KR20010038791A - Paper wastewater treatment process and paper manufacturing method using the treated water therefrom - Google Patents
Paper wastewater treatment process and paper manufacturing method using the treated water therefrom Download PDFInfo
- Publication number
- KR20010038791A KR20010038791A KR1019990046907A KR19990046907A KR20010038791A KR 20010038791 A KR20010038791 A KR 20010038791A KR 1019990046907 A KR1019990046907 A KR 1019990046907A KR 19990046907 A KR19990046907 A KR 19990046907A KR 20010038791 A KR20010038791 A KR 20010038791A
- Authority
- KR
- South Korea
- Prior art keywords
- wastewater
- water
- carbon dioxide
- paper
- anaerobic reactor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 제지폐수 처리방법 및 그 처리수를 이용한 제지방법에 관한 것으로서, 보다 상세하게는 제지공장에서 배출되는 폐수의 생물학적 및 물리학적 처리방법 및 이 처리수를 재이용하는 제지방법에 관한 것이다.The present invention relates to a papermaking wastewater treatment method and a papermaking method using the treated water, and more particularly, to a biological and physical treatment method of wastewater discharged from a paper mill and a papermaking method for reuse of the treated water.
제지공장은 제지공정의 특성상 다량의 폐수를 배출하게 되는데, 그 중에서도 특히, 골판지와 같은 산업용지를 제조하는 공장에서 배출되는 폐수는 유기물, 칼슘이온, 황산염이온 등을 고농도로 함유하고 있어서, 종래의 방법으로 처리되는 제지폐수는 공정수로 재활용하기에는 많은 문제점이 있다.Paper mills discharge large amounts of wastewater due to the nature of the papermaking process. Among them, wastewater discharged from factories that manufacture industrial paper such as corrugated cardboard contains high concentrations of organic matter, calcium ions and sulfate ions. Papermaking wastewater treated by the method has a number of problems to recycle into process water.
즉, 제지폐수 중에 다량 함유된 칼슘이온은 경도유발 물질이기 때문에 제지공정의 냉각수에 포함되는 경우 침전되어 스케일을 형성하며, 수소이온은 제지섬유소의 팽윤현상을 방해하여 섬유소간의 수소결합력을 낮추기 때문에 종이의 강도 증대에 제한요소가 된다. 또한, 칼슘이온이나 황산염이온이 다량 존재함으로 인하여 공정수의 전기전도도가 높아지면 보류제의 활성이 저하되므로 탈수속도가 저하되고, 탈수속도 저하 방지를 위해 보류제 투입량을 늘리게 되면 공정 비용의 상승을 초래하게 된다.That is, since calcium ions contained in papermaking wastewater are hardness-induced substances, they are precipitated to form scale when included in the cooling water of the papermaking process, and the hydrogen ions interfere with the swelling of the papermaking fibers and lower the hydrogen bonding force between the fibers. It is a limiting factor in increasing the strength of. In addition, if the electrical conductivity of the process water increases due to the presence of a large amount of calcium ions or sulfate ions, the dehydration rate is lowered because the activity of the retention agent is lowered. Will result.
구체적으로 살펴보면, 기존에 사용되던 제지폐수 처리방법으로는 일반적인 활성슬러지공정이 있다. 그러나, 활성슬러지 공정의 경우 고농도의 유기물을 함유하는 폐수가 유입되는 경우 슬러지 침강성이 저하되는 등 운전상 많은 문제점이 있음을 발견하게 되었다[김용환, 조재현, 김무훈, 이용우, "담체종류에 따른 유기물 제거특성에 관한 연구", 한국수질보전확회지, 12(4), 447∼454, 1996].Specifically, there is a general activated sludge process as a conventional paper wastewater treatment method used. However, in the case of activated sludge process, it has been found that there are many problems in operation such as sludge sedimentation deterioration when wastewater containing high concentration of organic matter is introduced. Study on Characteristics ", Korea Water Conservation Society, 12 (4), 447 ~ 454, 1996].
이러한 문제점을 해결하기 위하여 순산소 포기법과 같이 산소의 분압을 높여 미생물의 농도를 증가시킴으로써 고농도의 유기물을 안정적으로 제거하려는 공정이 사용되기도 하였다[이수영, 박중언,"개량된 호기성 생물처리공법에 의한 침강성 및 처리효율 향상", 대한환경공학회지, 18(10), 1195∼1208, 1996]. 그러나, 이러한 호기공정은 단지 유기물만을 제거하려는 목적으로 설치되었기 때문에 수중의 칼슘 이온과 같은 경도유발 물질을 제거할 수 없어 처리수를 공정수로 재이용할 경우 제지공정내에서 스케일 형성을 야기한다는 문제점이 있다.In order to solve this problem, a process of stably removing high concentrations of organic matter by increasing the concentration of microorganisms by increasing the partial pressure of oxygen, such as the oxygen aeration method, has been used. And improvement of treatment efficiency ", Korean Society of Environmental Engineering, 18 (10), 1195-1208, 1996]. However, since the aerobic process is installed only to remove organic matters, it is impossible to remove hardness-induced substances such as calcium ions in the water, which causes scale formation in the papermaking process when the treated water is reused as process water. have.
이러한 칼슘 스케일은 제지공정의 많은 배관에서 유체의 흐름을 저해하며, 와이어 스크린의 눈금 막아 탈수를 방해하게 된다. 또한, 결정형태로 성장한 칼슘 스케일은 기계내부의 마모현상을 심화시켜 기계의 수명을 크게 단축시킨다 [ A.M.Scallan, "The effect of acidic groups on the swelling of pulps: a review", Tappi Journal, 66(11), 73∼75, 1983].These calcium scales inhibit the flow of fluid in many pipes of the papermaking process and prevent the dehydration by blocking the wire screen. In addition, calcium scales grown in crystalline form intensify wear and tear in machines and significantly shorten machine life [AMScallan, "The effect of acidic groups on the swelling of pulps: a review", Tappi Journal, 66 (11). ), 73-75, 1983].
또한, 수중에 다량 존재하는 황산염 이온을 제거할 수 없어 수중의 전기전도도를 감소시킬 수 없었다. 전기전도도가 큰 공정수는 제지공정에 첨가되는 첨가제의 활성을 저하시켜 과량의 첨가제를 투입하여야 한다[S.D. Alexander and R.J. Dobbins, "The buildup of dissolved electrolytes in a closed paper mill system", Tappi Journal, 60(12), 1977]In addition, it was not possible to remove the sulfate ions present in a large amount in the water, it was not possible to reduce the electrical conductivity in the water. Process water with high electrical conductivity should reduce the activity of the additives added to the papermaking process and add an excessive amount of additives [S.D. Alexander and R.J. Dobbins, "The buildup of dissolved electrolytes in a closed paper mill system", Tappi Journal, 60 (12), 1977].
상기와 같은 문제점을 해결하기 위하여, 칼슘 또는 전기전도도 유발물질을 제거를 위한 막분리법의 사용이 제안된 바 있다[L. Webb, "Closing up the water loop without closing down the mill", PPI, June, 43∼46, 1997]. 이러하 막분리법은 분리 및 제거효율은 높으나 초기 투자비가 매우 크며, 특히 제지공정에 적용할 경우 미세분, 섬유소 등의 이물질에 의하여 막이 쉽게 오염되어 운전상에 큰 문제를 일으킨다. 따라서, 막분리 공정 전에 상당히 고가의 전처리 장치를 필요로 하며, 일정시간 운전 후에는 막의 교환에 상당한 비용을 필요로 한다.In order to solve the above problems, it has been proposed to use a membrane separation method to remove calcium or electrical conductivity causing substances [L. Webb, "Closing up the water loop without closing down the mill", PPI, June, 43-46, 1997]. Thus, the membrane separation method has high separation and removal efficiency, but the initial investment is very high. Especially, when applied to the papermaking process, the membrane is easily contaminated by foreign matter such as fine powder and fiber, which causes a big problem in operation. Therefore, a significantly expensive pretreatment device is required before the membrane separation process, and a considerable cost is required for the membrane replacement after a certain time of operation.
따라서, 본 발명이 이루고자 하는 기술적 과제는 제지공정에서 배출되는 제지폐수 중에 함유된 유기물 뿐만 아니라 칼슘이온, 황산염이온, 수소이온 등을 경제적으로 제거하여 공정수로서 재활용할 수 있도록 하는 방법을 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to provide a method for economically removing not only the organic matter contained in the papermaking wastewater discharged from the papermaking process, but also calcium ions, sulfate ions, hydrogen ions, etc. and recycling them as process water. .
도 1은 본 발명의 일실시예에 의한 제지폐수의 처리공정의 흐름도이다.1 is a flowchart of a papermaking wastewater treatment process according to an embodiment of the present invention.
도 2는 본발명의 일실시예에 의한 제지 공정의 흐름도이다.2 is a flowchart of a papermaking process according to an embodiment of the present invention.
도 3a 내지 3c는 제지공정에서 보류제로 사용되는 고분자의 분자구조 변화를 도시한 것이다.Figures 3a to 3c shows the molecular structure change of the polymer used as a retention agent in the papermaking process.
본 발명은 상기 기술적 과제를 달성하기 위하여,The present invention to achieve the above technical problem,
고농도의 유기물, 황산염 및 칼슘이온 다량 포함하는 제지공장의 폐수를 처리하는 방법에 있어서,In the method of treating wastewater of a paper mill containing a large amount of organic matter, sulfate and calcium ions,
a) 상기 폐수를 혐기성 반응조에 유입시켜 유기물을 분해하여 이산화탄소와 메탄가스로 전환시키고, 황산염은 황화수소와 이산화탄소로 전환시키는 혐기성 반응단계;a) an anaerobic reaction step of introducing the wastewater into an anaerobic reactor to decompose organic matter and convert it into carbon dioxide and methane gas, and sulfate to hydrogen sulfide and carbon dioxide;
b) 상기 혐기성 반응조에서 처리된 처리수를 호기성 이산화탄소 탈기조에 유입시켜 이산화탄소를 대기중으로 탈기시켜 pH 증가를 유도하고, 따라서 탄산이온의 농도를 증가시켜 칼슘이온은 불용성 고형물인 탄산칼슘으로 전환시키는 호기성 탈기단계; 및b) the treated water in the anaerobic reactor is introduced into an aerobic carbon dioxide degassing tank to degas the carbon dioxide into the atmosphere to induce an increase in pH, thus increasing the concentration of carbonate ions to convert calcium ions into insoluble solid calcium carbonate. Degassing step; And
c) 상기 호기성 탈기단계를 거친 처리수로부터 고형물은 침전시켜 제거하고 상등수는 최종 처리수로서 얻는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다.c) solids are precipitated and removed from the treated water undergoing the aerobic degassing step and the supernatant is obtained as the final treated water.
본 발명의 일실시예에 의하면, 상기 혐기성 반응단계를 거친 처리수의 일부를 재순환시켜 유입폐수와 함께 다시 혐기성 반응조에 공급하는 단계를 더 포함하는 것이 바람직하다.According to one embodiment of the present invention, it is preferable to further include a step of recirculating a portion of the treated water subjected to the anaerobic reaction step and supplying it back to the anaerobic reactor together with the incoming wastewater.
본 발명의 일실시예에 의하면, 상기 호기성 탈기단계는 표면 폭기기 및 내부 혼합기가 장착된 호기성 탈기조에서 실시되는 것이 바람직하다.According to one embodiment of the invention, the aerobic degassing step is preferably carried out in an aerobic degassing tank equipped with a surface aerator and an internal mixer.
본 발명의 다른 실시예에 의하면, 상기 혐기성 반응 단계를 거친 처리수를 호기성 탈기단계로 유입시키기 전에 수산화나트륨을 부가하는 단계를 더 포함할 수있다.According to another exemplary embodiment of the present invention, the method may further include adding sodium hydroxide before introducing the treated water that has undergone the anaerobic reaction step into the aerobic degassing step.
본 발명은 또한, 상기 제지폐수 처리방법에 의해 처리된 처리수를 제지공정수로 재이용하는 방법을 제공한다.The present invention also provides a method for reusing the treated water treated by the papermaking wastewater treatment method as the papermaking process water.
본 발명의 일실시예에 의하면, 본 발명의 방법에 의하여 처리된 제지폐수를 펄퍼에 투입하여 제지원료의 해리에 이용할 수 있다.According to one embodiment of the present invention, the papermaking wastewater treated by the method of the present invention can be put into a pulp and used for dissociation of the papermaking fee.
본 발명의 다른 실시예에 의하면, 본 발명의 방법에 의하여 처리된 제지폐수를 백수탱크에 유입시켜 제지공정수 전반의 유기물 농도 및 이온 농도를 감소시킬 수 있다.According to another embodiment of the present invention, the paper wastewater treated by the method of the present invention may be introduced into the white water tank to reduce the organic matter concentration and the ion concentration in the overall papermaking process water.
본 발명은 제지폐수의 생물학 및 물리학적 방법 및 그 처리수를 재이용함으로써 제품의 품질을 향상시킬 수 있는 방법에 관한 것이다.The present invention relates to a biological and physical method of papermaking wastewater and a method capable of improving the quality of a product by reusing the treated water.
본 발명에 의한 방법은 혐기성 반응조에서 폐수중에 고농도로 존재하는 유기물을 1차적으로 제거함과 동시에 수중의 황산염 이온을 황화수소 형태로 전환시켜 기체상태로 분리시킨다. 후단에서는 표면폭기를 통하여 수중에 포함된 과량의 이산화탄소를 제거함으로써 수중에 존재하는 탄산염과 칼슘이온을 반응시켜 칼슘이온을 불용화시켜 제거한다. 이러한 2단계 처리를 통하여 수중의 유기물 칼슘이온 및 황산염 이온의 농도는 크게 감소하며, 나아가 수중의 수소이온 농도도 감소하여 pH 값이 상승하게 된다. 이러한 방법으로 처리된 용수는 칼슘 이온과 같은 경도유발물질이 현저하게 감소되어 각종 제지공정중의 냉각수로 이용될 경우에도 칼슘 이온의 침전으로 인한 스케일 형성과 같은 문제를 야기하지 않는다.The method according to the present invention primarily removes organic substances present in high concentrations in wastewater in an anaerobic reactor, and converts sulfate ions in water into hydrogen sulfide to separate them into gaseous state. In the latter stage, excess carbon dioxide contained in the water is removed through surface aeration to react the carbonate and calcium ions in the water to inactivate and remove the calcium ions. Through this two-stage treatment, the concentrations of organic calcium ions and sulfate ions in water are greatly reduced, and the pH value is increased by decreasing the concentration of hydrogen ions in water. Water treated in this way is significantly reduced in hardness-induced substances such as calcium ions and does not cause problems such as scale formation due to precipitation of calcium ions even when used as cooling water during various papermaking processes.
또한, 처리수중의 수소이온농도가 낮아 제지섬유소의 팽윤현상이 나타난다. 섬유소의 팽윤은 섬유소간의 수소결합력이 커지게 하여 제품의 강도를 증가시키는 효과를 가져온다. 또한, 이러한 공정을 통하여 황산염 이온, 칼슘이온 등이 제거됨으로써 공정수내의 이온전도도가 감소하게 된다. 이러한 이온전도도의 감소는 결과적으로 보류제의 활성을 증가시켜 이온전도도가 높은 공정수를 사용하는 경우보다 보류제의 투입량을 절감시킬 수 있다. 또한, 보류제의 활성 증가는 결과적으로 탈수속도를 증가시켜 생산속도를 증대시키는 결과를 가져온다. 따라서, 본 발명의 방법은 제지 폐수중의 오염물을 제거하는 폐수처리기능 외에 처리수의 재이용을 가능하게 하며 동시에 제품품질 향상에 기여할 수 있다.In addition, the hydrogen ion concentration in the treated water is low, the swelling phenomenon of papermaking fiber appears. Swelling of the fibers increases the hydrogen bonding force between the fibers, leading to an effect of increasing the strength of the product. In addition, the ions conductivity in the process water is reduced by removing the sulfate ions, calcium ions and the like through this process. This reduction in ion conductivity may result in an increase in the retention of the retention agent, thereby reducing the amount of retention of the retention agent than when using a process water with high ion conductivity. In addition, increased activity of the retention agent results in an increase in the rate of dehydration resulting in an increase in the production rate. Therefore, the method of the present invention enables the reuse of the treated water in addition to the wastewater treatment function of removing contaminants in the papermaking wastewater and at the same time contributes to the improvement of product quality.
이하에서는 첨부된 도면을 참조하면서 본 발명을 보다 상세하게 설명하고 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 의한 제지폐수 처리공정의 흐름도이다.1 is a flowchart of a papermaking wastewater treatment process according to an embodiment of the present invention.
유입폐수 중의 유기물 제거를 위하여 혐기성 반응조(4)가 설치된다. 혐기성 반응조(4)에는 유기물을 메탄 가스로 전환시키는 메탄 생성균 및 황산염을 황화수소로 전환시키는 황산염 환원균이 존재한다. 이러한 미생물은 입상 슬러지로도 사용가능하고 담체에 고정된 미생물로도 사용가능하다.An anaerobic reactor 4 is installed to remove organic matter in the influent wastewater. In the anaerobic reactor 4, methane producing bacteria for converting organic matter into methane gas and sulfate reducing bacteria for converting sulfate to hydrogen sulfide are present. Such microorganisms can be used as granular sludge and also as microorganisms immobilized on a carrier.
제지공장중 특히 골판지 제조공장에서 배출되는 폐수중에 포함된 유기물은 쉽게 분해될 수 있는 성분으로서, 활성슬러지와 같은 호기성 공정에 유입시키면 사상균의 과대성장으로 인한 슬러지 침강과 같은 문제를 야기한다. 반면, 혐기성 공정에서는 사상균의 성장과 같은 문제가 일어날 염려가 없으며 또한 쉽게 분해될 수 있는 유기물이 유입될 경우 유기산 생성 및 메탄생성균에 의해 이산화탄소와 메탄가스로 쉽게 전환된다. 특히, 골판지 제조공장 폐수의 경우에는 공정내에서 일부 유기산의 발효가 진행된 상태로 혐기성 반응조에 유입되기 때문에 별도의 유기산 발효조를 설치하지 않고도 메탄생성반응이 이루어진다. 즉, 혐기성 반응조(4)에 유입된 폐수(3) 중의 유기물은 하기 반응식 1 및 2와 같이 분해되어 이산화탄소, 메탄가스로 전환된다.Organic matter contained in wastewater discharged from paper mills, especially from corrugated cardboard manufacturing plants, is a component that can be easily decomposed, and when introduced into an aerobic process such as activated sludge, it causes problems such as sludge settling due to overgrowth of filamentous fungi. On the other hand, in anaerobic processes, there is no possibility of problems such as growth of filamentous fungi, and when organic matter that can be easily decomposed is introduced, it is easily converted into carbon dioxide and methane gas by organic acid production and methane producing bacteria. In particular, in the case of wastewater from corrugated cardboard manufacturing plant, since the organic acid is fermented into the anaerobic reactor in the process, the methane production reaction is performed without installing a separate organic acid fermentation tank. That is, the organic matter in the wastewater 3 introduced into the anaerobic reactor 4 is decomposed as shown in Schemes 1 and 2 to be converted into carbon dioxide and methane gas.
혐기성 반응조로부터 발생된 가스(1)는 상당량의 메탄농도를 함유하므로 보일러용 연료(2)로도 이용가능하다. 또한, 유입폐수(3)에는 높은 농도의 황산염(SO4 2-)이 포함되어 있는데, 이러한 황산염 이온은 혐기성 반응조(4)에 포함된 황산염 환원균(sulfate reducing bacteria)에 의하여 황화수소(H2S)로 전환되어 기체화된다.The gas (1) generated from the anaerobic reactor contains a significant amount of methane and can therefore also be used as fuel (2) for boilers. In addition, the influent wastewater (3) contains a high concentration of sulfate (SO 4 2- ), such sulfate ions are hydrogen sulfide (H 2 S) by the sulfate reducing bacteria contained in the anaerobic reactor (4) Is converted to) and vaporized.
혐기성 반응조로는 인반적인 연속식 혐기조외에도 입상슬러지를 사용하는 상향류식 혐기성 반응공정(UASB: Upflow Anaerobic Sludge Blanket), 담체를 이용하여 혐기성 미생물을 부착시켜 운전하는 공정(AF: Anaerobic Filter) 등을 이용할 수 있다. USAB나 AF 공정은 고효율, 고부하처리용 혐기성 반응조이기 때문에 필요한 부지면적이 일반적인 혐기조에 비해 상당히 작다.As an anaerobic reactor, an upflow anaerobic reaction process (UASB: Upflow Anaerobic Sludge Blanket) using granular sludge in addition to the continuous continuous anaerobic tank, and a process of attaching and operating anaerobic microorganisms using a carrier (AF: Anaerobic Filter) are used. Can be. Since USAB and AF processes are highly efficient, high-load anaerobic reactors, the required area is considerably smaller than conventional anaerobic tanks.
혐기성 반응조(4)에서 처리된 배출수(11)의 일부는 반송로(6)을 통하여 유입폐수(3)와 혼합되어 혐기성 반응조(4)에 다시 유입된다. 나머지 배출수는 호기성 이산화탄소 탈기조(7)에 유입되어 수중의 이산화탄소를 대기중으로 탈기시킨다. 호기성 이산화탄소 탈기조(7)에는 표면폭기기 및 내부혼합기가 설치하여 수중의 이산화탄소를 탈기시키는 것이 바람직하다. 이때 탈기공정에서의 pH 증가를 위하여 수산화나트륨과 같은 알칼리성 약품을 혼입하는 것도 바람직하다.A part of the wastewater 11 treated in the anaerobic reactor 4 is mixed with the inflow wastewater 3 through the conveying path 6 and flows back into the anaerobic reactor 4. The remaining effluent flows into the aerobic carbon dioxide degasser 7 to degas the carbon dioxide in the air. The aerobic carbon dioxide degassing tank 7 is preferably equipped with a surface aerator and an internal mixer to degas carbon dioxide in the water. In this case, it is also preferable to incorporate alkaline chemicals such as sodium hydroxide in order to increase the pH in the degassing process.
이산화탄소의 탈기로 인하여 수중의 pH가 증가하게 되며, 이러한 pH 증가는 결국 중탄산이온의 탄산이온으로의 전환을 유도한다. 탄산이온의 농도 증가는 하기 반응식 3과 같이 수중에 존재하는 칼슘 이온과의 결합에 의하여 결국 불용성 고형물인 탄산칼슘을 형성하게 된다.The degassing of carbon dioxide causes the pH in the water to increase, which in turn leads to the conversion of bicarbonate ions to carbonate ions. Increasing the concentration of carbonate ions eventually form insoluble solid calcium carbonate by binding with calcium ions present in water as shown in Scheme 3 below.
CO3 2-+ Ca2+↔ CaCO3(s) ↓CO 3 2- + Ca 2+ ↔ CaCO 3 (s) ↓
일반적인 화학침전법에 의하여 칼슘을 제거하는 경우에는 전기전도도의 감소를 기대할 수 없으나, 본 발명의 의한 방법은 화학약품을 사용하지 않고 칼슘이온을 제거하므로 전기전도도의 감소효과가 커질 수 있다.In the case of removing calcium by a general chemical precipitation method can not be expected to reduce the electrical conductivity, the method according to the present invention can remove the calcium ions without using a chemical agent can increase the electrical conductivity reduction effect.
탄산칼슘 형태로 불용화된 고형물은 유출관(12)을 통하여 침전조(8)로 유입된 후 침강 분리된다. 침전조(8)에서 분리된 탄산칼슘 고형물은 슬러지 배출관(13)을 통하여 배출되어 탈수된 다음 폐기된다. 침전조에서 고형물이 제거된 처리수(14)의 일부는 제지공정수로 재이용(10)되고 나머지는 추가처리를 거쳐 방류가능하다.The solid insolubilized in the form of calcium carbonate enters the settling tank 8 through the outflow pipe 12 and is sedimented and separated. The calcium carbonate solid separated in the settling tank 8 is discharged through the sludge discharge pipe 13, dehydrated and then discarded. Part of the treated water 14 from which the solids are removed from the settling tank is reused as the papermaking process 10 and the remaining part can be discharged through further treatment.
도 2는 골판지 원지를 제조하는데 사용되는 일반적인 제지공정도이다. 실선으로 표시된 것이 지료(섬유소)의 이동을 표시한 것이며, 점선으로 표시한 것이 용수의 흐름을 표시한 것이다. 제지 원료로 사용되는 고지(21)는 펄퍼(22)에서 해리되는데, 해리될 때 다량의 용수를 필요로 한다. 해리된 원료는 원료정선(23)을 거쳐 필터(24)에서 1차적으로 용수가 제거된다. 지료준비(25), 헤드박스(26)를 거쳐 무한궤도 와이어 스크린(27) 상에서 2차적으로 용수와 분리된다. 용수가 제거된 지료는 건조부(28)에서 건조된 후 제품제조 단계(29)로 이송된다.Figure 2 is a general paper manufacturing process used to produce a corrugated cardboard base paper. The solid line indicates the movement of the stock (fibrin), and the dotted line indicates the flow of water. The paper 21 used as a papermaking raw material is dissociated in the pulp 22, and requires a large amount of water when dissociated. The dissociated raw material is primarily removed from the filter 24 via the raw material selection 23. Through the stock preparation 25, the headbox 26, the water is secondarily separated from the crawler wire screen 27. The feedstock from which the water has been removed is dried in the drying unit 28 and then transferred to the product manufacturing step 29.
한편, 필터(24)와 무한궤도상의 와이어 스크린(27)에서 지료로부터 분리되어 나온 용수는 백수탱크(30)로 집합된다. 대부분의 백수는 다시 펄퍼(22)에 공급되며 잉여량은 폐수처리장(31)으로 보낸다. 펄퍼(22) 단계에서 필요한 다량의 용수는 폐수처리장(31)에서 처리된 공정수(32) 또는 미처리된 백수(33)를 백수탱크(30)로부터 직접 공급한다.On the other hand, the water separated from the paper in the filter 24 and the wire screen 27 on the endless track is collected in the white water tank 30. Most of the white water is fed back to the pulper 22 and the surplus is sent to the wastewater treatment plant 31. The large amount of water required in the pulper 22 stage directly supplies the treated water 32 or untreated white water 33 in the wastewater treatment plant 31 from the white water tank 30.
현재 대부분의 제지공장의 경우 폐수처리장에서 처리된 공정수(32)에는 다량의 칼슘이온, 황산염이온, 고농도의 유기물을 포함하며 pH 값이 상대적으로 낮은 산성을 나타내고 있다. 그러나, 본 발명에 의한 페수처리방법을 사용하는 경우에는 유기물 뿐만 아니라 칼슘이온 및 황산염이온의 농도를 효과적으로 저하시킬 수 있고 처리수의 pH가 상대적으로 상승하기 때문에 공정수로 이용하는 경우 펄퍼에서 해리되는 섬유소의 팽윤성을 증가시키며, 이는 결과적으로 제품의 기계적 강도를 향상시킨다.Currently, most paper mills contain a large amount of calcium ions, sulfate ions, high concentrations of organic matter, and have a relatively low pH value. However, in the case of using the wastewater treatment method according to the present invention, the concentration of calcium ions and sulfate ions as well as organic matters can be effectively lowered, and the pH of the treated water rises relatively, so that the fiber dissociated from the pulp when used as process water Increase the swelling properties, which in turn improves the mechanical strength of the product.
또한, 전체적으로 낮은 이온농도, 즉 낮은 전기전도도는 헤드박스(26)로부터 무한궤도 와이어스크린(27) 상에 도입된 지료의 보류도를 증가시킨다. 이는 폐수처리장(31)에서 처리된 용수(32)의 전체적인 오염수준이 상당히 낮기 때문에 결과적으로 백수탱크(30)로부터의 용수(33) 뿐만 아니라 공정 전반의 용수의 오염수준이 상당히 낮기 때문에 가능한 것이다. 보류도의 증가는 결과적으로 높은 평량의 제품을 생산할 수 있도록 하는 동시에 미보류로 백수탱크(30)에 유입되는 오염물이나 부유고형물의 양을 감소시켜 백수탱크(30) 내의 오염수준을 낮출 수 있다.In addition, the overall low ion concentration, ie low electrical conductivity, increases the retention of the stock introduced on the crawler wire screen 27 from the headbox 26. This is possible because the overall contamination level of the water 32 treated in the wastewater treatment plant 31 is considerably low, and as a result, the contamination level of the water throughout the process as well as the water 33 from the white water tank 30 is considerably low. The increase in retention may result in the production of high basis weight products and at the same time reduce the amount of contaminants or suspended solids entering the white water tank 30 as unreserved, thereby lowering the contamination level in the white water tank 30.
구체적으로, 도 3a 내지 3c는 제지공정에서 일반적으로 보류제로 사용되고 있는 고분자의 분자구조를 개략적으로 도시한 것으로서, 공정수의 pH 변화가 보류제의 고분자 구조에 미치는 영향을 설명하기 위한 것이다. 전기전도도가 낮은 상태에서는 보류제 고분자는 도 3a에 도시된 것과 같은 구조를 보이다가 이온의 농도가 높아져 전기전도도가 큰 환경이 되면 고분자의 구조는 도 3b와 같이 변한다. 전기전도도가 아주 높은 상태가 되면 결과적으로 도 3c와 같은 구조가 된다. 즉, 공정수 중의 이온농도가 높은 경우에는 고분자가 스스로 엉키는 구조로 되어 상당히 밀집되는 반면, 이온농도가 낮을 때는 고분자가 선형 구조를 가져 지료의 보류도를 증가시킨다.Specifically, FIGS. 3A to 3C schematically illustrate the molecular structure of a polymer that is generally used as a retention agent in the papermaking process, and illustrates the effect of changing the pH of the process water on the polymer structure of the retention agent. In the state of low electrical conductivity, the retention agent polymer has a structure as shown in FIG. 3A, but when the concentration of ions increases, and thus the environment has a high electrical conductivity, the structure of the polymer changes as shown in FIG. 3B. When the electrical conductivity becomes very high, the result is a structure as shown in FIG. 3C. In other words, when the ion concentration in the process water is high, the polymer becomes entangled by itself, while the ion concentration is low, but when the ion concentration is low, the polymer has a linear structure to increase the retention of the material.
이하에서는 실시예를 들어 본 발명을 보다 상세하게 설명하고자 하나, 이는 예시적인 것에 불과하며 본발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, which are merely illustrative and the scope of the present invention is not limited thereto.
<실시예 1><Example 1>
도 1의 혐기성 반응조(4)로서 상향류식 혐기성 반응조(USAB)를 사용하여 골판지 공장의 폐수를 처리하였다. 유입폐수의 COD는 5,000 mg/ℓ, 황산염의 농도는 550 mg/ℓ이었으며, 체류시간에 따른 유기물 및 황산염 제거효율을 표 1에 나타내었다.The wastewater of the corrugated cardboard factory was treated using an upflow anaerobic reactor (USAB) as the anaerobic reactor 4 of FIG. 1. The COD of the influent wastewater was 5,000 mg / ℓ, the concentration of sulfate was 550 mg / ℓ, and the removal efficiency of organic matter and sulfate according to residence time is shown in Table 1.
<실시예 2><Example 2>
전술한 반응식 2에서 알 수 있는 바와 같이, 1당량의 황화수소의 생성은 2당량의 수소이온을 소모하게 되므로, 처리수의 알칼리도가 증가하게 된다. 하기 표 2는 실시예 1과 동일한 조건에서 황산염 제거에 따른 알칼리도의 증가를 나타내었다. 유입폐수의 pH는 약 6.5이었다.As can be seen in the above Scheme 2, the production of one equivalent of hydrogen sulfide consumes two equivalents of hydrogen ions, thereby increasing the alkalinity of the treated water. Table 2 below shows the increase in alkalinity according to the removal of sulfate under the same conditions as in Example 1. The pH of the influent wastewater was about 6.5.
표 1 및 표 2로부터, 알칼리도는 황산염 제거효율과 어느 정도 비례관계가 있음을 알 수 있다. 체류시간이 작아질 경우 미처 제거되지 않은 유기산이 유출됨으로써 알칼리도의 증가를 억제하고 pH 값의 증가폭을 둔화시킨다. 약 pH 6.5의 유입폐수는 혐기성 반응조를 거친 후 약 pH 7.5 로 알칼리도가 증가하게 된다. 이러한 알칼리도의 증가는 물이 섬유소를 팽윤시키는 능력을 증가시킴으로써 섬유간 결합강도를 향상시킨다.From Table 1 and Table 2, it can be seen that alkalinity has a proportional relationship with sulfate removal efficiency. When the residence time decreases, organic acids that have not been removed flow out to suppress the increase in alkalinity and slow down the increase in pH value. Influent wastewater of about pH 6.5 goes through an anaerobic reactor and increases its alkalinity to about pH 7.5. This increase in alkalinity improves the interfiber bond strength by increasing the ability of water to swell fiber.
<실시예 3><Example 3>
실시예 1 및 실시예 2에서 혐기성 반응조를 거친 유출수를 표면폭기기와 내부 혼합기가 설치된 이산화탄소 탈기조로 유입시켜 이산화 탄소 탈기에 의한 pH 증가현상과, 전술한 반응식 3에 의해 형성된 불용성 고형물을 침전조에서 제거하여 칼슘 제거효율을 관찰하였다. 하기 표 3은 수온 변화에 따른 이산화탄소 탈기 및 칼슘 제거효율을 나타낸 것이다.In Examples 1 and 2, the effluent from the anaerobic reactor was introduced into a carbon dioxide degassing tank equipped with a surface aerator and an internal mixer to increase pH due to carbon dioxide degassing, and insoluble solids formed by the above-described reaction formula 3 in the sedimentation tank. To remove the calcium removal efficiency was observed. Table 3 shows the carbon dioxide degassing and calcium removal efficiency according to the water temperature change.
<실시예 4><Example 4>
실시예 3에서 얻은 처리수의 수질을 종래의 골판지 원지 생산공장의 백수 및 공업용수(상수)와 비교하여 표 4에 나타내었다.The water quality of the treated water obtained in Example 3 is shown in Table 4 in comparison with the white water and industrial water (constant water) of the conventional corrugated paper production plant.
표 4로부터 알 수 있는 바와 같이 본 발명에 의한 방법으로 처리된 제지폐수는 칼슘농도가 공업용수 수준에는 못미치지만 현재의 제지공정 백수보다는 상당히 낮으며, 황산염과 기타 이온으로 인한 전기전도도 값이 기존 백수에 비하여 한층 낮아진 것을 알 수 있다. 또한 공정에서 음이온 트래시 역할을 하는 COD의 농도도 상당히 저하되었다.As can be seen from Table 4, the paper wastewater treated by the method according to the present invention has a calcium concentration that is less than the level of industrial water, but is significantly lower than that of the current papermaking process, and electrical conductivity values due to sulfate and other ions are existing. It can be seen that even lower than the white water. In addition, the concentration of COD, which acts as an anion trap in the process, was significantly reduced.
<실시예 5><Example 5>
국내에서 수집된 KOCC(Korean Old Corrugated Container) 고지를 원료로 하여 골판지를 제조하였다. 용수로는 공업용수, 백수 및 실시예 3의 처리수를 사용하였으며, 원료를 각각의 용수와 혼합하여 해리시킨 후 보류용 고분자(폴리아크릴아미드), 보류 보조제(벤토나이트)를 혼합하여 골판지를 제조하였다. 생산된 제품의 평량은 약 100g/m2으로 일정하게 유지하였다. 용수가 제품 특성에 미치는 영향을 평가하여 표 5에 나타내었다.Corrugated cardboard was manufactured using KOCC (Korean Old Corrugated Container) waste paper collected in Korea as a raw material. Industrial water, white water, and treated water of Example 3 were used as the water, and the raw materials were mixed with each of the waters to dissociate, followed by mixing the retention polymer (polyacrylamide) and retention aid (bentonite) to prepare corrugated cardboard. The basis weight of the produced product was kept constant at about 100 g / m 2 . The impact of water on product properties is shown in Table 5.
표 5에 의하면, 주요한 제지 특성인 인장강도, 파열강도 및 압축강도 전반에 걸쳐서 기존의 백수를 이용한 경우에 비해 본 발명에 의한 처리수를 이용한 경우가 17% 이상, 특히 압축강도의 경우에는 30% 이상 우수하게 나타남을 알 수 있다. 골판지 원지는 물건을 포장하는 박스나 기타 용기로 사용되기 때문에 이러한 강도 특성은 매우 중요하다. 또한, 공업용수와의 비교에 있어서, 파열강도나 인장강도의 경우에는 본 발명에 의한 처리수나 공업용수가 별차이가 없을 정도로 기계적 특성이 향상되는 것을 알 수 있다.According to Table 5, the treated water according to the present invention is 17% or more, particularly 30% in the case of the compressive strength, as compared with the conventional white water in the overall papermaking properties such as tensile strength, rupture strength and compressive strength. It can be seen that the above is excellent. This strength property is very important because corrugated cardboard is used as a box or other container for packaging objects. In comparison with the industrial water, in the case of the bursting strength or the tensile strength, it can be seen that the mechanical properties are improved to such an extent that there is no difference between the treated water and the industrial water according to the present invention.
한편, 1회 보류도는 약 15% 개선되었으며, 이러한 보류도의 증가는 백수 중 오염물의 농도를 15% 이상 감소시킬 수 있다는 것을 의미한다. 또한, 탈수속도는 약 20% 개선되었으며, 이는 기계의 전체적인 속도를 높일 수 있게 하므로 생산량의 증대와 직결된다. 이상과 같은 보류도 및 탈수속도의 증가는 보류제 및 보류보조제의 효율증가에 기인한 것으로서 수중의 이온농도가 보류제 고분자의 구조에 미치는영향은 이미 전술한 바 있다.On the other hand, one-time retention was improved by about 15%, which means that the increase in retention could reduce the concentration of contaminants in white water by more than 15%. In addition, the dehydration rate has been improved by about 20%, which increases the overall speed of the machine, which is directly related to the increase in production. The increase in retention and dehydration rate is due to the increase in efficiency of the retention agent and retention aid, and the effect of the ion concentration in the water on the structure of the retention agent polymer has already been described above.
본 발명에 의한 페수처리방법을 사용하는 경우에 얻을 수 있는 효과는 다음과 같이 정리할 수 있다.The effect obtained when using the wastewater treatment method according to the present invention can be summarized as follows.
첫째, 제지공장 특히 골판지 제조공장의 폐수중에 포함되어 있는 고농도의 유기물을 혐기성 반응조에서 1차적으로 처리하므로 활성슬러지 공정이나 순산소 포기공정에서와 같은 슬러지 침강성 저하 문제가 발생하지 않으며, 다량의 산소를 공급하기 위해 별도의 동력원을 구비할 필요가 없다.First, the high concentration of organic matter contained in the wastewater of the paper mill, especially the corrugated cardboard manufacturing plant, is treated primarily in the anaerobic reactor to avoid sludge sedimentation degradation problems such as activated sludge process or pure oxygen aeration process. There is no need to have a separate power source to supply.
둘째, 혐기성 반응조에서 생성된 알칼리도를 이용하여 이산화탄소 탈기조에서 칼슘을 불용화시켜 제거할 수 있으므로 침전형성을 위하여 별도의 화학약품을 투입할 필요가 없다.Second, since the alkali can be removed by insolubilizing calcium in the carbon dioxide degassing tank using the alkalinity generated in the anaerobic reactor, it is not necessary to add a separate chemical to form the precipitate.
셋째, 화학침전법과는 달리 화학약품을 투입하지 않기 때문에 물의 전기전도도를 크게 감소시킬 수 있으며, 보류제 및 보류보조제의 효율이 증가되어 그 사용량을 절감할 수 있을 뿐만 아니라 1회 보류율이 증가되어 오염물의 농도를 낮추고 탈수속도를 증가시킬 수 있다.Third, unlike the chemical precipitation method, since the chemical is not added, the electrical conductivity of the water can be greatly reduced, and the efficiency of the retention agent and the retention aid is increased, which reduces the amount of use, and increases the one-time retention rate. It can lower the concentration of contaminants and increase the dehydration rate.
넷째, 일반적으로 제지폐수는 고온인데, 혐기성 반응조 및 이산화탄소 탈기조는 폐수의 온도가 고온일수록 유기물 및 칼슘의 제거효율이 증가되기 때문에 호기성 공정과는 달리 별도의 냉각장치가 필요없다.Fourth, generally papermaking wastewater is a high temperature, anaerobic reaction tank and carbon dioxide degassing tank is not required because of the high temperature of the wastewater, the removal efficiency of organic matter and calcium increases, unlike the aerobic process does not require a separate cooling device.
다섯째, 본 발명에 의해 처리된 제지폐수를 펄퍼에서의 해리용수로 사용하는 경우 제품의 인장강도, 파열강도 및 압축강도 등 기계적 강도가 크게 향상된다.Fifth, when the papermaking wastewater treated by the present invention is used as dissociation water in the pulper, mechanical strength such as tensile strength, bursting strength, and compressive strength of the product is greatly improved.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990046907A KR100351730B1 (en) | 1999-10-27 | 1999-10-27 | Paper wastewater treatment process and paper manufacturing method using the treated water therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990046907A KR100351730B1 (en) | 1999-10-27 | 1999-10-27 | Paper wastewater treatment process and paper manufacturing method using the treated water therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010038791A true KR20010038791A (en) | 2001-05-15 |
KR100351730B1 KR100351730B1 (en) | 2002-09-11 |
Family
ID=19617195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990046907A KR100351730B1 (en) | 1999-10-27 | 1999-10-27 | Paper wastewater treatment process and paper manufacturing method using the treated water therefrom |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100351730B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474877B1 (en) * | 2000-09-26 | 2005-03-08 | 삼성엔지니어링 주식회사 | Method for treatment and reuse of white water from paper manufacturing process |
KR100761455B1 (en) * | 2006-08-18 | 2007-10-04 | 주식회사 지앤지인텍 | High rate calcium removal process and equipments with enhancement of calcite growth using cavitation in water |
WO2010145672A1 (en) * | 2009-06-15 | 2010-12-23 | Meri Entsorgungstechnik für die Papierindustrie GmbH | System and method for treating process water with separate separation of gases and solids |
CN101544452B (en) * | 2009-05-05 | 2011-10-05 | 浙江省环境保护科学设计研究院 | Composite anaerobic-aerobic process for treating waste paper making wastewater |
CN104743749A (en) * | 2015-03-30 | 2015-07-01 | 上海应用技术学院 | Weakly-alkaline cotton pulp industrial middle-stage wastewater treatment method |
CN105858879A (en) * | 2016-04-26 | 2016-08-17 | 郑州市环境保护监测中心站 | High-efficiency electrolysis desulfurization anaerobic reactor |
CN106007272A (en) * | 2016-08-11 | 2016-10-12 | 桂琪 | Biochemical treatment method and apparatus for high calcium and high magnesium waste water |
CN110818087A (en) * | 2019-12-17 | 2020-02-21 | 新疆圣雄氯碱有限公司 | Advanced treatment and recycling device for stripping wastewater and using method thereof |
CN111115893A (en) * | 2018-10-31 | 2020-05-08 | 黄耀辉 | Method for treating boron-containing wastewater |
CN113698008A (en) * | 2021-08-28 | 2021-11-26 | 邱娜 | Organic matter decomposition equipment based on paper mill waste water treatment |
CN115611441A (en) * | 2021-06-28 | 2023-01-17 | 中国石油化工股份有限公司 | Mobile high-temperature biochemical device and working method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101198261B1 (en) | 2009-06-03 | 2012-11-07 | 주식회사 지앤지인텍 | A method and device for electro-chemical hydrogen production and biological carbon dioxide reduction |
KR102277451B1 (en) * | 2020-10-28 | 2021-07-14 | (주)루선트엔지니어링 | apparatus for reducing dissolved solid and equipment for removing sludge |
-
1999
- 1999-10-27 KR KR1019990046907A patent/KR100351730B1/en active IP Right Grant
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474877B1 (en) * | 2000-09-26 | 2005-03-08 | 삼성엔지니어링 주식회사 | Method for treatment and reuse of white water from paper manufacturing process |
KR100761455B1 (en) * | 2006-08-18 | 2007-10-04 | 주식회사 지앤지인텍 | High rate calcium removal process and equipments with enhancement of calcite growth using cavitation in water |
CN101544452B (en) * | 2009-05-05 | 2011-10-05 | 浙江省环境保护科学设计研究院 | Composite anaerobic-aerobic process for treating waste paper making wastewater |
US9216921B2 (en) | 2009-06-15 | 2015-12-22 | Meri Environmental Solutions Gmbh | System and method for treating process water with separate separation of gases and solids |
WO2010145672A1 (en) * | 2009-06-15 | 2010-12-23 | Meri Entsorgungstechnik für die Papierindustrie GmbH | System and method for treating process water with separate separation of gases and solids |
CN102803159A (en) * | 2009-06-15 | 2012-11-28 | 梅里环境处理公司 | System and method for treating process water with separate separation of gases and solids |
CN102803159B (en) * | 2009-06-15 | 2015-04-15 | 梅里环境处理公司 | System and method for treating process water with separate separation of gases and solids |
CN104743749A (en) * | 2015-03-30 | 2015-07-01 | 上海应用技术学院 | Weakly-alkaline cotton pulp industrial middle-stage wastewater treatment method |
CN104743749B (en) * | 2015-03-30 | 2016-08-24 | 上海应用技术学院 | A kind of processing method of meta-alkalescence Cotton Pulp industry middle-stage wastewater |
CN105858879A (en) * | 2016-04-26 | 2016-08-17 | 郑州市环境保护监测中心站 | High-efficiency electrolysis desulfurization anaerobic reactor |
CN106007272A (en) * | 2016-08-11 | 2016-10-12 | 桂琪 | Biochemical treatment method and apparatus for high calcium and high magnesium waste water |
CN111115893A (en) * | 2018-10-31 | 2020-05-08 | 黄耀辉 | Method for treating boron-containing wastewater |
CN110818087A (en) * | 2019-12-17 | 2020-02-21 | 新疆圣雄氯碱有限公司 | Advanced treatment and recycling device for stripping wastewater and using method thereof |
CN115611441A (en) * | 2021-06-28 | 2023-01-17 | 中国石油化工股份有限公司 | Mobile high-temperature biochemical device and working method thereof |
CN113698008A (en) * | 2021-08-28 | 2021-11-26 | 邱娜 | Organic matter decomposition equipment based on paper mill waste water treatment |
Also Published As
Publication number | Publication date |
---|---|
KR100351730B1 (en) | 2002-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kamali et al. | Anaerobic digestion of pulp and paper mill wastes–An overview of the developments and improvement opportunities | |
Thompson et al. | The treatment of pulp and paper mill effluent: a review | |
Bajpai | Anaerobic technology in pulp and paper industry | |
Han et al. | A review of process and wastewater reuse in the recycled paper industry | |
FI97218C (en) | Wastewater treatment process | |
KR100351730B1 (en) | Paper wastewater treatment process and paper manufacturing method using the treated water therefrom | |
US5976375A (en) | Process for reducing production of biomass during activated sludge treatment of pulp and paper mill effluents | |
Navia et al. | Alkaline pretreatment of kraft mill sludge to improve its anaerobic digestion | |
Habets et al. | In line biological water regeneration in a zero discharge recycle paper mill | |
EA000845B1 (en) | Industrial utilization of garbage with effective recycling and with optimisation in energy production | |
MX2008011668A (en) | Process and device for the anaerobic treatment of waste water. | |
CN110668649A (en) | Corrugated paper pulping wastewater treatment system and process | |
EP1008561A2 (en) | Calcium hardness reducing technology for recycled water of papermill | |
Lerner et al. | Aerobic vs. anaerobic-aerobic biotreatment: Paper mill wastewater | |
Lee Jr et al. | Anaerobic treatment of pulp and paper mill wastewaters | |
KR100627158B1 (en) | Modified starch wastewater treatment system | |
Hamm et al. | Effluent-free papermaking: industrial experiences and latest developments in the German paper industry | |
KR100692283B1 (en) | Water treatment method for water reuse in pulp and paper industries | |
Pichon et al. | Anaerobic treatment of sulphur-containing effluents | |
CN113429083B (en) | Zero-liquid discharge treatment process and system for mixed wastewater of tar processing and needle coke | |
CN105016571B (en) | Processing method of paper-pulping black liquor | |
CN113646270B (en) | Method for purifying process water circulated in waste paper treatment plant by enzyme | |
Chen et al. | The Treatment of a High Strength Pulp and Paper Mill Effluent for Wastewater Re-Use: II) Biological Sulphate Removal from Effluent with a Low COD/Sulphate Ratio | |
Driessen et al. | Combined anaerobic/aerobic treatment of peroxide bleached TMP mill effluent | |
Van Lier et al. | Anaerobic treatment for C and S removal in “zero-discharge” paper mills: effects of process design on S removal efficiencies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130613 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140620 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150709 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160711 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20180525 Year of fee payment: 17 |