KR20010047286A - Exposure method for forming micro-patterns - Google Patents

Exposure method for forming micro-patterns Download PDF

Info

Publication number
KR20010047286A
KR20010047286A KR1019990051437A KR19990051437A KR20010047286A KR 20010047286 A KR20010047286 A KR 20010047286A KR 1019990051437 A KR1019990051437 A KR 1019990051437A KR 19990051437 A KR19990051437 A KR 19990051437A KR 20010047286 A KR20010047286 A KR 20010047286A
Authority
KR
South Korea
Prior art keywords
light
exposure
slit
mask
pattern
Prior art date
Application number
KR1019990051437A
Other languages
Korean (ko)
Inventor
박종오
이상원
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990051437A priority Critical patent/KR20010047286A/en
Publication of KR20010047286A publication Critical patent/KR20010047286A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE: An exposing method for forming a fine pattern is provided to prevent the resolution from lowering due to the interference of light by arranging a slit between a light source for exposing and a mask for exposing to the direction vertical to the direction of the light. CONSTITUTION: A slit(26) is arranged between a light source(20) and a mask(26) for exposing, and a lens(27) and a wafer(28) are arranged on the lower part of the mask(26) in turns. The first light(L4) from the light source(20) is diffracted to the second light(L5) via a slit(23), the second light(L5) is diffracted to the third light(L6) via the mask(26), and the third light(L6) is diffracted to the fourth light(L7) via the lens(27), so that a photosensitive film formed on the wafer(28) is exposed by the fourth light(L7).

Description

미세패턴 형성용 노광방법{Exposure method for forming micro-patterns}Exposure method for forming micro-patterns}

본 발명은 미세패턴 형성용 노광방법에 관한 것으로서, 특히, 노광용 광원과 노광마스크 사이에 빛의 진행방향과 수직되는 방향으로 스캐닝되는 슬릿을 설치하여 빛의 특성 중에 하나인 빛의 간섭에 의한 해상력 저하를 간섭조건을 감소시키므로서 개선시키도록 한 반도체장치의 노광에 의한 한계해상력 이하의 선폭을 갖는 미세패턴 형성용 노광방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method for forming a fine pattern. In particular, a slit is scanned between a light source for exposure and an exposure mask in a direction perpendicular to the traveling direction of light to reduce resolution due to interference of light, which is one of the characteristics of light. The present invention relates to an exposure method for forming a micropattern having a line width of less than or equal to the limit resolution caused by exposure of a semiconductor device, which is improved by reducing interference conditions.

반도체장치가 고집적화 및 고밀도화에 따라 단위 소자의 크기가 감소되고, 이에 따라, 도선 등의 선폭이 작아지고 있다. 그러므로, 미세 패턴을 형성하기 위해서는 접촉묘화(contact printing) 방법, 프록시미티묘화(proximity printing) 방법 및 프로젝션묘화(projection printing) 방법 등의 노광 방법을 이용하는 포토리쏘그래피(photolithography) 공정이 사용된다.As semiconductor devices become more integrated and denser, the size of the unit element is reduced, and as a result, the line width of the conducting wire is reduced. Therefore, a photolithography process using an exposure method such as a contact printing method, a proximity printing method, and a projection printing method is used to form a fine pattern.

노광 마스크는 차광영역과 투광영역으로 구성되어 노광시 광원으로부터 나오는 빛을 렌즈를 통과시켜 투광영역을 통과하는 빛의 패턴으로 감광막을 노광시킨다.The exposure mask includes a light blocking area and a light transmitting area to expose the photosensitive film with a pattern of light passing through the light transmitting area by passing light emitted from the light source during exposure.

광파가 전파되는 경로에 부명 불투명 여부를 가리지 않고 어떤 장애물이 존재하면 이를 통과한 광파의 파면의 진폭과 위상의 변화가 나타난다. 이러한 변화를 회절현상이라 한다.If any obstacle exists in the path through which light waves propagate, the amplitude and phase of the wavefront of the light waves passing through it appear. This change is called diffraction.

종래 기술에 따른 노광장치 사용하는 경우, 노광장비의 스텝퍼 도는 광스캐너로 광을 발생시킨 다음, 광을 패턴이 정의된 노광마스크에 투과시켜 그 이미지를 웨이퍼에 전사시키는 과정을 거치게 된다.In the case of using the exposure apparatus according to the related art, light is generated by a stepper or an optical scanner of the exposure apparatus, and then the light is transmitted through an exposure mask in which a pattern is defined and transferred to the wafer.

따라서, 렌즈를 통과한 광에서도 회절이 발생한다. 간섭은 회절에 비하여 소수의 파동이 중첩한 것이고, 회절은 아주 많은 수의 빛의 파동이 중첩한 결과이다.Therefore, diffraction also occurs in the light passing through the lens. Interference is the superposition of a few waves compared to diffraction, and the diffraction is the result of a very large number of waves of light overlapping.

도 1은 종래 기술에 따른 노광방법을 도시한 모식도이다.1 is a schematic diagram showing an exposure method according to the prior art.

도 1을 참조하면, 투명기판(11)과 차광막(12)으로 이루어진 노광마스크(13)를 준비한다. 석영 또는 유리 등으로 이루어진 투명기판(11) 하단에는 웨이퍼에 투사될 패턴이 정의 된 차광막(12)이 형성되어 있다. 이때, 차광막(12)은 도전성 물질로 Cr과 CrOx 등을 사용하여 소정 두께로 형성한다.Referring to FIG. 1, an exposure mask 13 including a transparent substrate 11 and a light blocking film 12 is prepared. A light blocking film 12 having a pattern to be projected on a wafer is defined at a lower end of the transparent substrate 11 made of quartz or glass. In this case, the light shielding film 12 is formed to a predetermined thickness using Cr and CrOx as the conductive material.

따라서, 차광막(12) 패턴이 형성된 부위는 노광시 빛이 통과하는 것을 방해하는 차광영역이 되고, 차광막(12)이 형성되지 않은 부위는 투광영역이 된다.Therefore, a portion where the light shielding film 12 pattern is formed becomes a light shielding area that prevents light from passing through during exposure, and a part where the light shielding film 12 is not formed becomes a light transmitting area.

노광공정시, 광원(10)으로부터 발생한 제 1 광(L1)은 마스크(13)를 통과하면서 회절되어 제 1 회절광(L2)이 되고, 다시 렌즈(14)를 통과하여 제 2 회절광(L3)으로 변화한다.In the exposure process, the first light L1 generated from the light source 10 is diffracted while passing through the mask 13 to become the first diffracted light L2, and then passes through the lens 14 to the second diffracted light L3. Changes to).

제 2 회절광(L3)은 감광막이 도포된 웨이퍼상(15)에 투사된다.The second diffracted light L3 is projected onto the wafer 15 on which the photosensitive film is applied.

그러나, 빛의 특성상 마스크(13)와 렌즈(14)를 통과한 광에서는 푸리에르변화(Fourier transform)을 통하여 회절이 발생한다.However, due to the characteristics of light, diffraction occurs through Fourier transform in the light passing through the mask 13 and the lens 14.

따라서, 상술한 종래 기술에 따른 미세패턴 형성용 노광방법은 마스크 및 렌즈를 통과하면서 발생한느 빛의 회절과 간섭에 의하여 감광막에 투사되는 패턴 모양간에 가교현상(bridge)이 유발되어 반도체장치의 고집적화에 따른 칩 크기의 감소에 따라 형성되는 초미세패턴의 신뢰성을 확보할 수 없는 문제점이 있다.Therefore, the exposure method for forming a micropattern according to the related art described above causes bridges between pattern shapes projected on the photoresist due to diffraction and interference of light generated through the mask and the lens, resulting in high integration of the semiconductor device. There is a problem that can not ensure the reliability of the ultra-fine pattern formed by the reduction of the chip size.

따라서, 본 발명의 목적은 노광용 광원과 노광마스크 사이에 빛의 진행방향과 수직되는 방향으로 스캐닝되는 슬릿을 설치하여 빛의 특성 중에 하나인 빛의 간섭에 의한 해상력 저하를 간섭조건을 감소시키므로서 개선시키도록 한 반도체장치의 노광에 의한 한계해상력 이하의 선폭을 갖는 미세패턴 형성용 노광방법을 제공하는데 있다.Accordingly, an object of the present invention is to improve the resolution by reducing the interference condition to reduce the resolution by the interference of the light, which is one of the characteristics of the light by installing a slit scanning in the direction perpendicular to the direction of light between the exposure light source and the exposure mask. An exposure method for forming a fine pattern having a line width of less than or equal to the limit resolution caused by exposure of a semiconductor device to be made.

상기 목적을 달성하기 위한 본 발명에 따른 미세패턴 형성용 노광방법은 광원과 소정 패턴들이 정의된 노광마스크 사이에 소정의 차광영역과 투광영역을 갖는 슬릿을 위치시키고 노광마스크 하단에는 렌즈와 웨이퍼를 위치시키는 단계와, 광원으로부터 광을 발생시키고 동시에 슬릿을 노광마스크의 일단에서 타단으로 스캐닝시켜 웨이퍼에 패턴들을 전사시키는 단계를 포함하여 이루어진다. 이때, 슬릿의 차광영역은 스캐닝시 노광마스크의 투광영역에 의한 노광부위를 제외하고 노광마스크의 나머지 부위를 차광시키는 크기로 형성한다.In order to achieve the above object, an exposure method for forming a micropattern according to the present invention includes placing a slit having a predetermined light blocking area and a light transmitting area between a light source and an exposure mask in which predetermined patterns are defined, and a lens and a wafer under the exposure mask. And transferring light onto the wafer by generating light from the light source and simultaneously scanning the slit from one end of the exposure mask to the other end. In this case, the light shielding area of the slit is formed to have a size of shielding the remaining part of the exposure mask except for the exposure area by the light transmitting area of the exposure mask during scanning.

도 1은 종래 기술에 따른 노광방법을 도시한 모식도1 is a schematic diagram showing an exposure method according to the prior art.

도 2는 본 발명에 따른 미세패턴 형성용 노광방법을 도시한 모식도2 is a schematic diagram showing an exposure method for forming a fine pattern according to the present invention.

반도체소자 제조공정중 포토리쏘그래피(photolithography)에 있어서 노광장비의 렌즈를 이용하는 광전사방식에서는 빛의 간섭이 필연적으로 발생하고, 이러한 간섭 또는 회절은 칩의 크기가 축소됨에 다라 패턴 형성에 더욱 치명적인 요소로 작용한다.In photolithography during the semiconductor device manufacturing process, light interference inevitably occurs in the photolithography method using a lens of an exposure device, and such interference or diffraction is a more lethal factor in pattern formation due to the reduction in chip size. Works.

본 발명에서는 광의 간섭 내지는 회절현상을 스캐닝되는 슬릿을 사용하여 기계적으로 분할 노광하는 방식을 채택하여 기계적으로 빛의 간섭조건을 감소시키므로서 더욱 미세하고 밀집된 패턴의 형성을 가능하게 한다. 즉, 종래의 노광방식을 사용하는 노광장치에 노광 소스인 광원과 노광마스크 사이에 빛의 진행방향에 수직으로 이동하는 슬릿을 추가로 설치하여 광의 간섭조건(temporal coherence)를 축소시킨다.In the present invention, by adopting a method of mechanically dividing exposure of the light interference or diffraction using a slit to be scanned, it is possible to form a finer and more dense pattern by mechanically reducing the interference conditions of light. That is, in the exposure apparatus using the conventional exposure method, a slit moving perpendicularly to the traveling direction of the light is further provided between the light source as the exposure source and the exposure mask to reduce the temporal coherence of light.

그 결과, 피치 간격이 매우 작은 홀 등의 패턴간에 서로 간섭이 발생하지 않고 시차를 가지며 독립적으로 웨이퍼상에 형성된 감광막에 회절광이 도달하도록 하여 노광장비의 한계해상력을 극복할 수 있다.As a result, it is possible to overcome the marginal resolution of the exposure apparatus by allowing diffraction light to reach a photosensitive film formed on a wafer independently with a parallax without mutual interference between patterns such as holes with a very small pitch interval.

다시 말하면, 본 발명은 전기한 간섭조건(temporal coherence)을 줄이기 위하여 광원과 노광마스크 사이에 노광마스크 패턴의 투광영역 간격보다 좁은 폭을 갖는 슬릿을 삽입하여 노광과 동시에 노광방향에 수직한 방향으로 슬릿을 스캐닝한다. 이때, 슬릿의 폭이 패턴 간격 보다 작아야 하는 이유는 슬릿이 스캐닝되며 하나의 패턴을 노광할 때 이웃한 패턴은 슬릿의 차광영역에 의하여 블록킹(blocking)되어야 각 패턴의 노광 타임의 시간차가 발생할 수 있기 때문이다.In other words, the present invention inserts a slit having a width narrower than the light emission area interval of the exposure mask pattern between the light source and the exposure mask in order to reduce the electrical coherence described above, and simultaneously exposes the slit in the direction perpendicular to the exposure direction. Scan the. In this case, the width of the slit should be smaller than the pattern interval because the slit is scanned and when exposing one pattern, the neighboring pattern should be blocked by the light shielding area of the slit so that the time difference of exposure time of each pattern may occur. Because.

즉, 슬릿이, 가령, 좌측에서 우측으로 스캐닝될 때, 슬릿의 스캐닝 속도는 기계적 동작에 의하여 결정되므로 광속보다 빠를 수는 없다. 일단, 노광이 시작되면 노광마스크의 좌측 제 1 번째 패턴만 노광되며, 순차적으로, 슬릿이 이동하며 제 2, 제 3 ...제 n 번째 패턴이 노광된다. 따라서, 웨이퍼상에 도잘하는 회절광의 노광부위에서의 브릿지 등의 간섭에 의한 효과가 배제되며, 한계해상력 이하의 더 작은 패턴 피치에서도 패턴형성이 가능하다.That is, when the slit is scanned from left to right, for example, the scanning speed of the slit cannot be faster than the luminous flux since the scanning speed is determined by the mechanical operation. Once the exposure is started, only the first left pattern of the exposure mask is exposed, and in turn, the slits move and the second, third ... n-th pattern is exposed. Therefore, the effect by interference of the bridge or the like at the exposed portion of the diffracted light which is well formed on the wafer is eliminated, and the pattern can be formed even at a smaller pattern pitch below the limit resolution.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 미세패턴 형성용 노광방법을 도시한 모식도이다.2 is a schematic diagram showing an exposure method for forming a fine pattern according to the present invention.

도 2를 참조하면, 석영 또는 유리 등으로 이루어진 제 1 투명기판(22)과 제 1 투명기판(22)상에 길게 파인 홈 형상의 트렌치를 이루며 크롬 등의 차광물질로 이루어진 제 1 차광패턴(21)으로 이루어진 슬릿(slit,23)을 준비한다.Referring to FIG. 2, a first light shielding pattern 21 made of a light blocking material such as chromium may be formed in a trench of a long groove shape formed on the first transparent substrate 22 made of quartz or glass and the first transparent substrate 22. Prepare a slit made of).

또한, 제 2 투명기판(24)과 웨이퍼(28)에 전사될 이미지패턴이 정의된 제 2 차광막패턴(25)으로 이루어진 노광마스크(26)를 준비한다. 즉, 석영 또는 유리 등으로 이루어진 제 2 투명기판(24)의 일측면에는 웨이퍼에 투사될 패턴이 정의 된 제 2 차광막패턴(25)이 형성되어 있다. 이때, 제 2 차광막패턴(25)은 도전성 물질로 Cr과 CrOx 등을 사용하여 소정 두께로 형성한다.In addition, an exposure mask 26 including a second light blocking film pattern 25 having a second transparent substrate 24 and an image pattern to be transferred to the wafer 28 is prepared. That is, on one side of the second transparent substrate 24 made of quartz or glass, a second light shielding film pattern 25 having a pattern to be projected on the wafer is defined. In this case, the second light blocking film pattern 25 is formed to have a predetermined thickness using Cr, CrOx, or the like as the conductive material.

따라서, 제 2 차광막(25) 패턴이 형성된 부위는 노광시 빛이 통과하는 것을 방해하는 차광영역이 되고, 제 2 차광막패턴(25)이 형성되지 않은 부위는 투광영역이 된다.Therefore, a portion where the pattern of the second light shielding film 25 is formed becomes a light shielding area that prevents light from passing through during exposure, and a portion where the second light shielding film pattern 25 is not formed becomes a light transmitting area.

이와 같이 준비된 슬릿(23)과 노광마스크(26)를 이용하는 노광공정시, 광원(20)과 노광마스크(26) 상이에 슬릿(26)을 위치시키고 노광마스크(26) 하부에는 렌즈(27)와 웨이퍼(28)를 차례로 위치시켜, 광원(20)으로부터 출발한 제 1 광(L4)이 슬릿(23)을 통과하여 제 2 광(L5)으로 회절변화하고, 제 2 광(L5)은 다시 노광마스크(26)를 통과하여 제 3 광(L6)으로 회절변화하고, 제 3 광(L6)은 렌즈(27)를 통과하며 제 4 광(L7)으로 회절변화되어 최종적으로 웨이퍼(28)상에 형성된 감광막(도시안함)을 노광시키게 된다.In the exposure process using the slits 23 and the exposure mask 26 prepared as described above, the slits 26 are positioned between the light source 20 and the exposure mask 26 and the lens 27 and the lower part of the exposure mask 26. The wafers 28 are sequentially positioned so that the first light L4 starting from the light source 20 passes through the slit 23 to be diffracted into the second light L5, and the second light L5 is exposed again. The third light L6 is diffracted into the third light L6 through the mask 26, and the third light L6 is diffracted into the fourth light L7 through the lens 27 and finally on the wafer 28. The formed photosensitive film (not shown) is exposed.

본 발명에 따른 실시예에서는 슬릿(23)의 투광영역의 폭이 노광마스크(26)의 투광영역의 폭보다 작게 형성한다. 이는, 제 1 광(L4)이 입사되는 방향과 수직으로 슬릿(23)이 스캐닝되는 동안 슬릿(23)의 투광영역을 통과한 제 2 광(L5)이 제 2 차광막패턴(25)들 사이의 투광영역만 특정적으로 통과할 수 있게 하기 위해서이다. 즉, 노광마스크(26)의 하나의 투광영역이 노광될 때, 이웃한 투광영역은 슬릿(26)의 제 1 차광막패턴(21)에 의하여 블로킹시키기 위해서이다.In the embodiment according to the present invention, the width of the light transmitting area of the slit 23 is smaller than the width of the light transmitting area of the exposure mask 26. This is because, while the slit 23 is scanned perpendicularly to the direction in which the first light L4 is incident, the second light L5 passing through the light-transmitting region of the slit 23 is formed between the second light blocking film patterns 25. This is to allow only the light transmitting area to pass through specifically. That is, when one light transmitting area of the exposure mask 26 is exposed, the neighboring light transmitting area is for blocking by the first light shielding film pattern 21 of the slit 26.

이와 같이, 노광마스크를 투과한 제 4 광(L7)이 시간차를 가지며 순차적으로 웨이퍼(28)상에 전사된다. 따라서, 노광마스크(26)의 제 2 차광막패턴(25) 사이의 독립된 투광영역들을 통과한 제 4 광(L7)은 서로 간섭을 일으키지 않게 된다.In this manner, the fourth light L7 transmitted through the exposure mask has a time difference and is sequentially transferred onto the wafer 28. Therefore, the fourth light L7 passing through the independent light-transmitting regions between the second light shielding film patterns 25 of the exposure mask 26 does not interfere with each other.

본 발명에 따른 노광방법은 먼저, 광원(200에서 발생한 제 1 광(L4)이 슬릿(23)의 투광영역을 통과하여 노광강마스크(26)의 투광영역을 국지적으로 통과하여 렌즈를 거쳐서 웨이퍼(28)상에 노광마스크의 소정 패턴들을 전사시킨다.In the exposure method according to the present invention, first, the first light L4 generated by the light source 200 passes through the light-transmitting region of the slit 23 and locally passes through the light-transmitting region of the exposure steel mask 26 to pass through the wafer (the lens). The predetermined patterns of the exposure mask are transferred onto 28.

따라서, 본 발명에 따른 미세패턴 형성용 노광방법은 웨이퍼상에 광이 부분적으로 도착하므로 일회의 조사로 웨이퍼 전면을 노광시키는 경우에 비교하여 광의 간섭조건(temporal coherence)을 최소한으로 감소시키므로 빛의 파장에 의한 한계해상력 이하의 더 작은 패턴 피치에서도 정밀한 패턴형성이 가능한 장점이 있다.Therefore, in the exposure method for forming a micropattern according to the present invention, since the light partially arrives on the wafer, the wavelength of light is reduced because the interference coherence of the light is reduced to a minimum as compared with the case of exposing the entire surface of the wafer by one irradiation. There is an advantage in that a precise pattern can be formed even at a smaller pattern pitch below the limit resolution.

Claims (5)

광원과 소정 패턴들이 정의된 노광마스크 사이에 소정의 차광영역과 투광영역을 갖는 슬릿을 위치시키고 상기 노광마스크 하단에는 렌즈와 웨이퍼를 위치시키는 단계와,Positioning a slit having a predetermined light blocking area and a light transmitting area between a light source and an exposure mask in which predetermined patterns are defined, and placing a lens and a wafer under the exposure mask; 상기 광원으로부터 광을 발생시키고 동시에 상기 슬릿을 상기 노광마스크의 일단에서 타단으로 스캐닝시켜 상기 웨이퍼에 상기 패턴들을 전사시키는 단계로 이루어진 미세패턴 형성용 노광방법.And generating the light from the light source and simultaneously transferring the slit from one end of the exposure mask to the other end to transfer the patterns onto the wafer. 청구항 1에 있어서, 상기 슬릿의 투광영역의 폭은 상기 패턴들 사이의 피치보다 작도록 형성하는 것이 특징인 미세패턴 형성용 노광방법.The exposure method of claim 1, wherein the width of the light transmitting area of the slit is smaller than a pitch between the patterns. 청구항 1에 있어서, 상기 슬릿의 투광영역의 길이는 상기 웨이퍼의 지름과 같거나 크도록 형성하는 것이 특징인 미세패턴 형성용 노광방법.The exposure method according to claim 1, wherein the length of the light transmitting region of the slit is formed to be equal to or larger than the diameter of the wafer. 청구항 1에 있어서, 상기 슬릿을 스캐닝하는 방향은 상기 광의 진행방향과 수직방향으로 진행하도록 하는 것이 특징인 미세패턴 형성용 노광방법.The method of claim 1, wherein the scanning direction of the slit is perpendicular to a traveling direction of the light. 청구항 1에 있어서, 상기 슬릿의 차광영역은 상기 스캐닝시 상기 노광마스크의 상기 투광영역에 의한 노광부위를 제외하고 상기 노광마스크의 나머지 부위를 차광시키는 크기로 형성하는 것이 특징인 미세패턴 형성용 노광방법.The method of claim 1, wherein the light shielding area of the slit is formed to have a size that shields the remaining part of the exposure mask except for the exposure area of the exposure mask by the light transmitting area. .
KR1019990051437A 1999-11-19 1999-11-19 Exposure method for forming micro-patterns KR20010047286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990051437A KR20010047286A (en) 1999-11-19 1999-11-19 Exposure method for forming micro-patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990051437A KR20010047286A (en) 1999-11-19 1999-11-19 Exposure method for forming micro-patterns

Publications (1)

Publication Number Publication Date
KR20010047286A true KR20010047286A (en) 2001-06-15

Family

ID=19620783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990051437A KR20010047286A (en) 1999-11-19 1999-11-19 Exposure method for forming micro-patterns

Country Status (1)

Country Link
KR (1) KR20010047286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866448B1 (en) * 2007-06-20 2008-10-31 주식회사 동부하이텍 Mask for exposure
US8367281B2 (en) 2009-12-04 2013-02-05 Samsung Display Co., Ltd. Method of exposing substrate, apparatus for performing the same, and method of manufacturing display substrate using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866448B1 (en) * 2007-06-20 2008-10-31 주식회사 동부하이텍 Mask for exposure
US8367281B2 (en) 2009-12-04 2013-02-05 Samsung Display Co., Ltd. Method of exposing substrate, apparatus for performing the same, and method of manufacturing display substrate using the same

Similar Documents

Publication Publication Date Title
US5863677A (en) Aligner and patterning method using phase shift mask
JPH0950116A (en) Photomask and its production as well as exposure method using the photomask
KR20030009328A (en) Alternating phase mask
KR960010023B1 (en) Projection exposure method and an optical mask for use in projection exposure
KR0143707B1 (en) Phase shift mask for compensating intensity of transmitting light in edge of mask
US7029799B2 (en) Exposure method for forming pattern for IC chips on reticle by use of master masks
US20090091729A1 (en) Lithography Systems and Methods of Manufacturing Using Thereof
KR20010047286A (en) Exposure method for forming micro-patterns
JPH04165352A (en) Photo-mask
US7183128B2 (en) Photo mask and semiconductor device manufacturing method
JPH10275769A (en) Exposure method
JP3462650B2 (en) Resist exposure method and method of manufacturing semiconductor integrated circuit device
JPH0476551A (en) Pattern formation
KR0146399B1 (en) Semiconductor pattern forming method
JPH0833651B2 (en) Photo mask
JP3914280B2 (en) Projection exposure method and mask used therefor
KR100352010B1 (en) Exposure mask for contact of semiconductor device
KR100310419B1 (en) exposing method using phase shift mask
KR20020031205A (en) Photomask and method of forming micro-photoresist patterns using the same
KR0134169Y1 (en) Mask pattern
KR19980077753A (en) Pattern Forming Method of Semiconductor Device by Photolithography Process
JPH07281416A (en) Exposing mask
JPH08220732A (en) Exposure mask
KR19990015462A (en) Pattern formation method of semiconductor device by photolithography process using two photomasks
JPH07253652A (en) Halftone phase shift mask

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination