KR20010047194A - Method for manufacturing an Antiferroelectric LCD panel - Google Patents

Method for manufacturing an Antiferroelectric LCD panel Download PDF

Info

Publication number
KR20010047194A
KR20010047194A KR1019990051299A KR19990051299A KR20010047194A KR 20010047194 A KR20010047194 A KR 20010047194A KR 1019990051299 A KR1019990051299 A KR 1019990051299A KR 19990051299 A KR19990051299 A KR 19990051299A KR 20010047194 A KR20010047194 A KR 20010047194A
Authority
KR
South Korea
Prior art keywords
liquid crystal
rubbing
alignment
polyimide
directing agent
Prior art date
Application number
KR1019990051299A
Other languages
Korean (ko)
Inventor
박관선
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019990051299A priority Critical patent/KR20010047194A/en
Publication of KR20010047194A publication Critical patent/KR20010047194A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1412Antiferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: A method for manufacturing an antiferroelectric liquid crystal display panel is provided to increase directional force and preventing direction of the liquid crystal from being broken, and promptly return the liquid crystal to the original place. CONSTITUTION: Transparent electrodes(3a,3b) are formed on two transparent substrates(2). Each upper surface of the transparent substrates are coated with polyimide directing agent in a polyamic acid state and the polyimide directing agent is firstly plasticized for a predetermined time at the temperature of 70-80°C for evaporating a solvent. The polyimidized directing agent is rubbed firstly. The rubbed directing agent is secondarily platicized for a predetermined time at the temperature of 180-200°C for being polyimidized. The secondarily platicized directing agent is secondarily rubbed in the equal direction of the first rubbing. The transparent substrates are arranged so that the polyimide film maintain the fixed gaps, the edges are sealed, and liquid crystal is injected between the arranged polyimide films.

Description

반강유전성 액정 표시 패널의 제조 방법{Method for manufacturing an Antiferroelectric LCD panel}Method for manufacturing an antiferroelectric liquid crystal display panel {Method for manufacturing an Antiferroelectric LCD panel}

본 발명은 반강유전성 액정(AFLC; Antiferroelectric Liquid Crystal)을 이용하여 기존의 유전율 이방성으로 응답하는 트위스티드 네마틱(TN; twested nematic) 액정에 비하여 500배 이상 응답 속도가 빠르고, 액정의 응답은 전계 방향에 대하여 수직방향으로 움직임으로써 시야각이 CRT에 가까우며, 또한 계조표시가 가능하며 구동 전압이 낮아서 액티브(active)구동이 가능한 반강유전성 액정 표시 패널의 제조 방법에 관한 것이다.According to the present invention, the antiferroelectric liquid crystal (AFLC) uses an antiferroelectric liquid crystal (AFLC), which is 500 times faster than the conventional dielectric anisotropy (TN) responsiveness, and the response of the liquid crystal is in the electric field direction. The present invention relates to a method of manufacturing a semi-ferroelectric liquid crystal display panel in which the viewing angle is close to the CRT, the gray scale display is possible, and the driving voltage is low, thereby enabling active driving by moving in the vertical direction.

종래의 AFLC의 배향 방법(일본공개특허공보8-328047)은 액정의 배향시 단순하게 폴리아믹산 배향제 또는 통상의 고분자 배향제를 용매로 사용하여 용액의 상태에서 기판 위에 코팅한 상태에서 고온에서 용매를 증발시키거나 아믹산을 탈수 반응시켜 폴리이미드화 한 상태에서 러빙을 행함으로서 배향을 하고 있다. 그러나 이 방법으로 만들어진 반강유전액정 셀은 반복 구동에 의해서 상이 깨짐으로서 콘트라스트가 저하되고 표시 품위가 저하되는 단점이 있다. 또한 반강유전성 액정셀은 한쪽 러빙에 의해서 배향을 하는 것이 일반적이나 이 경우 러빙을 행한 쪽과 하지 않은 쪽의 액정과 배향제 사이의 계면의 면적차에 따른 상하 기판 사이의 전계의 차이에 의해서 전기광학 특성이 영향을 받아서 히스테리시스가 발생하여 구동시에 프리커(flicker) 발생의 원인이 되고 있다.Conventional AFLC alignment method (Japanese Patent Laid-Open No. 8-328047) uses a polyamic acid aligning agent or a conventional polymer aligning agent as a solvent in the alignment of liquid crystals as a solvent, and the solvent is coated at a high temperature in a state of being coated on a substrate in a solution state. Orientation is carried out by rubbing in a state of evaporating or dehydrating amic acid to polyimide. However, the antiferroelectric liquid crystal cell made by this method has a disadvantage in that the contrast is lowered and the display quality is lowered because the phase is broken by repeated driving. Also, the antiferroelectric liquid crystal cell is generally oriented by one rubbing, but in this case, the electro-optic is caused by the difference in the electric field between the upper and lower substrates according to the area difference of the interface between the liquid crystal and the alignment agent on the rubbing side and the non-rubbing side. Due to the influence of the characteristics, hysteresis occurs and causes flicker during driving.

본 발명은 상기와 같은 문제점을 개선하고자 창안한 것으로, 반강유전성 액정을 이용하여 응답속도가 빠르고, 시야각이 넓으며, 반복 구동에 의해 상이 깨지지 않으며, 상하 기판 사이의 전계 차에 의한 히스테리시스 발생이 현저히 줄어드는 반강유전성 액정 표시 패널의 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, using a semi-ferroelectric liquid crystal, the response speed is fast, the viewing angle is wide, the image is not broken by repeated driving, hysteresis is generated significantly due to the electric field difference between the upper and lower substrates It is an object of the present invention to provide a method for manufacturing a shrinking antiferroelectric liquid crystal display panel.

도 1은 본 발명에 따른 반강유전성 액정 패널의 제조 방법이 적용되는 액정 셀의 구조를 보여주는 수직 단면도이며,1 is a vertical cross-sectional view showing the structure of a liquid crystal cell to which the method of manufacturing an antiferroelectric liquid crystal panel according to the present invention is applied,

도 2는 도 1의 액정 셀 내에서의 액정 분자의 콘 구조를 보여주는 도면이다.FIG. 2 is a diagram illustrating a cone structure of liquid crystal molecules in the liquid crystal cell of FIG. 1.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1. 상하부 편광판 2. 상하부 투명기판1. Upper and lower polarizer 2. Upper and lower transparent substrate

3a, 3b. 상하부 투명전극 4. 상하부 배향막3a, 3b. Upper and lower transparent electrodes 4. Upper and lower alignment layers

5. 박막 트랜지스터 6. 스페이서5. Thin Film Transistor 6. Spacer

7. 반강유전성 액정7. Antiferroelectric Liquid Crystal

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 반강유전성 액정 표시 패널의 제조 방법은, (가) 두 개의 투명 기판 상에 각각 스트라이프 상의 투명전극들을 형성하는 단계; (나) 상기 투명 전극들이 형성된 투명 기판 상면에 각각 폴리이미드계 배향제를 폴리아믹상 상태에서 도포한 다음 70~80℃ 에서 10분 동안 1차 소성하여 용매를 증발시키는 단계; (다) 상기 폴리이미드화된 배향제를 1차로 러빙 처리하는 단계; (라) 상기 1차 러빙 처리된 배향제를 180~200℃에서 50~80분 동안 2차 소성하여 폴리이미드화하는 단계; (마) 상기 2차 소성된 배향제를 상기 1차 러빙 처리시의 러빙 방향과 동일한 방향으로 2차 러빙 처리하는 단계; 및 (바) 상기 2차 러빙 처리에 의해 배향막이 형성된 상기 두 투명기판이 상기 배향막이 일정한 간격을 유지하도록 배열하고 그 가장자리를 밀봉한 다음 상기 배열된 배향막 사이에 액정을 주입하는 단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, a method of manufacturing a semi-ferroelectric liquid crystal display panel according to the present invention includes the steps of: (a) forming transparent electrodes on a stripe on two transparent substrates; (B) applying a polyimide aligning agent to the upper surface of the transparent substrate on which the transparent electrodes are formed, respectively, in a polyamic phase, and then first baking at 70 to 80 ° C. for 10 minutes to evaporate the solvent; (C) first rubbing the polyimide aligning agent; (D) polyimidating the first rubbed alignment agent by secondary firing at 180 to 200 ° C. for 50 to 80 minutes; (E) secondary rubbing treatment of the secondary calcined alignment agent in the same direction as the rubbing direction during the primary rubbing treatment; And (f) arranging the two transparent substrates on which the alignment layer is formed by the second rubbing process so that the alignment layer maintains a constant interval, sealing the edges, and then injecting liquid crystal between the arranged alignment layers. It is characterized by.

이하 도면을 참조하면서 본 발명에 따른 반강유전성 액정 표시 패널의 제조 방법을 상세하게 설명한다.Hereinafter, a method of manufacturing an antiferroelectric liquid crystal display panel according to the present invention will be described in detail with reference to the drawings.

본 발명은 액정의 배향을 자발분극을 갖는 반강유전성 액정을 이용하여 제작하며, 이 반강유전성 액정(AFLC)의 배향은 반복 구동에 의해서 상이 깨짐으로서 콘트라스트가 저하되어 패널의 표시 품위를 떨어뜨리는 원인이 되는 것을 방지하기 위하여 새로운 배향 방법을 적용함으로써 이러한 상의 깨짐을 방지하고 응답속도를 기존의 방식보다 빠르게 한다.The present invention produces liquid crystals using antiferroelectric liquid crystals having spontaneous polarization. The alignment of the antiferroelectric liquid crystals (AFLC) is a result of the image being broken by repeated driving, resulting in a decrease in contrast and deterioration of the display quality of the panel. By applying a new orientation method to prevent this from happening, this phase is prevented from breaking and the response speed is faster than the conventional method.

도 1은 본 발명에 따른 강유전성 액정 표시 패널의 제조 방법에 의해 제작되는 강유전성 액정 패널의 구조를 보여주는 부분 수직 단면도이다. 도시된 바와 같이, 강유전성 액정 표시 패널은, 액정 셀의 외부를 감싸는 2개의 상하부 편광판(1), 서로 대향되게 배치된 상하부 투명기판(2), 상하부 투명기판(2)의 대향면 상에 각각 서로 교차하는 방향의 스트라이프 상으로 배치된 상하부 투명전극(3a, 3b), 투명전극(3a, 3b)을 덮도록 기판 상에 적층된 상하부 배향막(4), 상하부 투명전극(3a, 3b)의 각 교차점에 형성되 투명전극들에 전압을 인가하는 박막 트랜지스터(5), 상하부 투명기판(2) 사이에 배치되어 액정 셀의 갭을 유지하는 스페이서(6) 및 상하부 배향막(4) 사이의 액정 셀 내부를 채우고 있는 반강유전성 액정(7)으로 구성되어 있다.1 is a partial vertical cross-sectional view showing the structure of a ferroelectric liquid crystal panel manufactured by the method of manufacturing a ferroelectric liquid crystal display panel according to the present invention. As shown, the ferroelectric liquid crystal display panel includes two upper and lower polarizing plates 1 surrounding the outside of the liquid crystal cell, upper and lower transparent substrates 2 disposed opposite to each other, and opposite surfaces of the upper and lower transparent substrates 2, respectively. Intersections of the upper and lower transparent electrodes 3a and 3b arranged on the stripe in the crossing direction, the upper and lower alignment layers 4 and the upper and lower transparent electrodes 3a and 3b stacked on the substrate to cover the transparent electrodes 3a and 3b. A liquid crystal cell formed between the thin film transistor 5 and the upper and lower transparent substrates 2 to apply a voltage to the transparent electrodes to maintain a gap between the spacers 6 and the upper and lower alignment layers 4. It consists of the antiferroelectric liquid crystal 7 which exists.

이와 같은 구조의 액정 표시 패널의 제조 방법은 다음과 같다.The manufacturing method of the liquid crystal display panel of such a structure is as follows.

도 2에 도시된 바와 같이, 액정표시패널의 제조 공정은 상하부 투명전극(3a, 3b)들이 각각 형성된 투명기판(2)의 대향면 상에 수직 배향제를 코팅하고, 러빙(Rubbing)하여 배향 처리를 한 다음, 이 상하부 투명기판(2)으로 진공 주입용 공 셀을 완성하는 공정으로 이루어진다. 이러한 공정에 있어서, 배향처리는 액정 표시 패널의 성능을 좌우하는 가장 중요한 공정의 하나인데, 다음과 같은 방법으로 이루어진다.As shown in FIG. 2, in the manufacturing process of the liquid crystal display panel, a vertical alignment agent is coated on the opposite surface of the transparent substrate 2 on which upper and lower transparent electrodes 3a and 3b are formed, and then rubbed to perform alignment treatment. Then, the upper and lower transparent substrate 2 is made of a process for completing a vacuum injection empty cell. In this process, the alignment treatment is one of the most important processes that influence the performance of the liquid crystal display panel, and is performed by the following method.

즉, 액정 배향을 위한 배향제로서 고분자의 운동성이 강한 폴리아믹산 상태에서 투명기판(2) 위에 코팅한다. 이 폴리아믹산을 포함하는 용액을 투명기판(2) 위에 코팅한 다음에는, 70~80℃에서 용매를 10분간에 걸쳐서 증발시켜 제거한다(1차 소성). 이렇게 하여 코팅이된 기판의 표면을 1차로 강한 러빙을 하여 표면에 큰 굴곡을 준 다음, 다시 180~200℃ 에서 50~80 분간 후 베이킹(post baking)(2차 소성)을 행하여 폴리아믹산을 폴리이미드화 한 후, 이 기판의 표면을 다시 러빙 처리한다.That is, it is coated on the transparent substrate 2 in the state of the polyamic acid of the high mobility of the polymer as an alignment agent for liquid crystal alignment. After coating the solution containing this polyamic acid on the transparent substrate 2, the solvent is evaporated and removed over 70 minutes at 70-80 degreeC (primary baking). In this way, the surface of the coated substrate was first subjected to strong rubbing, which gave large curvature to the surface, followed by post-baking (secondary firing) at 180 to 200 ° C. for 50 to 80 minutes. After mid-ization, the surface of this substrate is subjected to a rubbing treatment again.

이러한 배향을 하게 되면 고분자의 운동성이 강한 폴리아믹상에서 고분자의 주체인이 쉽게 러빙 방향으로 배향됨으로서 배향력을 증가시킴과 동시에 크게 형성된 굴곡에 의해서 액정의 배향이 깨지기 어렵게 되며, 굴곡 상태의 표면에서는 반강유전성 액정에 미치는 앵커링 파워(anchoring power)가 3차원적으로 되어 전장을 인가한 다음 제거하여도 액정이 원래의 자리로 돌아오는 시간이 빠르게 된다. 또한 폴리이미드 상태에서 행한 2차 러빙에 의해서 일반적인 배향의 효과를 다시 얻을 수 있다. 1, 2차의 러빙 처리는 각도가 동일하게 이루어지도록 하여 같은 방향으로 한다. 제1차 및 제2차 러빙의 방향이 다를 경우에는 콘트라스트가 저하되는 원인이 된다.When the alignment is performed, the main body of the polymer is easily oriented in the rubbing direction on the high-mobility polyamic phase, thereby increasing the orientation force and making it difficult to break the alignment of the liquid crystal due to the large bend. Anchoring power on the ferroelectric liquid crystal becomes three-dimensional, so that the time for the liquid crystal to return to its original position is increased even when the electric field is applied and then removed. Moreover, the effect of general orientation can be acquired again by the secondary rubbing performed in the polyimide state. The first and second rubbing treatments are made in the same direction so that the angles are the same. If the directions of the first and second rubbing are different, this may cause the contrast to decrease.

또한, 액정 셀 제조시의 셀의 두께는 전기광학적 특성에 크게 영향을 미치게 되는데, 액정 셀의 두께는 반강유전성 액정의 나선 구조 보다 작게해야 액정의 배향이 잘 된다. 통상의 액정 셀의 갭은 2μm 이하를 유지해야 하나, 1.5~2.02μm를 유지하는 것이 보통이다.In addition, the thickness of the cell at the time of manufacturing the liquid crystal cell greatly affects the electro-optical characteristics, the liquid crystal cell thickness is less than the helix structure of the anti-ferroelectric liquid crystal is a good alignment of the liquid crystal. Although the gap of a normal liquid crystal cell should maintain 2 micrometers or less, it is common to maintain 1.5-2.02 micrometers.

러빙 공정에 의해 배향처리된 배향막이 형성된 공 셀에 액정을 진공 등을 이용하는 방법으로 주입하는데, 주입시의 온도는 주입 액정이 등방성을 나타내는 온도 범위에서 행하여야 한다. 주입이 완성된 액정 셀은 온도를 서서히 내리면서 배향을 실시하는데 급격히 냉각시키는 경우 배향이 제대로 이루어지지 않게 된다. 배향이 끝난 셀의 경우 러빙한 기판의 러빙 방향을 광축으로 하는 편광판을 부착하고 다른 편의 기판에는 이와 수직 방향의 검광판을 부착하여 액정 표시 패널을 제작한다.The liquid crystal is injected into the empty cell in which the alignment film oriented by the rubbing process is formed by vacuum or the like. The temperature at the time of injection should be performed in a temperature range in which the injected liquid crystal exhibits isotropy. When the injection is completed, the liquid crystal cell performs the alignment while gradually decreasing the temperature, but the alignment is not properly performed when the liquid crystal cell is rapidly cooled. In the case of the aligned cells, a liquid crystal display panel is manufactured by attaching a polarizing plate having the rubbing direction of the rubbed substrate as an optical axis, and attaching an analyzer in the vertical direction to the other substrate.

이상과 같은 방법으로 제작된 반강유전성 액정 표시 패널의 동작원리는 다음과 같다.The operation principle of the antiferroelectric liquid crystal display panel manufactured by the above method is as follows.

상기와 같은 방법으로 제작된 액정 표시 패널의 액정 셀에 전장을 인가하면 액정 분자는 도 2에 도시된 바와 같이 상하의 전계방향에 대하여 러빙 방향인 광축을 중심으로 수직 방향인 액정의 콘에서 X, Y의 방향으로 움직이게 된다. 이 때 좌우로 움직이는 각도는 전압의 크기에 비례하여 콘 각도를 따라서 변하므로 계조표시가 가능하게 된다.When the electric field is applied to the liquid crystal cell of the liquid crystal display panel fabricated as described above, the liquid crystal molecules are X, Y in the cone of the liquid crystal perpendicular to the optical axis in the rubbing direction with respect to the upper and lower electric fields as shown in FIG. 2. It moves in the direction of. At this time, the angle moving from side to side changes in accordance with the cone angle in proportion to the magnitude of the voltage, thereby enabling gray scale display.

<실시예 1><Example 1>

본 실시예 1의 액정 셀은 배향제로서 본 연구를 위하여 합성된 폴리이미드(polyimide)계 배향제를 사용하였다. 먼저, 한 쪽의 투명전극이 형성된 투명기판 위에 배향제를 스핀 코팅(spin coating)하고 80℃에서 10분 소성을 한 다음 1차 러빙 처리를 하였다. 다음에, 이를 180℃에서 1시간 재소성을 하고 다시 2차 러빙을 하였다. 다른 쪽의 투명전극에는 배향제를 스핀 코팅하고 80℃에서 소성한 다음 1차 러빙 처리를 하고, 180℃에서 1시간 재소성하여 표면에 2차 러빙 처리를 하였다. 이렇게하여 만들어진 상하의 투명전극을 이용 진공 주입용 공 셀을 만들었다. 이 때 셀갭을 유지하기 위하여 1.6μm의 스페이서로서 셀 갭을 유지하였고 완성된 셀의 두께 측정 결과 1.6~8μm를 유지하였다. 완성된 진공용 셀에 120℃에서 액정을 주입한 후 분당 2℃의 냉각속도로 냉각하여 배향을 하였다. 만들어진 셀에서 러빙 처리를 행한 전극의 표면에 편광판의 광축과 액정의 광축을 일치하도록 하고, 반대편의 전극 표면에는 이와는 직각의 광축이 되도록하여 편광판을 부착하여 셀을 완성하였다. 이렇게 하여 얻어진 셀의 전기 광학 특성은 반복 구동을 하여도 콘트라스트가 저하되지 않았으며 응답속도는 250μsec, 콘트라스트는 200 이상으로 나타났다. 또한 시야각은 콘트라스트 10대1 기준으로 하여 상하, 좌우 각각 150°이상 이었다.The liquid crystal cell of Example 1 used a polyimide-based alignment agent synthesized for the present study as an alignment agent. First, the alignment agent was spin-coated on a transparent substrate on which one transparent electrode was formed, and then baked at 80 ° C. for 10 minutes, followed by a first rubbing treatment. Next, it was refired at 180 ° C. for 1 hour and subjected to second rubbing again. The other transparent electrode was spin-coated with an alignment agent and calcined at 80 ° C., followed by a first rubbing treatment, and refired at 180 ° C. for 1 hour to undergo a second rubbing treatment on the surface. The empty cell for vacuum injection was made using the upper and lower transparent electrodes thus made. At this time, in order to maintain the cell gap, the cell gap was maintained as a spacer of 1.6 μm and the thickness of the finished cell was maintained as 1.6 to 8 μm. After injecting the liquid crystal at 120 ℃ to the completed vacuum cell, the cooling was performed at a cooling rate of 2 ℃ per minute to orient. On the surface of the electrode subjected to the rubbing treatment, the optical axis of the polarizing plate and the optical axis of the liquid crystal were made to coincide with each other, and the polarizing plate was attached to the opposite electrode surface so that the optical axis was perpendicular to this. The electro-optical properties of the cell thus obtained did not decrease the contrast even after repeated driving, and the response speed was 250 µsec and the contrast was 200 or more. In addition, the viewing angle was 150 ° or more in the upper, lower, left and right directions on the basis of contrast 10: 1.

한편, 실시예 1에서 기존의 셀 제조 방법인 200℃ 소성후에 한차례의 러빙 처리를 하여 만든 셀의 전기 광학적 특성 측정 결과 응답속도는 330μsec, 콘트라스트는 100정도였다.On the other hand, in Example 1, as a result of measuring the electro-optical characteristics of the cell prepared by one rubbing treatment after firing at 200 ° C., which is a conventional cell manufacturing method, the response speed was 330 μsec and the contrast was about 100.

이상 설명한 바와 같이, 본 발명에 따른 반강유전성 액정표시패널의 제조 방법은 배향제로서 폴리이미드계 고분자의 운동성이 강한 재료를 폴리아믹산 상태에서 코팅을하고 이 상태에서 70~80℃ 전후에서 용매를 제거시킨 다음, 1차 강한 러빙을 하여 배향제의 표면에 큰 굴곡을 준 다음 다시 180~200℃ 에서 폴리아믹산을 폴리이미드화 한 다음에 다시 2차 러빙함으로써 배향 처리를 행한다. 이러한 배향을 하게 되면 고분자의 운동성이 강한 폴리아믹상에서 고분자의 주체인이 쉽게 러빙 방향으로 배향됨으로서 배향력을 증가시킴과 동시에 크게 형성된 굴곡에 의해서 액정의 배향이 깨지기 어렵게되며. 굴곡상태의 표면에서는 반강유전액정에 미치는 앵커링 파워(anchoring power)가 3차원적으로 되어 전장을 인가한 다음 제거하여도 액정이 원래의 자리로 돌아오는 시간을 빠르게 한다. 또한 폴리이미드 상태에서 행한 러빙에 의해서 일반적인 배향의 효과를 다시 얻을 수 있다.As described above, the method of manufacturing the antiferroelectric liquid crystal display panel according to the present invention is a polyimide-based polymer with a high mobility of the polyimide-based polymer as an alignment agent in a polyamic acid state and in this state to remove the solvent around 70 ~ 80 ℃ After the first strong rubbing, the surface of the alignment agent is subjected to large bending, the polyamic acid is again polyimide at 180 to 200 ° C., and then the second rubbing is performed to perform the alignment treatment. When the alignment is performed, the main body of the polymer is easily oriented in the rubbing direction on the polyamic phase where the mobility of the polymer is high, thereby increasing the orientation force and making the liquid crystal's orientation difficult to be broken due to the large bend. On the curved surface, the anchoring power on the antiferroelectric liquid crystal becomes three-dimensional, so that the liquid crystal returns to its original position even if the electric field is applied and then removed. Moreover, the effect of general orientation can be acquired again by rubbing performed in the polyimide state.

따라서, 이와 같이 제작된 액정 표시 패널의 액정 셀은 기존의 AFLC셀 제조방법에 의해서 만들어진 것 보다 응답속도가 빠르고 콘트라스트가 높아지는 결과를 나타낸다. 이와 같이 전기광학적 특성이 좋아진 이유로서는 배향을 행할 때 경도가 높지않은 폴리아믹산(polyamic acid) 상태에서 행한 1차 러빙에 의해서 깊은 배향굴곡과 고분자의 주체인의 배향이 쉽 이루어져서 액정의 배향을 쉽게 할 수 있는 마이크로 구조의 형성이 가능하고, 2차 러빙에 의해서 미소 배향을 완벽하게 함으로써 배향이 안정되게 된다.Therefore, the liquid crystal cell of the liquid crystal display panel manufactured as described above has a faster response speed and higher contrast than that produced by the conventional AFLC cell manufacturing method. The reason for the improved electro-optical characteristics is that the primary rubbing performed in the state of polyamic acid, in which the hardness is not high when the alignment is performed, facilitates deep alignment bending and alignment of the main chain of the polymer, thereby facilitating the alignment of liquid crystals. The microstructure which can be formed is possible, and the orientation is stabilized by perfecting the micro orientation by the secondary rubbing.

또한, 상기와 같이 제작된 반강유전성 액정표시패널은 액정의 배향을 기존의 TN(twested nematic) 대신에 자발분극을 갖는 반강유전액정을 이용하여 기존의 유전율 이방성으로 응답하는 TN 액정에 비하여 500배 이상 응답속도가 빠르며, 상하전극의 전계 방향에 대하여 액정의 응답은 전계에 대하여 수직방향으로 움직임으로써 시야각이 CRT에 가깝다. 그리고 계조표시가 가능하며 구동 전압이 낮아서 액티브(active)구동이 가능하며, 반복 구동으로 인한 액정 상의 깨짐을 방지할 수 있다.In addition, the anti-ferroelectric liquid crystal display panel manufactured as described above uses a semi-ferroelectric liquid crystal having spontaneous polarization instead of conventional TN (twested nematic), which is 500 times or more than TN liquid crystal which responds with conventional dielectric anisotropy. The response speed is fast, and the response of the liquid crystal moves in the vertical direction with respect to the electric field direction of the vertical electrode, so that the viewing angle is close to the CRT. In addition, gray scale display is possible, and the driving voltage is low, thereby enabling active driving, and it is possible to prevent cracking of the liquid crystal phase due to repetitive driving.

Claims (3)

(가) 두 개의 투명 기판 상에 각각 스트라이프 상의 투명전극들을 형성하는 단계;(A) forming transparent electrodes on the stripe on each of the two transparent substrates; (나) 상기 투명 전극들이 형성된 투명 기판 상면에 각각 폴리이미드계 배향제를 폴리아믹상 상태에서 도포한 다음 70~80℃ 에서 소정 시간 동안 1차 소성하여 용매를 증발시키는 단계;(B) applying a polyimide aligning agent to the upper surface of the transparent substrate on which the transparent electrodes are formed, respectively, in a polyamic state, and then first baking at 70 to 80 ° C. for a predetermined time to evaporate the solvent; (다) 상기 폴리이미드화된 배향제를 1차로 러빙 처리하는 단계;(C) first rubbing the polyimide aligning agent; (라) 상기 1차 러빙 처리된 배향제를 180~200℃에서 소정 시간 동안 2차 소성하여 폴리이미드화하는 단계;(D) polyimidizing the first rubbed alignment agent by second baking at 180 to 200 ° C. for a predetermined time; (마) 상기 2차 소성된 배향제를 상기 1차 러빙 처리시의 러빙 방향과 동일한 방향으로 2차 러빙 처리하는 단계; 및(E) secondary rubbing treatment of the secondary calcined alignment agent in the same direction as the rubbing direction during the primary rubbing treatment; And (바) 상기 2차 러빙 처리에 의해 배향막이 형성된 상기 두 투명기판이 상기 배향막이 일정한 간격을 유지하도록 배열하고 그 가장자리를 밀봉한 다음 상기 배열된 배향막 사이에 액정을 주입하는 단계;를(F) arranging the two transparent substrates on which the alignment layer is formed by the secondary rubbing process so that the alignment layer maintains a constant interval, sealing the edges, and then injecting liquid crystal between the aligned alignment layers; 포함하는 것을 특징으로 하는 반강유전성 액정 표시 패널의 제조 방법.The manufacturing method of the antiferroelectric liquid crystal display panel characterized by including. 제1항에 있어서,The method of claim 1, 상기 (나) 단계에서 상기 1차 소성은 10분 동안 행하는 것을 특징으로 하는 반강유전성 액정 표시 패널의 제조 방법.In the step (b), the first firing is performed for 10 minutes. 제1항에 있어서,The method of claim 1, 상기 (라) 단계에서 상기 2차 소성은 50~80분 동안 행하는 것을 특징으로 하는 반강유전성 액정 표시 패널의 제조 방법.In the step (d), the secondary firing is performed for 50 to 80 minutes.
KR1019990051299A 1999-11-18 1999-11-18 Method for manufacturing an Antiferroelectric LCD panel KR20010047194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990051299A KR20010047194A (en) 1999-11-18 1999-11-18 Method for manufacturing an Antiferroelectric LCD panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990051299A KR20010047194A (en) 1999-11-18 1999-11-18 Method for manufacturing an Antiferroelectric LCD panel

Publications (1)

Publication Number Publication Date
KR20010047194A true KR20010047194A (en) 2001-06-15

Family

ID=19620673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990051299A KR20010047194A (en) 1999-11-18 1999-11-18 Method for manufacturing an Antiferroelectric LCD panel

Country Status (1)

Country Link
KR (1) KR20010047194A (en)

Similar Documents

Publication Publication Date Title
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
KR0161240B1 (en) Method of aligning liquid crystals, method of manufacturing liquid crystal device employing the aligning method, and liquid crystal device manufactured employing the aligning method
KR19980024821A (en) Liquid crystal display and method of manufacturing the same
US6873377B2 (en) Liquid crystal display device
JP3267989B2 (en) Method for manufacturing liquid crystal alignment film
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JPS62160426A (en) Liquid crystal display element
JPH02208633A (en) Liquid crystal display device
KR20010047194A (en) Method for manufacturing an Antiferroelectric LCD panel
JP4656526B2 (en) Liquid crystal electro-optical device
JP2809980B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0368924A (en) Liquid crystal display device
KR100383542B1 (en) Smectic liquid crystal display in a transverse electrode configuration
KR100319928B1 (en) Ferroelectric LCD panel and manufacturing method thereof by rubbing orientation of the orientation film
JPH086028A (en) Liquid crystal display device
JP2610516B2 (en) Liquid crystal electro-optical device
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
KR100477132B1 (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JP3329721B2 (en) Liquid crystal display
KR100360471B1 (en) Method for manufacturing an antiferroelectric Liquid Crystal Display panel
JPH0229624A (en) Production of oriented film of ferroelectric liquid crystal element
KR100802306B1 (en) Liquid Crystal Display Device and Method of Fabricating the same
KR20170130763A (en) Fast Response Homogeneous Alignment Liquid Crystal Display Device with Zero Rubbing Angle
JP3239310B2 (en) Ferroelectric liquid crystal display device
JPH08136915A (en) Ferroelectric liquid crystal display element

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination