KR20010044212A - Process for producing linear high molecular weight polyphenylene sulfide - Google Patents
Process for producing linear high molecular weight polyphenylene sulfide Download PDFInfo
- Publication number
- KR20010044212A KR20010044212A KR1020010001948A KR20010001948A KR20010044212A KR 20010044212 A KR20010044212 A KR 20010044212A KR 1020010001948 A KR1020010001948 A KR 1020010001948A KR 20010001948 A KR20010001948 A KR 20010001948A KR 20010044212 A KR20010044212 A KR 20010044212A
- Authority
- KR
- South Korea
- Prior art keywords
- alkali metal
- reactor
- reaction
- pps
- solvent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0209—Polyarylenethioethers derived from monomers containing one aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
- C08G75/0254—Preparatory processes using metal sulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0277—Post-polymerisation treatment
- C08G75/0281—Recovery or purification
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
본 발명은 고기능성 엔지니어링 플라스틱인 폴리페닐렌설파이드(이하 PPS라 칭함)의 제조방법에 관한 것으로 더욱 상세하게는 유기극성 용매내에서 황화나트륨 같은 알카리금속 황화물과 벤젠고리에 두 개 이상의 할로겐원자를 갖는 폴리할로겐 방향족화합물을 중합시킬 때 발생되는 반응물질의 분해에 의한 발열,고압력현상을 제어하고 별도의 가열가교화공정없이 선상고분자량 PPS를 제조하는 방법에 관한 것이다.The present invention relates to a process for preparing polyphenylene sulfide (hereinafter referred to as PPS), which is a high-performance engineering plastic, and more particularly, having an alkali metal sulfide such as sodium sulfide and two or more halogen atoms in a benzene ring in an organic polar solvent. The present invention relates to a method of controlling the exothermic and high pressure phenomena caused by decomposition of a reactant generated when polymerizing a polyhalogenated aromatic compound and producing a linear high molecular weight PPS without a separate heat crosslinking process.
종래의 PPS제조 방법에서는 중합시 발생하는 반응물의 분해에 의한 발열,고압 현상을 제어하기 위하여 반응온도를 150℃ 부터 300℃ 범위까지 단계적으로 3시간동안 승온하면서 일정온도 이상부터 발생되는 반응물질의 분해에 의한 발열,고압 현상을 제어하기 위하여 반응기 내부에 냉각배관을 통하여 냉각수를 순환시켜 반응을 강제로 종료 시킨 후 반응물을 150℃까지 냉각하고 슬러지 상태의 반응물과 용매를 여과 장치에서 분리하는데 생성된 반응물질인 PPS의 입자가 너무작아서 매우 조밀한 여과막으로 분리하지 않으면 PPS수지입자가 여과막을 통과 한다. 또한 매우조밀한 여과막에도 여과 통로를 작은 수지입자들이 막아 여과 시간이 장시간 소요된다.In the conventional PPS manufacturing method, in order to control the exothermic and high pressure phenomena due to decomposition of the reactants generated during polymerization, the reaction temperature is decomposed from above a certain temperature while raising the reaction temperature step by step from 150 ° C to 300 ° C for 3 hours. In order to control the exothermic and high pressure phenomena caused by circulating the cooling water through the cooling pipe inside the reactor to forcibly terminate the reaction, the reaction is cooled to 150 ° C and the sludge reactant and the solvent are separated from the filtering device. PPS resin particles pass through the filtration membrane unless the particles of the material PPS are too small to separate into a very dense filtration membrane. In addition, even a very dense filtration membrane is blocked by small resin particles in the filtration passage takes a long time filtration.
이와같이 얻어진 PPS는 저분자량이기 때문에 250℃ 이상에서 공기와 접촉시켜 가교화 반응을 5시간 이상 하지 않으면 산업적으로 사용할 수 가 없다.Since the PPS thus obtained has a low molecular weight, it cannot be industrially used unless the crosslinking reaction is carried out for at least 5 hours by contacting with air at 250 ° C or higher.
상기와 같은 문제를 개선하기 위하여 미국특허 제 4,116,947호에서는 중합반응시 일정온도 이상에서 분해를 촉발 시키는 알카리금속황화물의 분해 생성물인 황화수소를 다시 알카리금속황화물로 전환시키기 위하여 알카리금속수산화물을 첨가하는 방법이 제시 되었으나, 이는 황화수소가 일정온도 이하에서는 반응촉매역할을 하는 것을 배제한 것으로, 이와 같이 반응된 PPS는 반응후 가열가교화 공정을 행하여 분자량을 향상시켜야 한다.In order to improve the above problems, U.S. Patent No. 4,116,947 discloses a method of adding alkali metal hydroxides to convert hydrogen sulfide, which is a decomposition product of alkali metal sulfides, which triggers decomposition at a predetermined temperature or more during a polymerization reaction, to alkali metal sulfides. Although it has been suggested, this precludes hydrogen sulfide from acting as a reaction catalyst at a predetermined temperature or less. Thus, the reacted PPS should be subjected to a heat crosslinking process after the reaction to improve molecular weight.
본 발명은 유기극성용매에서 알카리금속황화물과 폴리할로겐 방향족 화합물을 중합하여 PPS수지를 생산하는데 있어서 그 분자량을 높여 중합반응 후 별도의 가열 가교화 공정없이도 바로 사출성형재료로 사용 할 수 있으며, 중합반응시 발생 되는 반응물의 분해에 의한 고압현상을 제어하여 안정적인 생산 공정을 확립하고 생산 공정의 효율적인 방법을 창안 하여 그 방법을 제시 한 것이다.The present invention polymerizes alkali metal sulfides and polyhalogen aromatic compounds in organic polar solvents to produce PPS resins, which can be used as injection molding materials without the need for a separate heat crosslinking process after polymerization. By controlling the high pressure phenomena caused by decomposition of the reactants generated during the process, we established a stable production process and created an efficient method of the production process.
본 발명에 있어서 사용되는 원료는 다음과 같다.The raw material used in this invention is as follows.
유기극성용매로는 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N,N-디에틸아세트아미드, N,N=디프로필아세트아미드, 카프로락탐, N-메틸카프로락탐, N-에틸카프로락탐, N-이소프로릴카프로락탐, N-이소부틸카프로락탐, N-프로필카프로락탐, N-부틸카프로락탐, N-시클로핵실카프로락탐, N-메틸-2-피롤리디논, N-에틸피롤리디논, N-이소프로필-2-피롤리디논, N-이소부틸-2-피롤리디논등을 사용할 수 있는데 그중 N-메틸-2-피롤리디논이 적당하다.The organic polar solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N = dipropylacetamide, caprolactam, N-methylcaprolactam, N- Ethyl caprolactam, N-isoprolyl caprolactam, N-isobutyl caprolactam, N-propyl caprolactam, N-butyl caprolactam, N-cyclonucleosilcaprolactam, N-methyl-2-pyrrolidinone, N- Ethylpyrrolidinone, N-isopropyl-2-pyrrolidinone, N-isobutyl-2-pyrrolidinone and the like can be used, of which N-methyl-2-pyrrolidinone is suitable.
알카리금속황화물은 황화나트륨,황화칼륨,황화리튬 및 황화루비듐을 사용 하는데, 바람직하게로는 황화나트륨이 좋다.Alkali metal sulfides include sodium sulfide, potassium sulfide, lithium sulfide and rubidium sulfide, preferably sodium sulfide.
폴리할로겐 방향족 화합물은 p-디클로로벤젠, p-디브로모벤젠, p-디요오드벤젠, 1-클로로-4-브로모벤젠, 1-클로로-4-요오드벤젠, 1-에틸-2,5-디클로로벤젠, 1-에틸-2,5-디브로모벤젠, 1-트리프로로메틸-2,5-디클로로벤젠, 1-트리프로로메틸-2,5-디브로모벤젠, 1-시클로헥실-2,5-디클로로벤젠, 등을 사용할 수 있는데, 그중 p-디클로로벤젠의 사용이 바람직하다.Polyhalogen aromatic compounds include p-dichlorobenzene, p-dibromobenzene, p-diiodinebenzene, 1-chloro-4-bromobenzene, 1-chloro-4-iodobenzene, 1-ethyl-2,5- Dichlorobenzene, 1-ethyl-2,5-dibromobenzene, 1-tripromethylmethyl-2,5-dichlorobenzene, 1-tripromethylmethyl-2,5-dibromobenzene, 1-cyclohexyl -2,5-dichlorobenzene, and the like can be used, of which the use of p-dichlorobenzene is preferred.
본발명의 반응공정을 기술하면 다음과 같다.The reaction process of the present invention is described as follows.
먼저, 가압반응기에 결정수를 포함하는 황화나트룸 1몰에 대해 50g∼150g의 유기극성용매를 투입하여 질소기류 하에서 반응물을 170℃∼200℃로 1시간∼2시간 동안 가열하여 결정수를 80%∼98%를 탈수 시킨다.First, 50 g to 150 g of an organic polar solvent was added to 1 mole of sodium sulfide containing crystalline water in a pressurized reactor, and the reactant was heated to 170 ° C. to 200 ° C. for 1 to 2 hours under nitrogen stream, thereby crystallization of 80 ° C. Dehydrate% to 98%.
이때 탈수율이 80% 이하면 반응시 압력이 상승하여 바람직 하지 않으며 98% 이상이면 반응초기에 촉매 역할을 하는 분해 생성물인 황화수소의 양이 적어 중합도가 낮아진다.At this time, if the dehydration rate is 80% or less, the pressure increases during the reaction.
상기와 같이 얻어진 탈수물을 150℃로 감온한 후 p-디클로로벤젠에 유기극성용매 150g∼500g을 150℃에서 용해 시켜 투입 한다. p-디클로로벤젠의 투입량은 황화나트륨 1몰에 대해 0.98∼1.2몰을 사용할 수 있으나 바람직하게는 1:1 에 가까울수록 좋다. 반응시 고형분 농도는 20%∼70% 까지 가능하지만 바람직 하게는 30%∼50%가 좋다. 상기와 같이 투입한 후 반응기를 완전히 밀폐하고 반응온도를 200℃∼300℃까지 1시간∼3시간 동안 단계적으로 승온 한다.After dehydrating the above-mentioned dehydrated product at 150 degreeC, 150 g-500 g of organic polar solvents are melt | dissolved in p-dichlorobenzene at 150 degreeC, and are input. The amount of p-dichlorobenzene to be added may be 0.98 to 1.2 moles with respect to 1 mole of sodium sulfide, but preferably 1: 1 is better. Solid content concentration during the reaction can be 20% to 70%, but preferably 30% to 50%. After adding as described above, the reactor is completely sealed and the reaction temperature is gradually raised to 200 ° C. to 300 ° C. for 1 hour to 3 hours.
이때 반응압력은 용매와 분해생성물인 황화수소,반응에 참여하지 못한 p-디클로로벤젠의 자체압력∼15kg/㎠(절대압)이다.At this time, the reaction pressure is a solvent, decomposition product hydrogen sulfide, and the self-pressure of p-dichlorobenzene not involved in the reaction to 15kg / ㎠ (absolute pressure).
상기와 같은 압력과 온도일 때 반응기 내부에 기체로 존재하는 황화수소와 미반응 p-디클로로벤젠, 용매를 그물체의 기화온도와 자체압력에 의해 분리해 내야하는데, 황화수소는 반응초기 200℃∼250℃ 에서는 중합도를 높이는 촉매역활을 하지만 반응온도가 250℃∼300℃일때는 반응물을 분해하는 작용을 하여 중합도를 떨어뜨린다.Under the above pressure and temperature, hydrogen sulfide, unreacted p-dichlorobenzene, and solvent present as gas inside the reactor should be separated by the vaporization temperature and the self pressure of the mesh. Hydrogen sulfide is in the initial 200 ° C to 250 ° C. In addition, it acts as a catalyst to increase the degree of polymerization, but when the reaction temperature is 250 ℃ to 300 ℃ to act to decompose the reactants to reduce the degree of polymerization.
상기와 같이 황화수소가 중합반응에 작용하는 영향에 의할 때 반응온도 230℃∼270℃가 되면 반응기 내부 압력을 서서히 분출하여 그 물질의 승화온도 차이로 황화수소와 미반응 p-디클로로벤젠 순으로 분리 시키면 반응물이 더 이상 분해되지 않으며 중합도가 높은 PPS를 얻을 수 있다.According to the effect of hydrogen sulfide on the polymerization reaction as described above, when the reaction temperature reaches 230 ℃ ~ 270 ℃, the pressure inside the reactor is gradually ejected and separated by hydrogen sulfide and unreacted p-dichlorobenzene in order of the sublimation temperature of the material The reactants no longer decompose and high PPS can be obtained.
또한, 황화수소와 미반응 p-디클로로벤젠을 분리 한 후 반응기에 남아 있는 자체압력과 감압장치를 이용하여 용매를 분리 하게 되면 200℃이상에서는 반응물이 가상적 균질상태로서 아직 입자가 매우 작은상태의 저점도로 존재하는데 상기와 같이 용매의 농도를 줄이면 입자의 입도가 커지므로 반응후 실시하는 PPS의 반응생성물인 염화나트륨을 물로 세정 여과 하는 과정을 원할히 할 수 있다.In addition, after separating the hydrogen sulfide and the unreacted p-dichlorobenzene, the solvent is separated using the self-pressure remaining in the reactor and the decompression device, and at 200 ° C or higher, the reactant is a virtually homogeneous state, and the particles have a low viscosity with very small particles. As the concentration of the solvent decreases as described above, the particle size of the particles increases, so that a process of washing and filtering sodium chloride, which is a reaction product of PPS performed after the reaction, with water may be facilitated.
실시 예1Example 1
이하 PPS를 중합하기 위하여 온도계 및 압력계, 증류탑이 부착되어 있는 내용적 2ℓ인 고압반응기에 결정수가 포함된 황화나트륨(Na2S·3H2O) 314g 3.3몰과 유기극성용매300g을 투입하고 질소기류에서 170℃∼200℃로승온하여1∼2시간동안 탈수를 행한다. 탈수량이 90%이상일 때 내용물온도를 150℃로 감온한다.In order to polymerize the PPS, 314 g 3.3 mol of sodium sulfide (Na 2 S · 3H 2 O) containing crystal water and 300 g of organic polar solvent were added to a high-pressure reactor equipped with a thermometer, a pressure gauge, and a distillation column. It heated up at 170 degreeC-200 degreeC, and dehydrated for 1-2 hours. When the amount of dehydration is over 90%, reduce the temperature of the contents to 150 ℃.
감온후 용매 450g에 p-디클로로벤젠 499.5g 3.4몰을 용해시켜 투입한다.After cooling, 3.49.5 g of p-dichlorobenzene was dissolved in 450 g of a solvent and added.
투입완료후 반응기를 완전히 밀폐시키고 내부 온도를 3시간 동안 단계적으로 230℃∼270℃ 까지 승온한 후 내부의 기체상태로 존재하는 반응 분해 생성물인 황화수소와 미반응 p-디클로로벤젠을 증류탑 상부에 부착된 벨브를 조작하여 내부압력에 의해 서서히 분출시킨다. 그 후 증류탑 하부에 부착된 밸브를 조작하여 반응기내에 존재하는 용매의 자체압력과 감압장치를 이용하여 용매를 99%이상 분리 회수 한다. 이때 반응기의 열량공급은 220℃를 유지하도록 계속 공급한다.After completion of the addition, the reactor was completely sealed and the internal temperature was gradually raised to 230 ° C. to 270 ° C. for 3 hours, and then hydrogen sulfide and unreacted p-dichlorobenzene, reaction decomposition products existing in the gaseous state were attached to the top of the distillation column. Operate the valve and slowly eject it by the internal pressure. Thereafter, the valve attached to the lower part of the distillation column is operated to separate and recover the solvent by 99% or more by using the pressure of the solvent and the pressure reduction device existing in the reactor. At this time, the heat supply of the reactor is continuously supplied to maintain 220 ℃.
상기와 같이 얻어진 반응물은 PPS수지50%와 반응생성물인 염화나트륨50%를 포함하는데 물에잘 녹는 성질인 염화나트륨을 60℃의 물로 세정하고 여과주머니를 이용하여 원심분리장치에서 염화나트륨이 용해된 물과 분리 시킨다.The reaction product obtained as described above contains 50% of PPS resin and 50% of sodium chloride which is a reaction product. Sodium chloride, which is soluble in water, is washed with water at 60 ° C. and separated from the sodium chloride dissolved water in a centrifuge using a filter bag. Let's do it.
이와 같은 수세정을 3회 이상 행하여 잔존하는 염화나트륨 함량을 0.05%이하가 되도록 하였다.Such water washing was performed three times or more so that the remaining sodium chloride content was 0.05% or less.
비교 예1Comparative Example 1
실시예1과 같은 조건으로 반응하되 230℃∼270℃까지 3시간 동안 승온 반응시킨후 반응기를 냉각수에 담가 내부온도를 150℃까지 냉각하고 슬러지 상태의 반응물을 여과막을 이용하여 용매와 분리한 후 수세정을 행하여 PPS수지를 얻었다.The reaction was carried out under the same conditions as in Example 1, but after the reaction was heated to 230 ° C. to 270 ° C. for 3 hours, the reactor was immersed in cooling water to cool the internal temperature to 150 ° C., and the sludge reactant was separated from the solvent using a filtration membrane. Washing was carried out to obtain a PPS resin.
실험 예Experiment example
◆ 무게평균뷴자량 : 고온 겔침투크로마토그래프법(GPC: Gel Permeation Chromatograph)을 사용하여 1-염화나프탈렌을 용매로 하여 210℃, 유량(Flow Rate) 1.0㎖/1분의 조건으로 측정한 값으로 이를 이용하여 PPS의 중합도를 평가하였다.◆ Weight average: Molecular weight: Measured under the condition of 210 ℃ and Flow Rate 1.0ml / 1min using 1-naphthalene chloride as a solvent using high temperature gel permeation chromatography (GPC). This was used to evaluate the degree of polymerization of PPS.
◆ 열적성질 : 시차주사열량계를 사용하여 유리전이온도 (Tg)와 용융온도(Tm)를 측정하였으며, 측정조건은 열이력을 제거하기 위하여 320℃까지 20℃/분의 승온속도로 가열하여 3분간 등온처리한 후 액체질소로 급냉시키고 다시 20℃/분의 승온속도로 가열하여 측정하였다.◆ Thermal Properties: The glass transition temperature (Tg) and the melting temperature (Tm) were measured using a differential scanning calorimeter, and the measurement conditions were heated at 320 ℃ to 20 ℃ / min for 3 minutes to remove the thermal history. After isothermal treatment, the solution was quenched with liquid nitrogen and heated again at a heating rate of 20 ° C./min.
◆ 결정화도 : 중합체의 결정화도를 측정하기 위하여, X-선 회절장치(Phillips PW3710)을 사용하였으며, X-선 회절패턴은 30KV/20mA에서 Ni필터를 통과한 CuKα선을 조사하여 15 °〈20 〈30 °의 범위에서 얻었으며, 결정화도는 무정형 패턴과 결정형 패턴의 면적비에서 구하였다.◆ Crystallinity: In order to measure the crystallinity of the polymer, an X-ray diffractometer (Phillips PW3710) was used, and the X-ray diffraction pattern was irradiated with CuKα rays passing through the Ni filter at 30KV / 20mA to 15 ° <20 <30 It was obtained in the range of °, the crystallinity was obtained from the area ratio of the amorphous pattern and the crystalline pattern.
◆ 용융지수(Melt Index, 이하 MI라 함) : PPS를 305℃에서 5분간 예비가열한 후 2160g의 하중에서 토출되는 용융중합체의 무게를 측정하여 이를 MI 값으로 하였다.Melt Index (hereinafter referred to as MI): After preheating PPS at 305 ° C for 5 minutes, the weight of the melt polymer discharged at a load of 2160g was measured to determine the MI value.
상기의 분석결과에서 알수 있는 바와 같이 중합반응중 일정온도에서 반응분해생성물인 황화수소와 미반응 p-디클로로벤젠, 용매를 반응기내에서 분리시킴으로서 분자량이 높고 결정화도가 낮은 PPS 수지를 얻을 수 있으며 별도의 가열 가교화 공정을 거치지 않으므로 생산성을 향상시키고 수지의 백색도를 높일수 있으며 수지의 입자를 크게 하여 수세정 여과 분리시 여과 시간을 단축하는 효과가 있다.As can be seen from the above analysis result, PPS resin having high molecular weight and low crystallinity can be obtained by separating hydrogen sulfide, unreacted p-dichlorobenzene, and solvent which are reaction decomposition products at a certain temperature during the polymerization reaction in the reactor. Since it does not go through the crosslinking process, it is possible to improve the productivity, increase the whiteness of the resin, and increase the particles of the resin to shorten the filtration time during water filtration separation.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010001948A KR20010044212A (en) | 2001-01-04 | 2001-01-04 | Process for producing linear high molecular weight polyphenylene sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010001948A KR20010044212A (en) | 2001-01-04 | 2001-01-04 | Process for producing linear high molecular weight polyphenylene sulfide |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010044212A true KR20010044212A (en) | 2001-06-05 |
Family
ID=19704581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010001948A KR20010044212A (en) | 2001-01-04 | 2001-01-04 | Process for producing linear high molecular weight polyphenylene sulfide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20010044212A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180074566A (en) * | 2016-12-23 | 2018-07-03 | 주식회사 엘지화학 | Method for preparing of polyphenylene sulfide and highly viscous polyphenylene sulfide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62220522A (en) * | 1986-03-24 | 1987-09-28 | Dainippon Ink & Chem Inc | Purification of polyphenylene sulfide |
KR920002658A (en) * | 1990-07-30 | 1992-02-28 | 공정곤 | Polyphenylene sulfide with improved mechanical strength and heat resistance and its manufacturing method |
KR950000705A (en) * | 1993-06-19 | 1995-01-03 | 권기범 | 14-Substituted Morfinan Derivatives and Pharmaceuticals Containing the Same |
JPH1087831A (en) * | 1996-06-06 | 1998-04-07 | Toray Ind Inc | Production of polyphenylene sulfide |
KR100238114B1 (en) * | 1993-12-31 | 2000-01-15 | 조민호 | Process for preparation of polyphenylene sulfide |
-
2001
- 2001-01-04 KR KR1020010001948A patent/KR20010044212A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62220522A (en) * | 1986-03-24 | 1987-09-28 | Dainippon Ink & Chem Inc | Purification of polyphenylene sulfide |
KR920002658A (en) * | 1990-07-30 | 1992-02-28 | 공정곤 | Polyphenylene sulfide with improved mechanical strength and heat resistance and its manufacturing method |
KR950000705A (en) * | 1993-06-19 | 1995-01-03 | 권기범 | 14-Substituted Morfinan Derivatives and Pharmaceuticals Containing the Same |
KR100238114B1 (en) * | 1993-12-31 | 2000-01-15 | 조민호 | Process for preparation of polyphenylene sulfide |
JPH1087831A (en) * | 1996-06-06 | 1998-04-07 | Toray Ind Inc | Production of polyphenylene sulfide |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180074566A (en) * | 2016-12-23 | 2018-07-03 | 주식회사 엘지화학 | Method for preparing of polyphenylene sulfide and highly viscous polyphenylene sulfide |
WO2018117426A3 (en) * | 2016-12-23 | 2018-11-22 | (주) 엘지화학 | Method for producing polyphenylene sulfide and high-viscosity polyphenylene sulfide produced thereby |
CN109563268A (en) * | 2016-12-23 | 2019-04-02 | 株式会社Lg化学 | Prepare the method for polyphenylene sulfide and the high-viscosity polyphenyl thioether using its preparation |
US10941249B2 (en) | 2016-12-23 | 2021-03-09 | Lg Chem, Ltd. | Method of preparing polyphenylene sulfide and high-viscosity polyphenylene sulfide prepared using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3637543B2 (en) | Process for producing polyarylene sulfide polymer | |
EP0226998B1 (en) | Process for production of high molecular-weight polyarylene sulfides | |
JP4310279B2 (en) | Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing | |
FI90784B (en) | A process for preparing a high molecular weight poly (arylene sulfide ketone) | |
US4089847A (en) | Temperature programming in the production of arylene sulfide polymers | |
JP6517337B2 (en) | Process for producing particulate polyarylene sulfide, and particulate polyarylene sulfide | |
KR101984418B1 (en) | Method for producing powdered polyarylene sulfide, and powdered polyarylene sulfide | |
EP0513730B1 (en) | Process for preparing arylene sulfide polymers | |
US3869433A (en) | Arylene sulfide polymers | |
JP2000191785A (en) | Production of polyarylene sulfide | |
JPH0651792B2 (en) | Improved method for producing poly (p-phenylene sulfide) | |
EP0039508B1 (en) | A process for preparing alkali metal amino alkanoates and use of same | |
JPH04145127A (en) | Production of polyarylene sulfide | |
EP0353716A2 (en) | Process for preparing polyarylene sulfides | |
JP3603366B2 (en) | Method for producing aromatic sulfide polymer | |
CN101215379A (en) | Polyarylene amide sulfides polymers and preparation method thereof | |
JPH03195734A (en) | Production of granular polyarylenesulfide having high molecular weight | |
JPH02302436A (en) | Production of polyarylene sulfide | |
EP3617250B1 (en) | Method for preparing polyarylene sulfide | |
US3878176A (en) | Arylene sulfide polymers | |
KR940000078B1 (en) | Process for preparing polyarylene sulfides | |
KR20010044212A (en) | Process for producing linear high molecular weight polyphenylene sulfide | |
JPH0350237A (en) | Production of polyarylene sulfide | |
EP0304303A2 (en) | Preparation of poly (arylene sulfide) | |
JPS58152020A (en) | Manufacture of high molecular branched polyarylene sulfides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
E601 | Decision to refuse application | ||
E601 | Decision to refuse application |