KR20010045176A - method for control of a solution pump of ammonia absorption heat pumps - Google Patents

method for control of a solution pump of ammonia absorption heat pumps Download PDF

Info

Publication number
KR20010045176A
KR20010045176A KR1019990048370A KR19990048370A KR20010045176A KR 20010045176 A KR20010045176 A KR 20010045176A KR 1019990048370 A KR1019990048370 A KR 1019990048370A KR 19990048370 A KR19990048370 A KR 19990048370A KR 20010045176 A KR20010045176 A KR 20010045176A
Authority
KR
South Korea
Prior art keywords
motor
speed
measured
solution pump
input voltage
Prior art date
Application number
KR1019990048370A
Other languages
Korean (ko)
Other versions
KR100313904B1 (en
Inventor
오세기
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019990048370A priority Critical patent/KR100313904B1/en
Publication of KR20010045176A publication Critical patent/KR20010045176A/en
Application granted granted Critical
Publication of KR100313904B1 publication Critical patent/KR100313904B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE: A method for controlling operation of liquid pump is provided to protect solution pump by sensing an abnormal operation of the solution pump utilizing rotational frequency of the motor. CONSTITUTION: A method comprises a step(S1) of operating the solution pump by inputting a voltage according to the normal operation condition; a step(S2) of measuring rotational frequency of the motor; a step(S3) of comparing the measured rotational frequency of the motor and the rotational frequency of the motor at the voltage applied in the step(S1), and judging whether the measured rotational frequency of the motor falls within the range of the minimum rotational frequency to the maximum rotational frequency; a step(S4) of proceeding with the operation, adjusting input voltage of the solution pump or adjusting the motor at the lowest speed in accordance with the result of judgement of the step(S3); a step(S5) of measuring again the rotational frequency of the motor after an elapse of a predetermined time period; a step(S6) of comparing the measured rotational frequency of the motor and the rotational frequency of the motor at the voltage input according to the normal operation conditioner, and judging whether the measured rotational frequency of the motor falls within the range of the minimum rotational frequency to the maximum rotational frequency; a step(S7) of proceeding with the normal operation or turning off the motor in accordance with the result of judgement in the step(S6); and a step(S8) of re-starting the solution pump after an elapse of a predetermined time since turn off of the motor.

Description

암모니아 흡수식 히트펌프의 용액펌프 제어방법{method for control of a solution pump of ammonia absorption heat pumps}Method for control of a solution pump of ammonia absorption heat pumps

본 발명은 암모니아 흡수식 히트펌프에 관한 것으로, 특히 암모니아 흡수식 히트펌프의 용액펌프로 기어형 펌프가 사용되는 경우, 이 기어형 용액펌프의 회전수를 이용하여 운전 중 과부하 운전 또는 기상유입 운전 등의 이상상태운전을 감지하여 제어할 수 있도록 된 암모니아 흡수식 히트펌프의 용액펌프 제어방법에 관한 것이다.The present invention relates to an ammonia absorption heat pump, and in particular, when a gear pump is used as a solution pump of an ammonia absorption heat pump, an abnormality such as an overload operation or a gas phase inflow operation during operation by using the rotation speed of the gear solution pump. The present invention relates to a method for controlling a solution pump of an ammonia absorption heat pump that can detect and control state operation.

일반적으로, 암모니아 흡수식 히트펌프는 도 1에 도시된 바와 같이, 재생기(1)와, 정류기(2), 응축기(3), 과냉각기(4), 증발기(5), 수냉각흡수기(6; water cooled absorber) 및, 용액냉각흡수기(7; solution cooled absorber)로 구성된 열교환기와, 용액펌프(8), 용액탱크(9) 및 버너(10) 등으로 구성된다.In general, the ammonia absorption heat pump includes a regenerator 1, a rectifier 2, a condenser 3, a supercooler 4, an evaporator 5, and a water cooling absorber 6, as shown in FIG. and a heat exchanger composed of a cooled absorber and a solution cooled absorber 7, a solution pump 8, a solution tank 9, a burner 10, and the like.

이하, 상기와 같은 구성으로 된 히트펌프의 작동에 대해 설명한다.Hereinafter, the operation of the heat pump having the above configuration will be described.

상기 재생기(1; generator)는 냉매인 암모니아를 분리시키는 역할을 하는데, 상기 버너(10)에서 열을 가해주면 비등(boiling)이 발생하여 암모니아 농도가 낮은 용액(이하 약용액이라함)과 저농도 냉매증기가 발생하게 된다.The regenerator 1 serves to separate ammonia, which is a refrigerant, and when the burner 10 is heated, boiling occurs, resulting in a solution having a low ammonia concentration (hereinafter referred to as a chemical solution) and a low concentration refrigerant. Steam will be generated.

이어서, 발생된 냉매증기는 상승하여 정류기(2;rectifier)로 유입되고, 약용액은 팽창변(12; expansion device)을 거쳐 저압력부인 용액냉각흡수기(7)의 상단부로 유입된다.Subsequently, the generated refrigerant vapor rises and flows into the rectifier (2; rectifier), and the chemical solution flows into the upper end portion of the solution cooling absorber (7), which is a low pressure part, through an expansion device (12).

한편, 상기 정류기(2)에서 냉매증기는 내부를 흐르는 저온의 강용액에 의한 응축 열전달현상으로 고농도로 정류되어 응축기(3)로 이동하고, 이 응축기(3)에서 냉각수에 의해 응축되어 액냉매로 된다.On the other hand, the refrigerant vapor in the rectifier (2) is rectified in a high concentration by the condensation heat transfer phenomenon by the low temperature steel solution flowing inside the condenser (3), and condensed by the cooling water in the condenser (3) to the liquid refrigerant do.

이어 상기 응축기(3)의 액냉매는 과냉각기(4)에서 더욱 과냉되어 유출되며, 팽창변(11)을 거쳐 증발기(5)로 유입되어 냉수(15; chilled water)와의 열교환에 의하여 냉매는 이상(two phase)으로 비등하고, 냉수온도는 하강하여 냉방부하를 얻게 된다.Subsequently, the liquid refrigerant of the condenser 3 is further subcooled in the subcooler 4 and flows out. The liquid refrigerant is introduced into the evaporator 5 through the expansion valve 11 and the refrigerant is abnormal by heat exchange with chilled water 15 ( boiling in two phases, the cold water temperature is lowered to obtain a cooling load.

상기 증발기(5)에서 유출된 이상류의 냉매는 다시 과냉각기(4)로 유입되고, 이 과냉각기(4)에서 상대적으로 고온의 액냉매와 열교환하여 더욱 비등하여 수냉각흡수기(6)의 하단으로 유입된다.The coolant of the ideal flow flowing out of the evaporator 5 flows back into the subcooler 4, and heats with a relatively high temperature liquid refrigerant in the subcooler 4 to further boil it, thereby lowering the bottom of the water cooling absorber 6. Flows into.

상기 수냉각흡수기(6)로 유입된 냉매증기는 용액냉각흡수기(7)의 상단으로 유입된 약용액과 혼합되어 흡수현상이 발생하여 수냉각흡수기(6)의 하단부에 강용액이 생성된다. 이 때, 발생되는 흡수열은 수냉각흡수기(6)의 냉각수(14)와 용액냉각흡수기(7) 내부를 흐르는 강용액에 의하여 제거된다.The refrigerant vapor introduced into the water cooling absorber 6 is mixed with the medicinal solution introduced into the upper end of the solution cooling absorber 7 to generate an absorption phenomenon, thereby generating a strong solution at the lower end of the water cooling absorber 6. At this time, the generated heat of absorption is removed by the cooling solution 14 of the water cooling absorber 6 and the strong solution flowing inside the solution cooling absorber 7.

그리고, 상기 수냉각흡수기(6) 하단부 출구의 강용액은 용액탱크(9)에서 기액이 분리된 후, 용액펌프(8)에 의하여 승압되어 정류기(2)와 용액냉각흡수기(7)를 차례로 거치며 온도가 상승하여 재생기(1)로 유입되고, 다시 상기와 같은 과정을 반복한다.The liquid solution at the outlet of the lower end of the water cooling absorber 6 is separated from the liquid tank 9 by the liquid solution, and then boosted by the solution pump 8 to pass through the rectifier 2 and the solution cooling absorber 7. The temperature rises and flows into the regenerator 1, and the above process is repeated.

그러나, 상기와 같은 구성 및 작용으로 이루어진 암모니아 흡수식 히트펌프에서 상기 용액펌프(8)가 기어형 펌프로 된 경우, 용액펌프(8) 내에 기상이 유입되면 기어의 마모가 진행되어 펌프의 성능이 저하되고, 펌프 양단의 차압이 최고압을 넘어서는 경우에는 모터가 과열되는 문제점이 발생할 수도 있었다.However, when the solution pump 8 is a gear-type pump in the ammonia absorption heat pump having the above-described configuration and operation, when the gaseous phase flows into the solution pump 8, the wear of the gear proceeds and the performance of the pump is deteriorated. If the differential pressure at both ends of the pump exceeds the maximum pressure, the motor may be overheated.

따라서, 종래에는 상기와 같은 문제점을 해결하기 위하여, 펌프 입구의 용액탱크(9)의 크기를 충분히 크게 형성하여 용액펌프(8)의 운전 중에 용액탱크(9) 내에 일정량 이상의 용액이 항상 보유되도록 하여 용액펌프(8)로 항상 용액이 유입될 수 있도록 하거나, 혹은 용액탱크(8) 내에 수위를 감지하는 수위센서를 부착하여 항상 일정수위가 되도록 펌프를 제어하는 방식을 이용하였다.Therefore, in order to solve the above problems, the size of the solution tank 9 at the pump inlet is sufficiently large so that a predetermined amount or more of the solution is always retained in the solution tank 9 during operation of the solution pump 8. The solution was introduced into the solution pump 8 or a method of controlling the pump to always be at a constant level by attaching a water level sensor to detect the water level in the solution tank 8.

그러나, 상기와 같이 용액탱크(9)의 용적을 크게 형성하는 경우, 히트펌프 시스템 전체의 크기가 증가하게 되고 용액 충진량이 증가하게 되는 문제점이 있었다.However, when forming a large volume of the solution tank 9 as described above, there is a problem that the size of the entire heat pump system is increased and the solution filling amount is increased.

또한, 용액펌프(8) 내에 수위센서를 부착하는 경우에는, 고압의 탱크 내에 센서를 설치하고 신호를 펌프 외부로 송신해야 함에 따라 펌프의 밀폐 및 내압 유지에 문제를 일으킬 수 있으며, 암모니아 수용액의 부식성으로 인해 센서의 재료선정이 어렵고, 특히 동작부가 있는 경우 내구성에 문제를 일으킬 수 있었다. 또한, 암모니아 수용액의 부식에 의한 부유물이 발생하는 경우에는 이 부유물에 의해 수위센서가 오작동하여 펌프에 영향을 미칠 수 있는 문제점이 있었다.In addition, in the case of attaching the water level sensor in the solution pump 8, the sensor must be installed in the high pressure tank and a signal must be transmitted to the outside of the pump, which may cause problems in the sealing of the pump and maintaining the internal pressure. Due to this, it is difficult to select the material of the sensor, and in particular, there may be a problem in durability when there is a moving part. In addition, when a float occurs due to corrosion of the aqueous ammonia solution, there is a problem that the water level sensor may malfunction due to the float and affect the pump.

이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 시스템 전체의 크기를 증가시키지 않으며, 센서와 같이 용액펌프 내부에 추가의 장치를 장착하지 않고서도 용액펌프 내의 기상 유입과 과부하로 인한 이상상태운전을 감지하여 용액펌프를 보호할 수 있도록 된 암모니아 흡수식 히트펌프의 용액펌프 제어방법을 제공함에 그 목적이 있다.Therefore, the present invention has been made to solve the above problems, does not increase the size of the entire system, and the abnormality due to gas phase inflow and overload in the solution pump without installing additional devices inside the solution pump, such as sensors It is an object of the present invention to provide a method for controlling a solution pump of an ammonia absorption heat pump that can detect a state operation and protect the solution pump.

도 1은 일반적인 암모니아 흡수식 히트펌프의 구성 및 작동을 나타낸 구성도1 is a configuration diagram showing the configuration and operation of a general ammonia absorption heat pump

도 2a는 용액펌프의 용액토출량과 펌프 양단 차압 및 모터 회전수의 관계를 나타낸 그래프Figure 2a is a graph showing the relationship between the solution discharge amount and the pump pressure difference between the pump and the motor speed of the solution pump

도 2b는 용액펌프의 모터회전수와 펌프 양단 차압과 모터 입력전압의 관계를 나타낸 그래프Figure 2b is a graph showing the relationship between the motor speed of the solution pump, the differential pressure across the pump and the motor input voltage

도 3은 본 발명에 따른 용액펌프 제어방법을 나타낸 플로우차트Figure 3 is a flow chart showing a solution pump control method according to the present invention

도면의 주요부분의 설명Description of the main parts of the drawings

S1 - 정상상태 전압입력단계 S2 - 측정단계S1-steady state voltage input stage S2-measuring stage

S3 - 비교판단단계 S4 - 조정단계S3-Comparison judgment stage S4-Adjustment stage

S5 - 2차측정단계 S6 - 2차비교판단단계S5-Second measurement step S6-Second comparison judgment step

S7 - 제어단계 S8 - 재기동단계S7-Control step S8-Restart step

상기와 같은 목적을 달성하기 위하여 본 발명 제어방법은, 용액펌프에 정상상태 운전조건에 의한 입력전압을 인가하여 운전한 다음, 운전중인 모터의 회전수를 측정하여 상기 입력된 모터 회전수와 비교하고, 상기 측정된 모터의 회전수가 미리 입력된 정상상태운전의 모터 회전수 범위 내에 있는지를 판별하여, 용액펌프가 정상상태운전인가, 또는 기상유입이나 과부하에 의한 이상상태운전인가를 감지하여 각 상태에 따라 제어하도록 된 것이다.In order to achieve the above object, the control method of the present invention is operated by applying an input voltage according to a steady state operating condition to a solution pump, and then measuring the number of rotations of the motor in operation and comparing it with the input motor speed. By determining whether the measured speed of the motor is within the range of the motor speed of the steady state operation inputted in advance, and detecting whether the solution pump is in the steady state operation or the abnormal state operation caused by meteorological inflow or overload. To control accordingly.

이하 본 발명에 따른 제어방법의 일 실시예를 첨부된 도면을 참조로 상세히 설명한다.Hereinafter, an embodiment of a control method according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 따른 제어방법은 모터 회전수를 이용하여 정상상태운전과 이상상태운전을 감지하여 제어하는 것으로, 다음과 같은 기어형 용액펌프의 운전특성에 의해 정상상태 운전조건을 얻는다.First, the control method according to the present invention detects and controls the steady state operation and the abnormal state operation using the motor rotational speed, and obtains the steady state operating conditions by the following operating characteristics of the gear-type solution pump.

도 2a에 도시된 바와 같이, 용액펌프의 용액토출량은 펌프 양단 차압이 증가하면 감소하고, 모터 회전수가 증가하면 용액토출량과 펌프 양단 차압은 각각 증가한다.As shown in FIG. 2A, the solution discharge amount of the solution pump decreases as the pressure difference across the pump increases, and the solution discharge amount and the pressure difference across the pump increase respectively when the motor rotation speed increases.

따라서, 상기와 같은 관계에 의해 펌프의 운전범위에서 각각의 회전수에 따른 차압과 토출량의 관계를 실험적으로 얻을 수 있다. 이 때, 적절히 설계된 기어형 용액펌프에서는 용액 점도에 따른 영향이 크지 않으며 운전범위의 평균치의 값을 대표값으로 사용할 수 있다.Therefore, the relationship between the differential pressure and the discharge amount according to the respective rotation speeds in the pump operating range can be experimentally obtained by the above relationship. At this time, in a properly designed gear type pump, the influence of the solution viscosity is not large and the average value of the operating range may be used as a representative value.

또한, 일반적인 모터의 회전수는 모터 입력전압으로 제어되며, 모터 입력전압에 따른 모터의 회전수와 펌프 양단 차압은 도 2b에 도시된 것과 같이, 펌프 양단 차압이 증가함에 따라 동일 입력전압에서도 회전수가 저하하게 되며, 모터의 입력전압이 증가하면 모터 회전수와 펌프 양단 차압이 각각 증가하는 관계를 보인다. 이와 같은 관계 또한 실험을 통하여 얻을 수 있다.In addition, the rotational speed of a general motor is controlled by the motor input voltage, and the rotational speed of the motor and the differential pressure across the pump according to the motor input voltage are rotated at the same input voltage as the differential pressure across the pump increases as shown in FIG. 2B. When the input voltage of the motor increases, the motor speed and the differential pressure between the pumps increase. This relationship can also be obtained through experiments.

따라서, 상기와 같은 관계들에 의해 정상상태의 운전 조건과 이 때의 입력전압치를 얻을 수 있으며, 이러한 정상상태의 운전 조건 및 입력전압은 본 발명 제어방법에 있어서 이상상태 운전을 판단하는 기준을 제공한다.Therefore, it is possible to obtain a steady state operating condition and an input voltage value at this time by the above relationships, and the steady state operating condition and input voltage provide a criterion for determining an abnormal state operation in the control method of the present invention. do.

즉, 펌프에 기상이 유입되는 경우에는 모터 회전수가 상기 정상상태 운전조건의 모터 회전수 이상으로 상승하고, 용액펌프에 과부하가 걸리는 경우에는 모터의 회전수가 상기 정상상태 운전조건의 모터 회전수 이하로 감소하게 되므로, 각각의 모터회전수에 따른 용액펌프의 상태를 판별하여 제어하게 되는 것이다.That is, when the gaseous phase flows into the pump, the motor speed rises above the motor speed under the above-mentioned steady state operating condition, and when the solution pump is overloaded, the speed of the motor falls below the motor speed under the above-mentioned steady state operating condition. Since it is reduced, it is to determine and control the state of the solution pump according to each motor speed.

한편, 도 3은 본 발명에 따른 용액펌프 제어방법을 나타낸 플로우차트로, 본 발명 제어방법은, 정상상태 운전조건에 따른 입력전압을 인가하여 용액펌프를 운전하는 정상상태 전압입력단계(S1)와, 운전중인 모터의 회전수를 측정하는 측정단계(S2)와, 상기 측정단계(S2)에서 측정된 모터의 회전수와 상기 전압입력단계(S1)에서 입력된 정상상태 입력전압에서의 모터 회전수를 비교하여, 측정된 모터회전수가 입력전압에서의 최소회전수 및 최대회전수 범위 내에 있는가의 여부를 판단하는 비교판단단계(S3)와, 상기 비교 판단된 모터회전수에 따라 계속 운전을 하거나, 용액펌프의 입력전압을 조정하거나, 혹은 모터를 최저 속도로 운전하도록 조정하는 조정단계(S4)와, 상기 조정단계(S4) 이후 일정시간이 경과한 다음 모터의 회전수를 재측정하는 2차 측정단계(S5)와, 상기 2차 측정단계(S5)에서 측정된 실제 모터의 회전수와 정상상태 입력전압에서의 모터 회전수를 비교하여 측정된 모터회전수가 입력전압에서의 최소회전수 및 최대회전수 범위 내에 있는지를 판단하는 2차 비교판단단계(S6)와, 상기 2차 비교판단단계(S6)에서 판단된 회전수에 따라 계속 정상상태운전을 유지하거나, 모터를 정지시키도록 제어하는 제어단계(S7)와, 상기 제어단계(S7)에서 모터가 정지된 경우 일정시간 경과후 용액펌프를 재기동시키는 재기동단계(S8)들이 순차적으로 이루어진다.On the other hand, Figure 3 is a flow chart showing a solution pump control method according to the present invention, the control method of the present invention, the steady-state voltage input step (S1) and operating the solution pump by applying an input voltage according to the steady-state operating conditions and The measuring step (S2) of measuring the rotational speed of the motor in operation, the rotational speed of the motor measured in the measuring step (S2) and the motor rotational speed at the steady state input voltage input in the voltage input step (S1) Compared to, and comparing with the determination step (S3) for determining whether the measured motor speed is within the minimum and maximum speed range of the input voltage, and continues to operate according to the motor speed determined by the comparison, Adjusting the input voltage of the solution pump, or adjusting the step (S4) to operate the motor at the minimum speed, and the second measurement to re-measure the rotational speed of the motor after a certain time after the adjustment step (S4) only (S5) and the motor speed measured by comparing the actual motor speed measured in the second measurement step (S5) and the motor speed at the steady state input voltage, the minimum and maximum speed at the input voltage Control step of controlling to maintain the steady state operation or stop the motor according to the second comparison determination step (S6) to determine whether it is within the range and the rotation speed determined in the second comparison determination step (S6) ( S7) and restarting step (S8) for restarting the solution pump after a predetermined time when the motor is stopped in the control step (S7) is made sequentially.

상기 정상상태 전압입력단계(S1)에서는 도 2a와 도 2b에서 설명한 운전특성에 의해 얻어진 정상상태 운전조건 및 입력전압에 따라, 정상상태 운전에 요구되는 입력전압이 용액펌프에 인가되어 운전된다.In the steady state voltage input step S1, an input voltage required for the steady state operation is applied to the solution pump according to the steady state operating condition and the input voltage obtained by the operating characteristics described with reference to FIGS. 2A and 2B.

또한, 상기 비교판단단계(S3)에서는 측정된 모터의 회전수를 입력전압에서의 모터회전수와 비교하여 용액펌프가 정상상태 운전중인지, 또는 이상상태 운전중인지를 판단하게 되는데, 이 때 이상상태 운전을 정확히 판단하기 위해서는 정상상태 운전에서의 모터 회전수에 대한 데이터 베이스가 필요하며, 이러한 정상상태 운전자료는 통상적으로 냉난방기의 운전 알고리즘에 포함되어 있으므로 사실상 추가로 입력할 필요없이 기존의 자료들을 그대로 활용할 수 있다.In addition, in the comparison determination step (S3) by comparing the measured motor rotation speed with the motor rotation speed at the input voltage, it is determined whether the solution pump is in a steady state operation or an abnormal state operation. In order to accurately determine the accuracy of the motor, a database on the motor rotation speed is required, and since the normal operation data is usually included in the operation algorithm of the air conditioner, the existing data can be used without any additional input. Can be.

그리고, 상기 조정단계(S4)에서는 상기 비교판단단계(S3)에서의 판정에 따라 용액펌프의 작동을 조정하게 되는데, 측정된 모터 회전수가 입력전압에서의 모터 회전수 범위 내에 있는 경우에는 용액펌프의 작동을 조정할 필요없이 그대로 운전이 진행되고, 측정된 모터 회전수가 입력전압에서의 최소 모터회전수보다 작은 경우는 펌프에 과부하가 걸린 것으로 판정되므로 입력전압을 상승시키도록 용액펌프 작동을 조정하는 한편, 측정된 모터 회전수가 입력전압에서의 최대 모터회전수보다 큰 경우에는 용액펌프에 기상 유입이 발생한 것으로 판정되므로, 모터를 최저속도로 운전하여 용액펌프의 기어의 마모를 방지하면서 토출량을 줄이고 새로운 정상 상태 자료를 획득하도록 조정하게 된다.And, in the adjusting step (S4) to adjust the operation of the solution pump in accordance with the determination in the comparison determination step (S3), if the measured motor speed is within the range of the motor speed at the input voltage of the solution pump The operation proceeds as it is without the need to adjust the operation, and if the measured motor speed is less than the minimum motor speed at the input voltage, it is determined that the pump is overloaded, so the solution pump operation is adjusted to increase the input voltage. If the measured motor speed is greater than the maximum motor speed at the input voltage, it is determined that gas phase inflow has occurred in the solution pump. Will be adjusted to obtain data.

그리고, 상기 비교판단단계(S3)에서 이상상태 운전으로 판단되어 조정단계(S4)를 거쳐 용액펌프의 작동이 조정된 경우, 일정시간이 경과한 후 다시 모터의 회전수를 측정, 입력전압에서의 모터 회전수와 비교하여, 정상상태 운전조건을 회복하지 못하고 계속 이상상태 운전조건이 발생할 때에는 상기 제어단계(S7)에서 용액펌프의 운전을 중단하게 된다.Then, when it is determined that the abnormal state operation in the comparison determination step (S3) and the operation of the solution pump is adjusted through the adjustment step (S4), after the predetermined time has elapsed again measures the rotational speed of the motor, Compared with the motor rotation speed, when the steady state operating condition is not restored and the abnormal state operating condition occurs, the operation of the solution pump is stopped in the control step S7.

이 때, 고압부로부터 용액이 역류하는 것을 방지하기 위하여 펌프 토출구에 체크밸브를 설치하는 것이 바람직하다.At this time, it is preferable to provide a check valve at the pump discharge port to prevent the solution from flowing back from the high pressure portion.

상기와 같이 이상상태 운전이 지속적으로 발생하여 용액펌프의 가동을 중지한 후, 일정시간이 경과한 후 재기동시키게 되는데, 만일 펌프 토출구에 체크밸브가 설치되지 않은 경우에는 고압부의 용액이나 기체가 흡수기 측으로의 역류가 일정수준 이하로 줄어들어 펌프의 기동이 가능할 때까지 기다린 후 재기동해야 한다.As the abnormal state operation occurs as described above, the solution pump is stopped and restarted after a certain time. If a check valve is not installed at the pump outlet, the solution or gas of the high pressure part is directed to the absorber side. Wait until the pump is able to start because the backflow of the pump is reduced below a certain level and must be restarted.

이상에서와 같이 본 발명에 따르면, 모터의 회전수를 이용하여 용액펌프의 이상상태 운전을 감지하여 제어할 수 있게 되므로, 용액탱크의 용적을 증가시킴에 따라 시스템 전체의 크기와 중량 및 용액 충진량을 증가시키거나 용액펌프 내에 수위센서를 장착할 필요없이 용액펌프의 안정성을 확보할 수 있게 된다.As described above, according to the present invention, it is possible to detect and control the abnormal operation of the solution pump by using the rotational speed of the motor, so as to increase the volume of the solution tank, the size and weight of the system and the amount of solution filling It is possible to ensure the stability of the solution pump without increasing or mounting a level sensor in the solution pump.

Claims (1)

정상상태 운전조건에 따른 입력전압을 인가하여 용액펌프를 운전하는 정상운전상태 전압입력단계와,A normal operation state voltage input step of operating a solution pump by applying an input voltage according to a steady state operation condition; 상기 용액펌프를 운전하는 도중 운전중인 모터의 회전수를 측정하는 측정단계와,A measurement step of measuring a rotation speed of a motor in operation while driving the solution pump; 상기 측정단계에서 측정된 모터의 회전수와 상기 정상상태 입력전압에서의 모터 회전수를 비교하여, 측정된 모터회전수가 입력전압에서의 최소회전수 및 최대회전수 범위 내에 있는가의 여부를 판단하는 비교판단단계와,Comparison of judging whether the measured motor speed is within the minimum speed and maximum speed range of the input voltage by comparing the speed of the motor measured in the measuring step with the speed of the motor at the steady state input voltage. Judgment phase, 상기 비교판단단계에서 측정된 회전수가 정상상태 입력전압에서의 모터 회전수 범위 내의 값으로 판단된 경우 계속 정상상태운전을 유지하고, 측정된 회전수가 입력전압에서의 최대 회전수 이상의 값을 갖는 것으로 판단된 경우에는 기상이 유입된 것으로 판정하여 모터를 최저속도로 운전시키며, 측정된 회전수가 입력전압에서의 최소 회전수 이하의 값을 갖는 것으로 판단된 경우에는 과부하로 판정하여 입력전압을 상승시키도록 조정하는 조정단계와,When the rotation speed measured in the comparison determination step is determined to be a value within the range of the motor rotation speed at the steady state input voltage, it is determined that the steady state operation is continued and the measured rotation speed is greater than or equal to the maximum rotation speed at the input voltage. If it is determined that the weather has flowed in, the motor is operated at the minimum speed, and if it is determined that the measured speed has a value less than the minimum speed at the input voltage, it is determined to be overloaded and the input voltage is increased. To make adjustments, 상기 조정단계 이후 일정시간이 경과한 다음 모터의 회전수를 재측정하는 2차 측정단계와,A second measurement step of re-measuring the rotational speed of the motor after a predetermined time elapses after the adjusting step; 상기 2차측정단계에서 측정된 실제 모터의 회전수와 정상상태운전에서의 모터의 회전수를 비교하여 측정된 모터회전수가 입력전압에서의 최소회전수 및 최대회전수 범위 내에 있는지를 판단하는 2차비교판단단계와,The second step of determining whether the measured motor speed is within the minimum and maximum speed range of the input voltage by comparing the actual speed of the motor measured in the second measurement step with the speed of the motor in the steady state operation. Comparison judgment step, 상기 2차비교판단단계에서 측정된 모터 회전수가 기준 모터 회전수 범위 내에 있는 것으로 판단된 경우 계속 정상상태운전을 유지하고, 판단된 회전수가 정상상태운전의 회전수 범위 내에 있지 않을 경우 모터를 정지시키도록 제어하는 제어단계와,If it is determined that the motor speed measured in the second comparison determination step is within the reference motor speed range, the motor continues to operate in a steady state, and if the determined speed is not within the speed range of the steady state operation, the motor is stopped. A control step to control the 상기 제어단계에서 모터가 정지된 경우 일정시간 경과후 용액펌프를 재기동 시키는 재기동단계들이 순차적으로 이루어진 암모니아 흡수식 히트펌프의 용액펌프 제어방법.Solution pump control method of the ammonia absorption heat pump made of a restart step of restarting the solution pump after a predetermined time when the motor is stopped in the control step.
KR1019990048370A 1999-11-03 1999-11-03 method for control of a solution pump of ammonia absorption heat pumps KR100313904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990048370A KR100313904B1 (en) 1999-11-03 1999-11-03 method for control of a solution pump of ammonia absorption heat pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990048370A KR100313904B1 (en) 1999-11-03 1999-11-03 method for control of a solution pump of ammonia absorption heat pumps

Publications (2)

Publication Number Publication Date
KR20010045176A true KR20010045176A (en) 2001-06-05
KR100313904B1 KR100313904B1 (en) 2001-11-26

Family

ID=19618326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990048370A KR100313904B1 (en) 1999-11-03 1999-11-03 method for control of a solution pump of ammonia absorption heat pumps

Country Status (1)

Country Link
KR (1) KR100313904B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919485B2 (en) * 1989-06-09 1999-07-12 三洋電機株式会社 Absorption refrigerator
JPH0829002A (en) * 1994-07-08 1996-02-02 Rinnai Corp Absorptive refrigerating cycle apparatus
KR100227508B1 (en) * 1995-10-27 1999-11-01 이구택 Rpm control and method of supply pump combined fluid coupling
JP3732893B2 (en) * 1996-05-31 2006-01-11 三洋電機株式会社 Control method of absorption chiller / heater
KR19990048126A (en) * 1997-12-08 1999-07-05 구자홍 Variable load controls in absorption systems

Also Published As

Publication number Publication date
KR100313904B1 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
US7010925B2 (en) Method of controlling a carbon dioxide heat pump water heating system
JP4213865B2 (en) Electrically controlled expansion valve
EP0628149B1 (en) Control system for an air conditioning/refrigeration system
EP3545241B1 (en) A method for handling fault mitigation in a vapour compression system
US9528733B2 (en) Air-conditioning apparatus
JP2006523285A (en) Protection against compressor liquid failure
RU2417344C2 (en) Device and procedure for control of cooling systems
EP1782141A1 (en) System and method for detecting decreased performance in a refrigeration system
US20140260380A1 (en) Compressor control for heat transfer system
KR20150005460A (en) Constant temperature liquid circulating device and operation method thereof
US20200200458A1 (en) Refrigeration system control and protection device
JP4342094B2 (en) Waste heat absorption refrigerator
KR100313904B1 (en) method for control of a solution pump of ammonia absorption heat pumps
RU2368850C2 (en) Control means of cooling loop with internal heat exchanger
CN109341126B (en) Refrigerating system and control method
CN100359274C (en) Constant temp. liquid circulating device
JP3897531B2 (en) Ammonia absorption refrigerator
JP2001165524A (en) Absorption refrigerating device
JP3595051B2 (en) Absorption type heat pump device
WO2024046122A1 (en) Compressor system and operation method for compressor system
JPH11118283A (en) Controller for ammonia absorption freezer
JP3663029B2 (en) Air conditioner
KR100487384B1 (en) Method for Controling compressor of air conditioner having two capacity
JPH06300383A (en) Absorption type refrigerating machine
JP3663028B2 (en) Air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070918

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee