KR20010045641A - Antiferroelectric liquid crystal display for reflexive type - Google Patents

Antiferroelectric liquid crystal display for reflexive type Download PDF

Info

Publication number
KR20010045641A
KR20010045641A KR1019990048984A KR19990048984A KR20010045641A KR 20010045641 A KR20010045641 A KR 20010045641A KR 1019990048984 A KR1019990048984 A KR 1019990048984A KR 19990048984 A KR19990048984 A KR 19990048984A KR 20010045641 A KR20010045641 A KR 20010045641A
Authority
KR
South Korea
Prior art keywords
liquid crystal
crystal display
reflective
antiferroelectric liquid
substrate
Prior art date
Application number
KR1019990048984A
Other languages
Korean (ko)
Other versions
KR100358475B1 (en
Inventor
이신두
Original Assignee
김원대
스마트디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김원대, 스마트디스플레이 주식회사 filed Critical 김원대
Priority to KR1019990048984A priority Critical patent/KR100358475B1/en
Priority to PCT/KR2000/001265 priority patent/WO2001033291A1/en
Priority to AU11774/01A priority patent/AU1177401A/en
Publication of KR20010045641A publication Critical patent/KR20010045641A/en
Application granted granted Critical
Publication of KR100358475B1 publication Critical patent/KR100358475B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1412Antiferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE: A reflective antiferroelectric LCD(liquid crystal display) is to use a polarizing plate and a phase delaying plate to provide a high iso-contrast ratio and luminance, a wide viewing angle and a fast responding characteristic. CONSTITUTION: A metal electrode(20) is formed on a strip of a first substrate(10). A transparent electrode(40) is formed on a strip of a second substrate(30) orthogonal to the metal electrode. An alignment film(50) is coated on the second substrate. Antiferroelectric liquid crystal is injected between the first and second substrates. A phase delaying plate(70) is formed on the second substrate on which the electrode is not formed. A polarizing plate(80) is formed on the phase delaying plate. Each molecule of the liquid crystal has an inclined angle between 20 to 60. A multiplying value of a thickness of the antiferroelectric liquid crystal and an optical anisotropy is between one eights of a wavelength and a half of the wavelength.

Description

반사형 반강유전성 액정 표시장치{Antiferroelectric liquid crystal display for reflexive type}Reflective antiferroelectric liquid crystal display {Antiferroelectric liquid crystal display for reflexive type}

본 발명은 반사형 반강유전성 액정 표시장치에 관한 것으로서, 특히 하나의 편광판과 위상지연판을 사용함으로써 높은 대비비, 높은 휘도, 넓은 시야각 및 고응답 특성을 가진 반강유전성 액정표시장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective antiferroelectric liquid crystal display, and more particularly, to an antiferroelectric liquid crystal display having high contrast ratio, high luminance, wide viewing angle, and high response by using one polarizing plate and a phase delay plate.

기존의 반사형 액정 표시장치에 사용되는 액정은 주로 네마틱 액정으로 이에 관련된 여러 가지 모드가 있으나 이러한 반사형 액정 표시장치는 응답속도가 느리고 시야각이 협소하다는 단점을 지니고 있다. 최근 대면적 액정 표시장치로의 가능성을 지닌 반강유전성 액정 표시장치(AFLCD : antiferroelectric liquid crystal display)가 공개 되었다. 이는 시야각이 넓고 빠른 응답속도를 보이나 상대적으로 구동전원이 높고, 액정 표시장치 후면에 백라이트를 설치해야 하는 투과형으로 전력소비가 반사형에 비해 매우 커서 휴대용 표시소자로서는 적합하지 못하다.The liquid crystal used in the conventional reflective liquid crystal display is mainly nematic liquid crystal, and there are various modes related thereto. However, the reflective liquid crystal display has a disadvantage of slow response speed and narrow viewing angle. Recently, an antiferroelectric liquid crystal display (AFLCD) has been disclosed, which has the potential to be a large area liquid crystal display. This is a transmissive type that has a wide viewing angle and a fast response speed but a relatively high driving power, and requires a backlight to be installed on the rear of the liquid crystal display.

최근 각광받고 있는 반사형 컬러 액정 표시장치는 백라이트가 후면에 접합된 기존의 투과형 액정 표시장치와는 달리 후면에 거울을 접합하여 백라이트 대신 주위의 외광을 이용하기 때문에 백라이트로 인한 전력소모가 없으며, 중량이 가볍기 때문에 휴대용 개인정보 단말기 표시장치에 적합하다.Unlike the conventional transmissive liquid crystal display, in which the backlight is bonded to the rear, the reflective color liquid crystal display, which has been in the spotlight recently, uses ambient light instead of the backlight by attaching a mirror to the rear, and thus there is no power consumption due to the backlight. This light weight makes it suitable for portable personal digital assistant displays.

이러한 반사형 컬러 액정 표시장치의 요건으로는 고휘도, 고해상도, 고대비비와 우수한 계조표시 특성 및 비디오 속도가 가능한 빠른 응답시간을 지녀야 한다.The reflective color liquid crystal display needs to have high brightness, high resolution, high contrast ratio, excellent gradation display characteristics, and fast response time with video speed.

그러나, 초기의 반사형 액정표시장치는 두 장의 편광판을 사용하기 때문에 휘도와 대비비가 낮았다. 또한, 거울이 표시장치의 후면에 접합된 구조로 인하여 액정층과 반사판 사이의 간격이 생기며 이로 인하여 입사광과 반사광이 다른 화소를 통과하게 되는 수차가 발생하게 된다. 이는 컬러 액정 표시장치의 경우 해상도와 색순도에 치명적인 영향을 주게 된다.However, since the early reflection type liquid crystal display uses two polarizing plates, the luminance and contrast ratio are low. In addition, due to the structure in which the mirror is bonded to the rear surface of the display device, a gap is generated between the liquid crystal layer and the reflecting plate, which causes aberration of incident light and reflected light passing through different pixels. In the case of a color liquid crystal display, the resolution and color purity have a fatal effect.

따라서, 편광판 한 장을 사용하며 내부 금속 반사판, 산란 박막, 위상지연 박막 등으로 구성된 새로운 반사형 컬러 액정 표시장치의 개발이 최근 보고되고 있다.Therefore, the development of a new reflective color liquid crystal display device using a polarizer and consisting of an inner metal reflector, a scattering thin film, a phase delay thin film, and the like, has recently been reported.

그러나, 보고된 여러 가지 반사형 액정 표시장치는 어느 정도 휘도와 대비비가 향상되었지만 광투과 특성이 파장, 인가전압, 시야각에 크게 좌우되며, 좁은 시야각과 느린 응답속도로 인하여 그 한계가 드러나는 실정이다.However, although the reported reflection type liquid crystal display has improved luminance and contrast ratio to some extent, light transmission characteristics are largely dependent on wavelength, applied voltage, and viewing angle, and its limitations are revealed due to narrow viewing angle and slow response speed.

최근 개발 중에 있는 투사형 반강유전성 액정 패널은 기존의 네마틱 액정보다 넓은 시야각과 빠른 응답속도를 갖는 것이 특징이다. 반강유전성 액정의 응답속도는 수십에서 수백 ㎲로 짧은 반면, Thin Film Transistor(TFT)-LCD의 응답속도는 수십 ㎳이고, Super-Twisted Nematic(STN)-LCD의 응답속도 또한 수십 ㎳이다. 수십 ㎳의 응답속도로는 빠른 동영상의 표시가 거의 불가능하다. 반강유전성 액정은 응답속도가 빠를 뿐만 아니라 메모리 특성을 지닌 삼안정성(tristab, ility)을 가진다.Projection type antiferroelectric liquid crystal panel under recent development is characterized by having wider viewing angle and faster response speed than conventional nematic liquid crystal. The response time of anti-ferroelectric liquid crystals is short, from tens to hundreds of microseconds, whereas the response speed of thin film transistor (TFT) -LCDs is tens of microseconds, and the response speed of super-twisted nematic (STN) -LCDs is also tens of microseconds. It is almost impossible to display a fast video at a response speed of several tens of Hz. Anti-ferroelectric liquid crystals have not only fast response speed but also tristab (ility) having memory characteristics.

이러한 특성을 사용한다면, 단순 매트릭스 구동방식이 가능하다. TFT를 사용하지 않아 생산원가는 TFT-LCD보다 낮다는 장점이 있다. 이러한 단순 매트릭스 방식의 반강유전성 액정 패널의 특징은 단순 매트릭스 방식을 같이 사용하는 STN-LCD 패널보다 높은 대비비와 화질을 제공한다. 대개의 경우 대비비는 30:1, 50:1 사이로서 STN-LCD의 10:1, 20:1과 대비된다. 이는 반강유전성의 메모리 특성을 사용함으로써 가능하다. 문턱전압 이상의 전압이 액정층에 인가되면, 온(On)상태가 되며, 전압이 상당히 많이 낮아져도 메모리 특성에 의해 온(On)상태를 유지한다. 기존의 TN-LCD와 STN-LCD 패널은 전압이 내려가면 상태가 바뀌는 문제가 있다. 예를 들어, 오프(Off) 상태에서 검은 색, 온(On)상태에서 흰색인 경우 전압이 내려가면 흰색은 시간이 흐르면서 점차 검은 색에 가까워진다. 이 특성 때문에 대비비는 상대적으로 낮아지나, 계조표시 기능을 지니고 있다.Using this feature, a simple matrix drive is possible. The production cost is lower than TFT-LCD because TFT is not used. The characteristics of the simple matrix antiferroelectric liquid crystal panel provide higher contrast ratio and image quality than the STN-LCD panel using the simple matrix method. In most cases, the contrast ratio is between 30: 1 and 50: 1, compared to 10: 1 and 20: 1 for STN-LCDs. This is possible by using the antiferroelectric memory characteristic. When a voltage equal to or higher than the threshold voltage is applied to the liquid crystal layer, the device is turned on and maintained in the on state due to memory characteristics even when the voltage is considerably lowered. Conventional TN-LCD and STN-LCD panels have a problem that the state changes when the voltage drops. For example, if it is black in the off state and white in the on state, when the voltage decreases, the white color gradually approaches black over time. Because of this characteristic, the contrast ratio is relatively low, but has a gray scale display function.

반강유전성 액정의 경우 메모리 특성 때문에 계조표시를 달성하기가 어렵다는 단점이 있다. 그러나, 최근 안정상태의 강유전상과 반강유전상이 공존하는 중간상태를 유지할 수 있는 방법이 발견되었다.Semiferroelectric liquid crystals have a disadvantage in that gray scale display is difficult to achieve due to memory characteristics. However, recently, a method has been found to maintain an intermediate state in which a stable ferroelectric phase and an antiferroelectric phase coexist.

이 방법으로 메모리 효과와 계조표시 장점을 동시에 활용할 수 있게 되었다.In this way, the memory effect and gradation display advantages can be used simultaneously.

반강유전성 액정의 가장 좋은 장점 중의 하나는 넓은 시야각으로 약 160도이며, 기존의 네마틱 액정의 40도와 100도 수준과 비교할 때 놀라운 수준이다. 이것은 유리기판 사이에서 분자경사방향이 교대료 배치된 액정분자를 회전시켜 온/오프(On/Off)상태를 만들기 때문이다.One of the best advantages of the antiferroelectric liquid crystal is its wide viewing angle of about 160 degrees, which is surprising when compared to the 40 and 100 degrees of conventional nematic liquid crystals. This is because the liquid crystal molecules in which the molecular tilt direction is alternately arranged between the glass substrates are rotated to create an on / off state.

이러한, 반강유전성 액정 표시장치는 기존 액정 표시장치의 단점을 극복하는 뛰어난 특성에도 불구하고 배향이 네마틱 액정에 비해 어렵고 앞에서 언급한 바와 같이 액정 표시장치 후면에 백라이트를 설치해야 하는 투과형을 채택하고 있기 때문에 소비전력과 중량이 많이 나가는 점이 휴대용 액정 표시장치 용도로는 적합하지 않다.The anti-ferroelectric liquid crystal display has a transmissive type that requires a backlight to be installed on the back of the liquid crystal display despite the excellent characteristics of overcoming the disadvantages of the conventional liquid crystal display. Therefore, high power consumption and high weight are not suitable for use in portable liquid crystal display devices.

본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위하여 반강유전성 액정을 사용하고 한 장의 편광판과 위상지연판을 사용함으로써 높은 대비비와 고휘도, 넓은 시야각 및 빠른 응답특성을 가지는 반사형 반강유전성 액정 표시장치를 제공하는 데 있다.An object of the present invention is to use a semi-ferroelectric liquid crystal to solve the problems of the prior art, and by using a single polarizing plate and a phase delay plate, a reflection type antiferroelectric liquid crystal having high contrast ratio, high brightness, wide viewing angle and fast response characteristics. It is to provide a display device.

도 1 은 본 발명에 의한 반사형 반강유전성 액정 표시장치의 단면도.1 is a cross-sectional view of a reflective antiferroelectric liquid crystal display device according to the present invention;

도 2 는 반강유전성 액정 셀의 두께와 위상지연판의 위상차에 따른 반사광의 세기에 대한 시뮬레이션을 나타낸 도면으로, a)는 24.9도와 -24.9도의 분자경사각이 교대하는 반강유전상일 때이고, b)는 24.9도의 분자 경사각을 가지는 강유전상일 때이고, c)는 -24.9도의 분자경사각을 가지는 강유전상일 때를 나타낸 도면들.2 is a diagram showing the simulation of the intensity of the reflected light according to the thickness of the anti-ferroelectric liquid crystal cell and the phase difference of the phase delay plate, where a) is an antiferroelectric phase having alternating molecular tilt angles of 24.9 degrees and -24.9 degrees, and b) 24.9. C) is a ferroelectric phase having a molecular tilt angle of -24.9 degrees.

도 3 은 인가전압에 따른 반사된 광의 세기를 나타낸 그래프.3 is a graph showing the intensity of reflected light according to an applied voltage.

도 4 는 인가전압에 따른 반사광의 세기를 시간축 상에 나타낸 도면.4 is a diagram showing the intensity of reflected light according to an applied voltage on a time axis;

도 5 는 반사형 반강유전 액정 셀의 대비비를 나타낸 도면.5 shows the contrast ratio of a reflective antiferroelectric liquid crystal cell;

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

10. 유리기판 20. 금속전극10. Glass substrate 20. Metal electrode

30. 제 2 기판 40. 투명전극30. Second substrate 40. Transparent electrode

50. 배향막 60. AFLC50. Alignment layer 60. AFLC

70. 위상지연판 80. 편광판70. Phase delay plate 80. Polarizer plate

전술한 목적을 달성하기 위하여 본 발명의 장치는 반사판으로 제공되는 스트립 상의 금속전극이 형성된 제 1 기판과, 금속전극과는 직교되게 배치된 스트립 상의 투명전극이 형성되고, 배향막이 코팅된 제 2 기판과, 전극이 형성된 면이 마주보도록 된 제 1 및 제 2 기판 사이에 주입된 반유전성 액정과, 제 2 기판의 전극이 형성되지 않은 면에 배치된 위상지연판과, 위상지연판 상에 형성된 편광판을 구비한 것을 특징으로 한다.In order to achieve the above object, the apparatus of the present invention includes a first substrate on which a metal electrode on a strip provided as a reflecting plate is formed, and a second substrate on which a transparent electrode on a strip arranged orthogonally to the metal electrode is formed, and an alignment film is coated. And a semi-dielectric liquid crystal injected between the first and second substrates on which the surfaces on which the electrodes are formed face each other, a phase delay plate disposed on a surface on which the electrodes of the second substrate are not formed, and a polarizing plate formed on the phase delay plates. Characterized in that provided.

여기서, 액정의 분자경사각은 45도인 것이 바람직 하며, 본 실시예에서는 24.9도이다. 반강유전성 액정의 두께는 광학이방성(복굴절)과의 곱이 1/4 파장판이 되는 것이 바람직하며, 본 실시예에서는 약 2㎛이다. 또한, 위상지연판의 광축은 편광판의 광축에 대해 π/4 만큼 회전되어 있는 것을 특징으로 한다.Here, the molecular tilt angle of the liquid crystal is preferably 45 degrees, and in this embodiment is 24.9 degrees. The thickness of the antiferroelectric liquid crystal is preferably a product having a quarter wave plate with optical anisotropy (birefringence), which is about 2 m in this embodiment. The optical axis of the phase delay plate is rotated by [pi] / 4 with respect to the optical axis of the polarizing plate.

이하, 첨부한 도면을 참조하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 1 은 본 발명에 의한 반사형 반강유전성 액정 표시장치의 구성을 나타낸다. 본 발명의 액정 표시장치는 반사판으로 제공되는 스트립 상의 금속전극(20)이 형성된 제 1 유리기판(10)과, 금속전극(20)과는 직교되게 배치된 스트립 상의 투명전극(40)이 형성되고, 배향막(50)이 코팅된 제 2 기판(30)을 포함한다.1 shows the configuration of a reflective antiferroelectric liquid crystal display device according to the present invention. In the liquid crystal display of the present invention, a first glass substrate 10 having a metal electrode 20 formed on a strip provided as a reflecting plate, and a transparent electrode 40 formed on a strip disposed perpendicular to the metal electrode 20 are formed. And a second substrate 30 coated with the alignment layer 50.

즉, 제 1 유리기판(10)의 전면에 금속전극(20)이 띠모양으로 배열 증착된다. 여기서, 금속전극(20)은 전극의 역할과 동시에 반사판의 역할을 하며, 액정 바로 밑에 위치하기 때문에 수차를 방지할 수 있다. 또한, 금속전극(20)이 형성되지 않은 지역에 입사한 빛의 낮은 반사로 인한 대비비 및 해상도 저하를 방지하기 위하여 반사율이 높은 물질로 코딩하는 것이 바람직하다. 균일한 반사막이 형성되고 그 반사막 위에 투명전극이 형성된 제 1 유리기판을 사용할 수도 있다.That is, the metal electrodes 20 are deposited in a band shape on the entire surface of the first glass substrate 10. Here, the metal electrode 20 serves as a reflection plate at the same time as the electrode, it is located directly below the liquid crystal can prevent aberration. In addition, in order to prevent a decrease in contrast ratio and resolution due to low reflection of light incident on a region where the metal electrode 20 is not formed, it is preferable to encode a material having high reflectance. A first glass substrate having a uniform reflective film formed thereon and a transparent electrode formed thereon may be used.

제 2 기판(30)에는 ITO(induim thin oxide)와 같은 투명전극(40)을 제 1 기판(10)의 금속전극(20)과 직교되도록 배열 형성한다. 그리고, 그 위에 일본 Synthetic Rubber 사의 AL1051 등의 폴리이미드를 코팅하고 일정 방향으로 러빙하여 수평 배향막(50)을 형성한다.A transparent electrode 40 such as indium thin oxide (ITO) is arranged on the second substrate 30 so as to be orthogonal to the metal electrode 20 of the first substrate 10. Then, a polyimide such as AL1051 manufactured by Japanese Synthetic Rubber Co., Ltd. is coated thereon and rubbed in a predetermined direction to form a horizontal alignment layer 50.

이와 같이 구성된 두 장의 제 1 및 제 2 기판들(10, 30) 사이에 스페이서를 넣어서 두 기판 간의 간격이 2㎛정도로 유지되도록 한 다음에 그 사이에 반강유전성 액정(60)을 주입하고 밀봉한다. 여기서, AFLC는 Chisso Petrochimcal 사의 CS40001 등을 사용한다. 이 AFLC의 분극 Ps는 -79.8nC/㎠이고, 분자경사각은 24.9도이다.A spacer is inserted between the two sheets of first and second substrates 10 and 30 configured as described above to maintain the gap between the two substrates at about 2 μm, and then the antiferroelectric liquid crystal 60 is injected therebetween and sealed. Here, AFLC uses CS40001 etc. by Chisso Petrochimcal. The polarization Ps of this AFLC was -79.8 nC / cm 2, and the molecular tilt angle was 24.9 degrees.

이와 같이 구성된 AFLC 셀의 전면, 즉 제 2 기판(30)의 전면에는 위상지연판(70)이 설치되고, 위상지연판(70) 위에는 편광판(80)이 설치된다.The phase delay plate 70 is disposed on the front surface of the AFLC cell configured as described above, that is, the front surface of the second substrate 30, and the polarizer plate 80 is disposed on the phase delay plate 70.

편광판(80)의 광축은 AFLC(60)의 광축과 평행하다. 위상지연판(70)의 광축은 편광판(80)의 광축에 대해 π/4 만큼 회전되어 있다. 그리고, 위상지연판(70)은 입사광의 λ/4, 예컨대 544nm 입사광의 경우 136㎚의 상지연을 가진다.The optical axis of the polarizing plate 80 is parallel to the optical axis of the AFLC 60. The optical axis of the phase delay plate 70 is rotated by π / 4 with respect to the optical axis of the polarizing plate 80. The phase delay plate 70 has an image delay of λ / 4 of incident light, for example, 136 nm in the case of 544 nm incident light.

편광판을 투과한 입사광은 선편광된 상태가 된다. 이 빛이 위상지연판을 투과하면서 광학적인 특성에 의해서 빛은 원편광상태로 변화된다. AFLC의 반강유전상 상태에서는 빛이 액정층을 통과하여도 광학적인 변화를 주지 못한다. 액정층을 통과한 빛은 금속전극에 의해 반사되어 원편광의 방향만 변화시킨다. 즉, 좌선성 원편광은 우선성 원편광으로 우선성 원편광은 좌선성 원편광으로 변화된다.Incident light transmitted through the polarizing plate is linearly polarized. As this light penetrates the phase delay plate, the light is changed into a circularly polarized state by the optical characteristic. In the antiferroelectric state of AFLC, even though light passes through the liquid crystal layer, optical changes are not made. Light passing through the liquid crystal layer is reflected by the metal electrode to change only the direction of circularly polarized light. That is, the left circularly polarized light is changed to the preferential circularly polarized light, and the preferential circularly polarized light is changed to the left circularly polarized light.

금속전극에서 반사된 빛은 다시 액정층과 위상지연판을 통과한다. 원편광된 빛이 위상지연판을 통과하게 되면 다시 선편광으로 변화되지만 편광방향은 입사하여 편광판을 투과한 빛의 편광방향과 수직이 된다. 선편광된 빛이 위상지연판을 두 번 통과하면서 편광방향이 90도로 회전되게 된다. 그러므로, 반사된 빛은 전면의 편광판을 투과하지 못하므로 어두운 상태가 된다.Light reflected from the metal electrode passes through the liquid crystal layer and the phase delay plate again. When the circularly polarized light passes through the phase delay plate, the light is changed back to linearly polarized light, but the polarization direction is perpendicular to the polarization direction of the light incident and transmitted through the polarizer. As the linearly polarized light passes through the phase delay plate twice, the polarization direction is rotated by 90 degrees. Therefore, the reflected light does not penetrate through the polarizing plate on the front surface, and thus becomes dark.

반대로 액정층이 전압에 의해 강유전상으로 전이된 상태에서는 액정층은 일정한 크기의 유효 복굴절을 가진다. 위상지연판을 통과한 빛이 액정층에 입사되면 액정층이 가지는 위상차의 크기에 의해서 광학적인 효과가 다르게 나타난다.On the contrary, in the state where the liquid crystal layer is transferred to the ferroelectric phase by the voltage, the liquid crystal layer has an effective birefringence of a certain size. When light passing through the phase delay plate is incident on the liquid crystal layer, the optical effect is different depending on the magnitude of the phase difference of the liquid crystal layer.

예를 들면, 액정층의 위상차가 위상지연판과 마찬가지로 λ/4이라면, 액정층과 위상지연판의 위상지연은 서로 상쇄된다. 그러므로, 빛의 편광상태는 전혀 변화되지 않으며, 선편광된 상태로 반사되고, 반사된 빛이 액정층과 위상지연판을 지나 편광판을 투과하게 된다.For example, if the phase difference of the liquid crystal layer is lambda / 4 similar to the phase delay plate, the phase delays of the liquid crystal layer and the phase delay plate cancel each other out. Therefore, the polarization state of the light does not change at all, is reflected in the linearly polarized state, and the reflected light passes through the polarizing plate through the liquid crystal layer and the phase delay plate.

도 2 는 반강유전성 액정 셀의 두께와 위상지연판의 위상차에 따른 반사광의 세기에 대한 시뮬레이션을 나타낸 도면으로, a)는 24.9도와 -24.9도의 분자경사각이 교대하는 반강유전상일 때이고, b)는 24.9도의 분자 경사각을 가지는 강유전상일 때이고, c)는 -24.9도의 분자경사각을 가지는 강유전상일 때를 나타낸다.2 is a diagram showing the simulation of the intensity of the reflected light according to the thickness of the anti-ferroelectric liquid crystal cell and the phase difference of the phase delay plate, where a) is an antiferroelectric phase having alternating molecular tilt angles of 24.9 degrees and -24.9 degrees, and b) 24.9. C) represents a ferroelectric phase having a molecular tilt angle of -24.9 degrees.

도 2 는 2 ×2 Jones 매트릭스 방식에 의해 본 발명의 반사형 AFLC 셀의 반사광의 세기를 시뮬레이션한 것이다. 여기서, AFLC의 분자경사각은 24.9도이고 복굴절율은 0.088로 한 것이다.Figure 2 simulates the intensity of the reflected light of the reflective AFLC cell of the present invention by the 2 x 2 Jones matrix method. Here, the inclination angle of the AFLC is 24.9 degrees and the birefringence is 0.088.

도 2(a)의 반강유전상일 경우에는 543.5㎚의 입사광에 대해서 1/4파장인 135.9㎚와 반파장인 271.8㎚에서 무반사(0)와 전반사(1)가 수평선으로 나타난다.In the case of the antiferroelectric phase of Fig. 2 (a), antireflection (0) and total reflection (1) appear as horizontal lines at 135.9 nm, which is 1/4 wavelength, and 271.8 nm, which is half wavelength, for incident light of 543.5 nm.

도 2(b) 및 (c)의 강유전상일 경우에는 두께 2.3㎛와 1/4파장인 135.9㎚의 교차점에서 반사광의 세기가 1임을 알 수 있다. 그러므로, 두께 2.3㎛와 1/4파장인 135.9㎚에서 반강유전상일 경우에는 반사도가 0이고, 강유전상일 경우에는 반사도가 1임을 알 수 있으므로, 높은 대비비를 얻을 수 있다.In the ferroelectric phases of FIGS. 2 (b) and 2 (c), it can be seen that the intensity of the reflected light is 1 at the intersection point of 2.3 μm in thickness and 135.9 nm having a quarter wavelength. Therefore, since the reflectivity is 0 for the antiferroelectric phase and the reflectivity is 1 for the ferroelectric phase at a thickness of 2.3 μm and a quarter wavelength of 135.9 nm, a high contrast ratio can be obtained.

도 3 은 인가전압에 따른 반사된 광의 세기를 나타낸다.3 shows the intensity of the reflected light according to the applied voltage.

도 3 에서 실선은 시뮬레이션 결과이고, 점들은 실험결과를 나타낸다. 반사된 광의 세기는 문턱치인 9V/㎛ 이하에서는 선전이 효과에 의해 다소 증가하다가 문턱치 이상에서는 급격히 증가함을 알 수 있다. 밝은 상태는 10V/㎛에서 이루어진다. 따라서, 전기장에 의해 유도된 반강유전상에서 강유전상으로의 전이를 통해서 어둠과 밝음 사이의 쌍안정 스위칭을 달성할 수 있다. 선전이 효과가 큰 반강유전성 액정을 사용할 경우 제한된 계조표시 기능을 달성할 수 있다.In FIG. 3, the solid line represents the simulation result, and the points represent the experimental result. It can be seen that the intensity of the reflected light is slightly increased by the propagation effect below the threshold value of 9V / μm, but rapidly increases above the threshold value. The bright state is at 10V / μm. Thus, bistable switching between darkness and light can be achieved through the transition from the antiferroelectric phase to the ferroelectric phase induced by the electric field. When using antiferroelectric liquid crystals having a large propagation effect, limited gray scale display can be achieved.

도 4 는 인가전압에 따른 반사광의 세기를 시간축 상에 나타낸다. 즉, 본 발명에서는 전기장 인가시 어두운 상태에서 밝은 상태로 변하는 데에는 0.34㎳의 응답특성을 가지며, 밝은 상태에서 어두운 상태로 변하는 데는 4.72㎳의 응답특성을 가진다. 그러므로, 비디오 속도가 가능한 빠른 응답속도를 가진다.4 shows the intensity of the reflected light according to the applied voltage on the time axis. That is, in the present invention, when the electric field is applied, it has a response characteristic of 0.34 데 to change from a dark state to a bright state, and has a response characteristic of 4.72 ㎳ to change from a bright state to a dark state. Therefore, the video speed has the fastest response speed possible.

도 5 는 반사형 AFLC 셀의 등 대비비(iso-contrast ratio)를 나타낸다. 도 5 에 도시한 바와 같이 대칭적이고 넓은 시야각 특성을 가진다. 그리고, 백색광 하에서 대비비가 5:1 이상을 나타낸다.5 shows the iso-contrast ratio of reflective AFLC cells. As shown in FIG. 5, the symmetrical and wide viewing angle characteristics are shown. And the contrast ratio shows 5: 1 or more under white light.

이상과 같이 본 발명에서는 한 장의 편광판과 위상지연판을 사용하여 반사형 반강유전성 액정표시장치를 구현함으로써 높은 대비비, 넓은 시야각 및 빠른 응답속도가 가능하여 휴대용 장치에 있어서, 가볍고, 전력소모가 매우 작은 표시장치를 제공할 수 있다.As described above, the present invention implements a reflective antiferroelectric liquid crystal display device using a single polarizing plate and a phase delay plate to enable a high contrast ratio, a wide viewing angle, and a fast response speed in a portable device. A small display device can be provided.

Claims (7)

반사판으로 제공되는 스트립 상의 금속전극이 형성된 제 1 기판;A first substrate on which a metal electrode on a strip provided as a reflecting plate is formed; 상기 금속전극과는 직교되게 배치된 스트립 상의 투명전극이 형성되고, 배향막이 코팅된 제 2 기판;A second substrate on which a transparent electrode on a strip disposed orthogonal to the metal electrode is formed, and an alignment layer is coated; 전극이 형성된 면이 마주보도록 된 상기 제 1 및 제 2 기판 사이에 주입된 반유전성 액정;A semi-electric liquid crystal injected between the first and second substrates with the electrodes formed to face each other; 상기 제 2 기판의 전극이 형성되지 않은 면에 배치된 위상지연판; 및A phase delay plate disposed on a surface where the electrode of the second substrate is not formed; And 상기 위상지연판 상에 형성된 편광판을 구비한 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.A reflective antiferroelectric liquid crystal display device comprising a polarizing plate formed on the phase delay plate. 제 1 항에 있어서, 상기 액정의 분자 경사각은 20도와 60도 사이인 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display device according to claim 1, wherein the molecular tilt angle of the liquid crystal is between 20 and 60 degrees. 제 1 항에 있어서, 상기 반강유전성 액정의 두께와 광학이방성(복굴절)과의 곱이 입사광의 1/8 파장과 1/2 파장 사이인 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display according to claim 1, wherein the product of the thickness of the antiferroelectric liquid crystal and the optical anisotropy (birefringence) is between 1/8 wavelength and 1/2 wavelength of incident light. 제 1 항에 있어서, 상기 위상지연판의 위상지연이 입사광의 1/8 파장과 1/2 파장 사이값의 양의 정수인 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display device according to claim 1, wherein the phase delay of the phase delay plate is a positive integer of a value between 1/8 wavelength and 1/2 wavelength of incident light. 제 1 항에 있어서, 상기 위상지연판의 광축은 편광판의 광축에 대해 π/4 만큼 회전되어 있는 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display according to claim 1, wherein the optical axis of the phase delay plate is rotated by [pi] / 4 with respect to the optical axis of the polarizing plate. 제 1 항에 있어서, 균일한 반사막이 형성되고, 그 반사막 위에 투명전극이 형성된 제 1 기판을 구비한 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display device according to claim 1, further comprising a first substrate having a uniform reflective film formed thereon and a transparent electrode formed thereon. 제 1 항에 있어서, 편광판 상에 무반사막이 부착된 것을 특징으로 하는 반사형 반강유전성 액정 표시장치.The reflective antiferroelectric liquid crystal display device according to claim 1, wherein an antireflective film is attached on the polarizing plate.
KR1019990048984A 1999-11-05 1999-11-05 Antiferroelectric liquid crystal display for reflective type KR100358475B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019990048984A KR100358475B1 (en) 1999-11-05 1999-11-05 Antiferroelectric liquid crystal display for reflective type
PCT/KR2000/001265 WO2001033291A1 (en) 1999-11-05 2000-11-04 Antiferroelectric liquid crystal display for a reflective type
AU11774/01A AU1177401A (en) 1999-11-05 2000-11-04 Antiferroelectric liquid crystal display for a reflective type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990048984A KR100358475B1 (en) 1999-11-05 1999-11-05 Antiferroelectric liquid crystal display for reflective type

Publications (2)

Publication Number Publication Date
KR20010045641A true KR20010045641A (en) 2001-06-05
KR100358475B1 KR100358475B1 (en) 2002-10-25

Family

ID=19618844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990048984A KR100358475B1 (en) 1999-11-05 1999-11-05 Antiferroelectric liquid crystal display for reflective type

Country Status (3)

Country Link
KR (1) KR100358475B1 (en)
AU (1) AU1177401A (en)
WO (1) WO2001033291A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030059A1 (en) * 2006-09-08 2008-03-13 Lg Chem, Ltd. Mirror effect liquid crystal display device using reflection polarizer
KR101029671B1 (en) * 2009-04-13 2011-04-18 서울대학교산학협력단 Display using a vertically aligned deformed helix ferroelectric liquid crystals and multi electrode structure and method for producing the same
CN114647108A (en) * 2020-12-21 2022-06-21 斯沃奇集团研究和开发有限公司 Method for manufacturing liquid crystal display device and liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182925B2 (en) * 1992-10-15 2001-07-03 株式会社デンソー Liquid crystal display device
JPH08136913A (en) * 1994-11-11 1996-05-31 Matsushita Electric Ind Co Ltd Reflection type antiferroelectric liquid crystal display device
JP2798073B2 (en) * 1996-10-21 1998-09-17 日本電気株式会社 Reflective liquid crystal display
JPH11249179A (en) * 1998-02-27 1999-09-17 Casio Comput Co Ltd Liquid crystal display cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030059A1 (en) * 2006-09-08 2008-03-13 Lg Chem, Ltd. Mirror effect liquid crystal display device using reflection polarizer
US8054417B2 (en) 2006-09-08 2011-11-08 Lg Chem, Ltd. Mirror effect liquid crystal display device using reflection polarizer
KR101029671B1 (en) * 2009-04-13 2011-04-18 서울대학교산학협력단 Display using a vertically aligned deformed helix ferroelectric liquid crystals and multi electrode structure and method for producing the same
CN114647108A (en) * 2020-12-21 2022-06-21 斯沃奇集团研究和开发有限公司 Method for manufacturing liquid crystal display device and liquid crystal display device

Also Published As

Publication number Publication date
WO2001033291A1 (en) 2001-05-10
KR100358475B1 (en) 2002-10-25
AU1177401A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US5726723A (en) Sub-twisted nematic liquid crystal display
US6341002B1 (en) Liquid crystal display device
US7639327B2 (en) Liquid crystal display and electronic apparatus having a quasi-isotropic liquid crystal material
KR100895155B1 (en) Transflective liquid crystal display device and method of generating a pattterned ?/4 foil
KR100722458B1 (en) Liquid crystal display device
US20020180913A1 (en) Reverse reflectance mode direct-view liquid crystal display employing a liquid crystal having a characteristic wavelength in the non-visible spectrum
JP3410663B2 (en) Liquid crystal display
US6469768B1 (en) Bistable twisted nematic mode reflective liquid crystal display
US6067142A (en) Vertically aligned pi-cell LCD having on-state with mid-plane molecules perpendicular to the substrates
US20050206811A1 (en) Novel optical configurations in high contrast chiral nematic liquid crystal displays
US5604616A (en) Dual function electro-optical display device exhibiting a bistable image or a fugitive image depending the applied voltage
KR100358475B1 (en) Antiferroelectric liquid crystal display for reflective type
JPS60117283A (en) Improvement in liquid crystal display unit
KR20010042793A (en) Reflection liquid crystal display device
JP2001311969A (en) Light modulating device
KR100562174B1 (en) Transflective Liquid Crystal Display
JPH0720471A (en) Reflection type liquid crystal display device
KR20100102722A (en) Transflective liquid crystal display device
GB2307562A (en) A display device
JP3619506B2 (en) Liquid crystal display
KR100446375B1 (en) Semi-transmission type liquid crystal display using fringe filed switching mode
KR101338661B1 (en) Transflective Liquid Crystal Display Device
JP3619507B2 (en) Liquid crystal display
KR100312687B1 (en) Bistable twisted nematic liquid crystal display having both of transparent and reflective mode
KR20040061425A (en) FFS mode LCD vertical aligned feroelectric liquid

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051017

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee