KR20010046461A - The gel electrolyte for a sealed lead storage battery - Google Patents

The gel electrolyte for a sealed lead storage battery Download PDF

Info

Publication number
KR20010046461A
KR20010046461A KR1019990050245A KR19990050245A KR20010046461A KR 20010046461 A KR20010046461 A KR 20010046461A KR 1019990050245 A KR1019990050245 A KR 1019990050245A KR 19990050245 A KR19990050245 A KR 19990050245A KR 20010046461 A KR20010046461 A KR 20010046461A
Authority
KR
South Korea
Prior art keywords
gel electrolyte
gel
starch
battery
electrolyte
Prior art date
Application number
KR1019990050245A
Other languages
Korean (ko)
Other versions
KR100323993B1 (en
Inventor
임형택
허성혁
Original Assignee
조충환
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조충환, 한국타이어 주식회사 filed Critical 조충환
Priority to KR1019990050245A priority Critical patent/KR100323993B1/en
Publication of KR20010046461A publication Critical patent/KR20010046461A/en
Application granted granted Critical
Publication of KR100323993B1 publication Critical patent/KR100323993B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A gel electrolyte of closed-type lead acid battery is provided, which simplifies its manufacturing process of the lead acid battery, stabilizes its structure and improves the life performance of the battery. CONSTITUTION: The gel electrolyte of closed-type lead acid battery is prepared by mixing sulfuric acid with silica such as Deggusa Aerosil 200 having a particle specific area of 200 square meter/gram with stirring at a high speed of not less than 2,000 revolution per minute, further contains 0.1-0.5 wt.% of starch as a binding agent.

Description

밀폐형 납축전지용 겔 전해질{THE GEL ELECTROLYTE FOR A SEALED LEAD STORAGE BATTERY}Gel electrolyte for sealed lead acid batteries {THE GEL ELECTROLYTE FOR A SEALED LEAD STORAGE BATTERY}

본 발명은 밀폐형 납축전지용 겔 전해질에 관한 것이고, 보다 상세하게는 겔의 3차원 구조를 안정화시키고 전지 내부로의 충진을 용이하게 하는 결합제를 함유하는 밀폐형 납축전지용 겔 전해질에 관한 것이다.The present invention relates to a gel electrolyte for a sealed lead acid battery, and more particularly to a gel electrolyte for a sealed lead acid battery containing a binder that stabilizes the three-dimensional structure of the gel and facilitates the filling into the battery.

통상적으로 사용되는 대형 산업용 밀폐형 납축전지의 전해질로는 황산 전해질에 흡수 유리 매트(Absorptive Glass Mat, 이하 AGM이라 칭함)를 함침시킨 전해질이나, 또는 황산 전해질에 실리카를 분산시킨 겔 전해질을 들 수 있다.The electrolyte of a large industrial hermetic lead acid battery that is commonly used includes an electrolyte in which a sulfuric acid electrolyte is impregnated with an absorptive glass mat (hereinafter referred to as AGM), or a gel electrolyte in which silica is dispersed in a sulfuric acid electrolyte.

상기 미세 다공성의 AGM은 모세관력으로 전해질을 흡수하여 전해질의 유동성을 낮춤으로써 층분리를 방지하고, 상기 겔 전해질은 황산 전해질에 미세한 실리카 분말을 분산시켜 고형화함으로써 실리카 분말 표면의 수산화기는 분말 간에 서로 수소결합하여 3차원 구조를 형성하고 황산과도 수소결합을 형성하여 층분리되는 것을 효과적으로 방지한다.The microporous AGM absorbs the electrolyte by capillary force to lower the fluidity of the electrolyte, thereby preventing layer separation, and the gel electrolyte disperses the fine silica powder in sulfuric acid electrolyte to solidify it so that the hydroxyl groups on the surface of the silica powder are hydrogen They combine to form a three-dimensional structure and form hydrogen bonds with sulfuric acid to effectively prevent layer separation.

일반적으로 AGM은 공정이 간단하면서도 비교적 성능도 우수하기 때문에 겔 전해질보다는 많이 사용되고 있지만, 장기간 사용하게 되면 비중차가 발생되고, 특히 높이가 큰 전지에서는 중력으로 인한 비중차 발생률이 높기 때문에, 한곳에서 10년 이상을 사용하는 통신용 전지나 UPS(Uninterrupted Power Supply)용 전지에는 부적합하다.In general, AGM is used more than gel electrolyte because of its simple process and relatively good performance, but when used for a long time, specific gravity difference occurs, and especially in large batteries, the specific gravity difference rate due to gravity is high. It is not suitable for the communication battery or UPS (Uninterrupted Power Supply) battery using the above.

따라서, 대형 산업용 전지나 장수명을 필요로 하는 용도에서는 층분리 억제효과가 뛰어나고 상대적으로 많은 양의 황산을 포함할 수 있는 겔 전해질이 주로 사용된다.Therefore, in large industrial batteries or applications requiring long life, gel electrolytes which are excellent in inhibiting layer separation and may contain a relatively large amount of sulfuric acid are mainly used.

일반적으로 납축전지에 사용하는 겔 전해질은 황산과 실리카의 혼합체로 혼합 초기에는 액체상태와 유사한 정도의 낮은 점도를 유지하나 시간이 경과함에 따라 수소 결합에 의한 3차원 망상 구조를 형성하며 점도가 점차 증가하여 겔로 변화한다. 그러나, 실리카와 황산만을 혼합하여 이루어진 겔 전해질은 이러한 고형화 과정에서 생기는 겔의 수축 현상으로 물 발생 등의 상분리와 함께 많은 균열과 기공이 발생하여 겔 구조가 붕괴되면서 액체 상태로 변하여 겔의 특성을 잃게 된다. 따라서 실리카 표면의 수산기와 강한 수소결합을 할 수 있는 산소 또는 질소를 다량 포함하고 있는 고분자 물질을 결합제로서 첨가하게 된다.In general, the gel electrolyte used in lead acid batteries is a mixture of sulfuric acid and silica, which maintains a low viscosity similar to the liquid state at the beginning of mixing, but forms a three-dimensional network structure by hydrogen bonding and gradually increases in viscosity as time passes. To gel. However, the gel electrolyte formed by mixing only silica and sulfuric acid is a shrinkage phenomenon of the gel during the solidification process, and many cracks and pores occur with phase separation such as water generation, and the gel structure collapses into a liquid state, which causes the gel to lose its properties. do. Therefore, a high molecular substance containing a large amount of oxygen or nitrogen capable of strong hydrogen bonding with the hydroxyl group on the silica surface is added as a binder.

상기 결합제의 역할은 크게 두 가지로, 첫째는 상분리를 억제하여 전해질 내에 겔 상 이외의 다른 상이 존재하지 않도록 하고, 둘째는 실리카간의 결합력을 강화시켜 실리카의 사용량을 감소시키면서도 겔의 기계적인 안정성을 높이는 것이다. 일반적으로 결합제의 분자량이 클수록 실리카 표면의 수산기와 결합할 수 있는 산소나 질소가 많아지므로 더 안정한 3차원 망상구조를 형성한다.The binder has two roles, firstly, to inhibit phase separation so that no phase other than the gel phase is present in the electrolyte, and secondly, to increase the mechanical stability of the gel while reducing the amount of silica used by enhancing the bonding strength between the silica. will be. In general, the larger the molecular weight of the binder, the more oxygen or nitrogen capable of bonding with hydroxyl groups on the silica surface, thus forming a more stable three-dimensional network structure.

종래에는 폴리에틸렌 글리콜(PEG)(미국특허 제 3,776,779호), 폴리아크릴아미드(PAA)(미국특허 제 4,937,156호), 펙틴(미국특허 제 3,271,199호 및 제 3,328,208호) 등이 결합제로 주로 사용되고 있다. 이들 결합제에는 질소 또는 산소기가 다량 포함되어 있어 실리카와 실리카 사이를 수소 결합하여 3차원의 안정된 겔 구조를 형성한다.Conventionally, polyethylene glycol (PEG) (US Pat. No. 3,776,779), polyacrylamide (PAA) (US Pat. No. 4,937,156), pectin (US Pat. Nos. 3,271,199 and 3,328,208) and the like are mainly used as binders. These binders contain a large amount of nitrogen or oxygen groups to hydrogen bond between silica and silica to form a three-dimensional stable gel structure.

그러나, 상기 결합제는 가격이 비싸고, 결합제 첨가 직후 겔 전해질의 농도가 급격히 증가하면서 고체화되어 전지 내로 단시간 안에 균일하게 주입하는 것을 불가능하게 하였다. 따라서, 이러한 불균일한 겔 전해질의 주입으로 인해 전지의 용량 감소와 전지 수명성능이 악화되었다.However, the binder was expensive and solidified with a sharp increase in the concentration of the gel electrolyte immediately after the binder was added, making it impossible to uniformly inject into the cell in a short time. Therefore, the injection of this non-uniform gel electrolyte deteriorated the capacity of the battery and the battery life performance.

이에 본 발명은, 겔 전해질이 보다 안정한 3차원 망상 구조를 형성하게 하면서도, 비교적 장시간 동안 낮은 점도를 유지하여 전지 내부로의 주입을 보다 용이하게 하는 결합제를 함유하는 밀폐형 납축전지용 겔 전해질을 제공하는 것을 목적으로 한다.Accordingly, the present invention provides a gel electrolyte for a sealed lead acid battery containing a binder which allows the gel electrolyte to form a more stable three-dimensional network structure, and maintains a low viscosity for a relatively long time to facilitate injection into the battery. For the purpose of

도 1은 전분 0.1중량, 0.2중량% 및 0.5중량%를 함유하는 겔 전해질, 물 및 PEG 0.1중량% 및 0.2중량%를 함유하는 겔 전해질의 시간에 따른 점도변화 측정결과를 나타냈다.FIG. 1 shows the results of viscosity changes over time of gel electrolytes containing 0.1 wt%, 0.2 wt% and 0.5 wt% starch, and gel electrolytes containing 0.1 wt% and 0.2 wt% PEG.

여기서 PEG는 Aldrich사제의 폴리에틸렌 글리콜 #400을 의미한다.PEG means polyethylene glycol # 400 by Aldrich.

본 발명은 밀폐형 납축전지용 겔 전해질에 있어서, 결합제로서 전분을 함유하는 것을 특징으로 하는 겔 전해질인 것이다.The present invention is a gel electrolyte characterized by containing starch as a binder in a gel electrolyte for sealed lead acid batteries.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

일반적으로 겔 전해질에 결합제를 혼합하게 되면 단시간 내에 겔의 3차원 구조가 형성되면서 겔 전해질의 점도가 급격히 증가하여 전조에 채워진 전극 사이의 매우 좁은 공간으로 흘러 들어가지 못하기 때문에 완전하고 균일한 충진이 불가능해진다. 따라서, 결합제를 첨가한 후 겔 전해질의 주입시점까지 겔 전해질의 3차원 구조를 붕괴시키기 위해 고속(>1,000rpm)으로 교반하거나, 그렇지 않은 경우에는 결합제 첨가 시점을 최대한 늦추고 1분 이내에 겔 전해질을 황산에 주입하는 장비가 갖추어져야 한다.In general, when the binder is mixed with the gel electrolyte, a three-dimensional structure of the gel is formed within a short time, and the viscosity of the gel electrolyte is rapidly increased to prevent flow into the very narrow space between the electrodes filled in the precursor, so that complete and uniform filling is achieved. It becomes impossible. Therefore, after adding the binder, the gel electrolyte is stirred at a high speed (> 1,000 rpm) to collapse the three-dimensional structure of the gel electrolyte until the injection of the gel electrolyte, or else the binder is delayed as much as possible and the sulfuric acid is dissolved within 1 minute. Equipment should be provided to inject.

이러한 문제점을 해결하기 위해 겔 전해질에 첨가한 후에도 비교적 장시간 낮은 점도를 유지하는 특성을 갖는 결합제를 선택할 필요가 있다.In order to solve this problem, it is necessary to select a binder having a property of maintaining a low viscosity for a relatively long time even after addition to the gel electrolyte.

따라서, 본 발명에서는 분자량이 크고, 다량의 산소를 포함하고 있는 전분으로 이루어진 결합제가 바람직하다. 상기 전분은 용이하게 입수할 수 있는 전분이며, 또한 다량의 수산화기를 포함하고 있어 겔 전해질 중의 실라카와 충분하게 수소 결합하여 겔 전해질을 안정화시킬 수 있다.Therefore, in the present invention, a binder composed of starch having a high molecular weight and containing a large amount of oxygen is preferable. The starch is a readily available starch, and also contains a large amount of hydroxyl groups to sufficiently hydrogen bond with the silica in the gel electrolyte to stabilize the gel electrolyte.

또한, 본 발명은 결합제로서 상기 전분을 겔 전해질 중량대비 0.01중량% 내지 0.5중량%를 함유하여 이루어진 겔 전해질이고, 바람직하기로는 0.1중량% 내지 0.2중량%를 함유한다. 상기 겔 전해질 중의 전분 함유량은 전분의 분자량에 따라 변할 수 있지만, 첨가 후에 안정한 3차원 망상 구조를 이루면서도, 비교적 장시간 낮은 점도를 유지하기 위해서는 상기 범위로 한정되는 것이 바람직하다.In addition, the present invention is a gel electrolyte containing 0.01 to 0.5% by weight of the starch relative to the weight of the gel electrolyte as a binder, preferably 0.1 to 0.2% by weight. The starch content in the gel electrolyte may vary depending on the molecular weight of the starch, but is preferably limited to the above range in order to maintain a low viscosity for a relatively long time while forming a stable three-dimensional network structure after the addition.

이하, 실시예에 의해 본원 발명을 상세히 설명하면 다음과 같으며, 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but is not limited thereto.

실시예Example

실시예 1Example 1

입자 표면적이 200m2/g인 Deggusa Aerosil 200인 실리카와 황산을 2000rpm 이상에서 혼합하여 실리카의 덩어리 구조를 붕괴시키고 황산 내에서 실리카가 균일한 분포를 갖도록 하였다. 실리카의 3차원 구조가 고속 교반에 의해 붕괴되어 액체와 비슷한 상태가 되었을 때, 전분 0.1중량%를 첨가하여 겔 전해질을 제조하였다.Silica and sulfuric acid with Deggusa Aerosil 200 having a particle surface area of 200 m 2 / g were mixed at 2000 rpm or more to break down the mass structure of silica and have a uniform distribution of silica in sulfuric acid. When the three-dimensional structure of the silica collapsed by high speed agitation and became a liquid, 0.1 wt% of starch was added to prepare a gel electrolyte.

실시예 2Example 2

전분 0.2중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except that 0.2% by weight of starch was added.

실시예 3Example 3

전분 0.5중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except that 0.5% by weight of starch was added.

비교예 1Comparative Example 1

Aldrich사제의 폴리에틸렌 글리콜 #400(이하, PEG라 칭함) 0.1중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 제조하였다.Except for adding 0.1% by weight of polyethylene glycol # 400 (hereinafter referred to as PEG) manufactured by Aldrich, it was prepared in the same manner as in Example 1.

비교예 2Comparative Example 2

PEG 0.2중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 제조하였다.Except that the PEG 0.2% by weight was prepared in the same manner as in Example 1.

시험예Test Example

상기 실시예 1 내지 3, 비교예 1과 2의 겔 전해질 및 물을 브룩필드사의 스핀들형(spindle type) 점도 측정기를 사용하여, 24°내지 26℃의 온도에서 겔 전해질 또는 물에 삽입된 스핀들을 50rpm으로 회전시키면서 점도를 측정하였다. 실시예 1 내지 3, 비교예 1과 2 및 물의 시간에 따른 점도 측정의 결과를 도 1에 도시하였다.Examples 1 to 3, Comparative Examples 1 and 2 of the gel electrolyte and water using a spindle-type viscosity meter of Brookfield, Inc., the spindle inserted in the gel electrolyte or water at a temperature of 24 ° to 26 ° C The viscosity was measured while rotating at 50 rpm. 1 to 3, Comparative Examples 1 and 2 and the results of the viscosity measurement with time of water are shown in FIG.

상기 도 1에 나타낸 바와 같이, 실시예 1의 경우는 물의 경우와 매우 유사한 점도를 나타내며 액상을 유지하였고, 실시예 2의 경우는 전분 첨가 후 360초까지는 액체 상태를 유지하다가 서서히 점도가 증가하기 시작하였다. 이와 비교하여, 비교예 1 및 비교예 2의 PEG를 사용한 경우에는 전해지ㅎ 주입 후 바로 고체화기 진행되기 시작하였다. 전분을 0.5중량% 사용한 실시예 3의 경우는 전분 첨가 후 120초 이후에 급격한 점도의 증가를 나타내지만, PEG 0.2중량%를 사용한 비교예 2의 경우보다는 점도의 증가가 덜한 편이다.As shown in FIG. 1, Example 1 exhibited a viscosity very similar to that of water, and the liquid phase was maintained. In Example 2, the viscosity was maintained until 360 seconds after starch was added, and the viscosity gradually increased. It was. In comparison, in the case of using the PEG of Comparative Example 1 and Comparative Example 2, the solidifying machine started to proceed immediately after the injection of the electrolytic cell. Example 3 using 0.5% by weight of starch showed a sharp increase in viscosity after 120 seconds after addition of starch, but a viscosity increase was less than that of Comparative Example 2 using 0.2% by weight of PEG.

결론적으로, 겔 전해질 제조시 결합제로서 소량의 전분을 첨가하여도 다른 결합제들에 비해 시간에 따른 점도변화 속도가 느려 비교적 장시간 낮은 점도를 유지할 수 있으므로 전지 내부로 겔을 주입하기가 용이하다. 또한, 결합제를 전혀 첨가하지 않은 경우에 비해서는 점도 변화 속도가 빠르므로 더 안정한 3차원 망상 구조를 형성함을 알 수 있다.In conclusion, even when a small amount of starch is added as a binder in the preparation of the gel electrolyte, the rate of viscosity change over time is slower than other binders, and thus the gel can be easily injected into the battery because the viscosity can be maintained for a relatively long time. In addition, it can be seen that the viscosity change rate is faster than the case where no binder is added at all to form a more stable three-dimensional network structure.

본 발명에 의한 전분을 함유하는 밀폐형 납축전지용 겔 전해질은 크게 네가지 장점이 있다. 첫째, 실리카와 황산만으로 이루어진 겔에 비해 더 안정한 3차원 망상 구조를 형성할 수 있다. 둘째, 보다 더 안정한 3차원 망상 구조를 형성함으로써 상분리를 방지할 수 있다. 셋째, 다른 결합제들에 비해 비교적 장시간 낮은 점도를 유지하므로 겔 혼합과 주입이 용이하다. 넷째, 전분은 입수가 용이하고, 가격이 저렴하다.The gel electrolyte for sealed lead acid batteries containing starch according to the present invention has four major advantages. First, it is possible to form a more stable three-dimensional network structure than a gel consisting of only silica and sulfuric acid. Second, phase separation can be prevented by forming a more stable three-dimensional network structure. Third, it maintains a low viscosity for a relatively long time compared to other binders, which facilitates gel mixing and injection. Fourth, starch is easy to obtain and inexpensive.

상기와 같은 장점으로 인하여 겔 전해질을 사용하는 납축전지의 제조공정을 단순화시킬 수 있고 겔 전해질의 구조를 안정화시켜 전지의 수명성능을 향상시킬 수 있다.Due to the above advantages, it is possible to simplify the manufacturing process of the lead acid battery using the gel electrolyte, and to stabilize the structure of the gel electrolyte, thereby improving the life performance of the battery.

Claims (2)

밀폐형 납축전지용 겔 전해질에 있어서, 결합제로서 전분을 함유하는 것을 특징으로 하는 겔 전해질.A gel electrolyte for sealed lead acid batteries, wherein the gel electrolyte contains starch as a binder. 제 1항에 있어서, 상기 결합제의 함유량은 겔 전해질대 중량대비 0.01중량% 내지 0.5중량% 인 것을 특징으로 하는 겔 전해질.The gel electrolyte according to claim 1, wherein the content of the binder is 0.01% by weight to 0.5% by weight based on the weight of the gel electrolyte.
KR1019990050245A 1999-11-12 1999-11-12 The gel electrolyte for a sealed lead storage battery KR100323993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990050245A KR100323993B1 (en) 1999-11-12 1999-11-12 The gel electrolyte for a sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990050245A KR100323993B1 (en) 1999-11-12 1999-11-12 The gel electrolyte for a sealed lead storage battery

Publications (2)

Publication Number Publication Date
KR20010046461A true KR20010046461A (en) 2001-06-15
KR100323993B1 KR100323993B1 (en) 2002-02-16

Family

ID=19619819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990050245A KR100323993B1 (en) 1999-11-12 1999-11-12 The gel electrolyte for a sealed lead storage battery

Country Status (1)

Country Link
KR (1) KR100323993B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106967A (en) * 2016-11-25 2018-06-01 深圳格林德能源有限公司 A kind of method for judging lithium ion battery glue dispersion effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106967A (en) * 2016-11-25 2018-06-01 深圳格林德能源有限公司 A kind of method for judging lithium ion battery glue dispersion effect

Also Published As

Publication number Publication date
KR100323993B1 (en) 2002-02-16

Similar Documents

Publication Publication Date Title
JP3233602B2 (en) Solid polymer electrolyte
Long et al. Polymer electrolytes for lithium polymer batteries
KR20200010297A (en) Flexiple All-Solid Lithium Ion Secondary Battery and Manufacturing Method Thereof
CN106233512A (en) Modified guaran urea binding agent for lithium ion battery
JPH08508850A (en) Solid electrolyte and battery
US11777142B2 (en) Gelable system containing ether compounds, preparation method therefor and use thereof
CN105489857A (en) Quick charging lithium-ion battery
CN107546410A (en) A kind of flexible composite polymeric thing dielectric film and preparation method thereof and lithium ion battery
Szczęsna-Chrzan et al. Lithium polymer electrolytes for novel batteries application: the review perspective
JP3098248B2 (en) Ion conductor or electrolyte for batteries
KR100323993B1 (en) The gel electrolyte for a sealed lead storage battery
CN1222070C (en) Colloid electrolyte for accumulator
WO1995008196A1 (en) Solid electrolyte composition
KR100323992B1 (en) The gel electrolyte for a sealed lead storage battery
CN101702451B (en) Gradual storage battery colloid, preparation method and gel-filling technology of storage battery
Su et al. Polyethylene Oxide-Based Composite Solid Electrolytes for Lithium Batteries: Current Progress, Low-Temperature and High-Voltage Limitations, and Prospects
KR100376051B1 (en) Electrode filled with polyelectrolyte and method for producing the same
CN109301319B (en) A kind of gel polymer electrolyte and the lithium secondary battery including it
JPS6322027B2 (en)
KR100397069B1 (en) Electrolyte composition for a lead storage battery and lead storage battery comprising it
CN110233300A (en) Low temperature resistant colloidal electrolyte of large capacity and preparation method thereof
JP2002313136A (en) Reversible sol-gel electrolyte composite and electrolyte film using same
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
RU2190902C1 (en) Solid-polymeric electrolyte for lithium current supplies
CN112768837B (en) Preparation method of diaphragm, diaphragm and lithium ion battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee