 10μm solids.

투입 결과 기존 증류법에 의한 방법 대비, 칩 물성에 있어서 고유점도와 b치는 정규와 동일한 수준을 얻었으며, 탄화물에 의한 물성 저하도 없었다. 폴리에스테르 필라멘트 제조시 물성을 저하시키는 원인이 되는 디에틸렌글리콜의 함량도 정규와 대등한 수준으로 나타났다. 입자 분포도에서는 침전법에 비해 우수하였고, 분리된 고형분 내의 에틸렌글리콜의 함량 비교에 있어서도 침전법에 의한 분리보다 우수하였다. 운전중 에너지 소비량에 있어서는 원심분리기는 스크루를 회전시키기 위한 모터의 전력이외에 에너지가 소모되지 않으므로, 끓는점의 차이를 이용한 증류법에 비해 에너지 비용을 줄일 수 있는 장점이 있다.As a result, the intrinsic viscosity and the b value in the chip physical properties were obtained at the same level as in the conventional method, and there was no degradation of physical properties by carbides. The content of diethylene glycol, which causes the deterioration of physical properties in the manufacture of polyester filaments, was also shown to be at a level comparable to that of the normal. The particle distribution was superior to the precipitation method, and also superior to the separation by the precipitation method in comparing the content of ethylene glycol in the separated solids. In the energy consumption during operation, since the centrifuge does not consume energy other than the power of the motor for rotating the screw, there is an advantage that the energy cost can be reduced compared to the distillation method using the difference in boiling point.

상기 표 1의 결과로부터 명백하게 되는 바와 같이 본 발명에 의하면 낮은 설비투자비 및 낮은 에너지 비용을 요하는 원심분리방법을 이용하여 단축된 정제시간으로 CEG로부터 고 순도의 REG를 회수하여 중합공정에 재공급할 수 있게 되므로 폴리에스테르 제조공정의 생산성 및 품질 향상을 도모할 수 있게 된다.As will be apparent from the results of Table 1, according to the present invention, a high-purity REG can be recovered from the CEG and re-supplied to the polymerization process using a centrifugal separation method requiring a low facility investment cost and a low energy cost. Therefore, the productivity and quality of the polyester manufacturing process can be improved.

Claims (3)

테레프탈산 및/또는 그 에스테르 형성성 유도체 및 에틸렌글리콜을 원료로 하여 에스테르화 반응장치에 공급하여 에스테르화 반응을 행하고, 얻어진 폴리에스테르 저중합체를 중축합 반응 장치에 공급하여 중축합함으로써 폴리에스테르를 제조하는 방법에 있어서, 에스테르화 반응장치 및/또는 중축합 반응장치로부터 배출되는 에틸렌글리콜-함유 유출물을 원심분리하여 불순물을 침강시키고 정제된 에틸렌글리콜을 중합공정에 재공급하는 것을 특징으로 하는 폴리에스테르 제조방법.A polyester is produced by supplying terephthalic acid and / or its ester-forming derivative and ethylene glycol as a raw material to an esterification reaction device to effect esterification, and feeding the obtained polyester oligomer to a polycondensation reaction device to polycondensate. Process for producing a polyester, characterized in that the ethylene glycol-containing effluent discharged from the esterification reactor and / or the polycondensation reactor is centrifuged to precipitate impurities and replenish the purified ethylene glycol to the polymerization process. Way. 제 1 항에 있어서, 상기 원심분리가 하기 식을 만족함과 동시에,The method of claim 1, wherein the centrifugation satisfies the following equation, (식 중, Z는 원심분리효과를, T는 원심분리기내 체류시간(분)임)(Where Z is the centrifugal effect and T is the residence time in minutes in the centrifuge) 원심분리효과(Z)가 2000G (여기서 G는 중력가속도임) 이상, 체류시간(T)이 5분 이상을 만족하는 조건하의 고속 원심분리인 것을 특징으로 하는 폴리에스테르 제조방법.A method for producing a polyester, characterized in that the centrifugation effect (Z) is a high-speed centrifugation under a condition in which 2000 G (where G is gravity acceleration) or more and a residence time (T) satisfies 5 minutes or more. 폴리에스테르의 중합공정에서 유출되는 에틸렌글리콜이 재공급되어 제조되며, 칼라 b치가 1.6 내지 2.2이고, 디에틸렌글리콜 함량이 1.33중량% 이하인 것을 특징으로 하는 폴리에스테르 칩.Ethylene glycol effluent from the polymerization process of the polyester is re-supplied, the polyester b, characterized in that the color b value is 1.6 to 2.2, diethylene glycol content is 1.33% by weight or less.
KR1019990058451A 1999-12-17 1999-12-17 Preparation of polyester KR20010056826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990058451A KR20010056826A (en) 1999-12-17 1999-12-17 Preparation of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990058451A KR20010056826A (en) 1999-12-17 1999-12-17 Preparation of polyester

Publications (1)

Publication Number Publication Date
KR20010056826A true KR20010056826A (en) 2001-07-04

Family

ID=19626491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990058451A KR20010056826A (en) 1999-12-17 1999-12-17 Preparation of polyester

Country Status (1)

Country Link
KR (1) KR20010056826A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230199A (en) * 1991-12-26 1993-09-07 Toray Ind Inc Production of aromatic polyester
KR960000980A (en) * 1994-06-21 1996-01-25 시로 가리야 Recycling Method and Recycling Equipment of Unsaturated Polyester Resin
WO1998050448A1 (en) * 1997-05-06 1998-11-12 Teijin Limited Process for continuously producing polyesters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230199A (en) * 1991-12-26 1993-09-07 Toray Ind Inc Production of aromatic polyester
KR960000980A (en) * 1994-06-21 1996-01-25 시로 가리야 Recycling Method and Recycling Equipment of Unsaturated Polyester Resin
WO1998050448A1 (en) * 1997-05-06 1998-11-12 Teijin Limited Process for continuously producing polyesters

Similar Documents

Publication Publication Date Title
KR100713759B1 (en) Continuous Process for Producing PolyTrimethylene Terephthalate
KR100443389B1 (en) Process for producing polyester prepolymer
EP1437377B1 (en) Method for recycling pet bottle
CA1139493A (en) Method for the production of a high molecular weight polyester prepared from a prepolymer polyester having an optimal carboxyl content
JP5251049B2 (en) Copolyester
KR20010056826A (en) Preparation of polyester
US7094933B2 (en) Method for producing tetrahydrofurane copolymers
JP5034335B2 (en) Continuous production method of copolyester
JP4867421B2 (en) Continuous production method of copolyester
CN111574703B (en) High-production-efficiency preparation method of polytetramethylene ether glycol
US6262145B1 (en) Process for the extraction of material from multi-phase systems
JP2011127100A (en) Antimony-free and cobalt-free polyethylene terephthalate resin composition
SU625598A3 (en) Method of extracting oligomeric ethylene terephthalate
JP3357477B2 (en) Polyester production method
KR950006718B1 (en) Method for producing polybutylenterepthalate
US3551387A (en) Process for preparing polyester resins from aromatic dinitriles
JP2006290996A (en) Method for producing pet having good hue by using raw material washed with water
JP4660108B2 (en) Difficult-precipitation fine titanium catalyst for polyester production
SU1685943A1 (en) Method of producing tetraorganostannates
KR100249316B1 (en) Process for preparing polyester
JPH10147636A (en) Production of polyester
JP2005089359A (en) [4-(hydroxymethyl)cyclohexyl]methyl acrylate
CA1091698A (en) Alcoholysis process for preparing poly(tetramethylene ether) glycol
JP2005105091A (en) Polyalkylene terephthalate waste-treated mass and treating method therefor
JPH09241368A (en) Production of polyester

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application