KR20010037974A - Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal - Google Patents

Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal Download PDF

Info

Publication number
KR20010037974A
KR20010037974A KR1019990045760A KR19990045760A KR20010037974A KR 20010037974 A KR20010037974 A KR 20010037974A KR 1019990045760 A KR1019990045760 A KR 1019990045760A KR 19990045760 A KR19990045760 A KR 19990045760A KR 20010037974 A KR20010037974 A KR 20010037974A
Authority
KR
South Korea
Prior art keywords
treatment system
nitrogen
reaction tank
channel type
oxidizing
Prior art date
Application number
KR1019990045760A
Other languages
Korean (ko)
Other versions
KR100350050B1 (en
Inventor
한상배
장덕
Original Assignee
한상배
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한상배 filed Critical 한상배
Priority to KR1019990045760A priority Critical patent/KR100350050B1/en
Publication of KR20010037974A publication Critical patent/KR20010037974A/en
Application granted granted Critical
Publication of KR100350050B1 publication Critical patent/KR100350050B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/906Phosphorus containing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: An advanced sewage and waste water treatment system of circular water channel type is provided, which can remove nitrogen in high efficiency by denitrification without any internal water circulating pump and water flow pipes and can use an existing oxidation ditch as a denitrification facility just by installing partition walls in the ditch, so that the system can be economical in construction cost and utility cost. CONSTITUTION: The system comprises the followings: (i) an oxidation ditch (1) of circular water channel type, which is provided with an anaerobic reactor (3) and an anoxic reactor (4) by installing partition walls(5), and in which nitrification, luxury intake of phosphorous and aerobic decomposition of organic matter are proceeded; (ii) an anaerobic reactor (3) into which circulating water(11) in the oxidation ditch(1) is not flowed, and in which phosphorus is released from activated sludge; (iii) an anoxic reactor (4) into which sewage and recycling sludge are flowed and a part of the circulating water(11) is also flowed, and in which nitrogen oxide in the sewage and waste water is denitrified; and (iv) a settling basin (2).

Description

질소, 인 제거를 위한 순환수로형 하폐수처리시스템{Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal}Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal

본 발명은 하수 또는 폐수로부터 유기물과 영양염류를 제거하는 장치 및 방법에 관한 것으로, 침전지내장형 또는 외장형의 산화구에 혐기성반응조와 호기성반응조를 설치하고, 상기 혐기성 반응조에서는 인방출반응이 이루어지며 상기 무산소반응조에서는 탈질반응이 이루어지고, 산화구에서는 인의 초과섭취와 질산화 및 유기물의 호기성분해가 이루어지므로 내부순환펌프 및 관로를 생략하고서도 경제적으로 질소와 인을 제거할수 있는 고도하폐수처리시스템에 관한 것이다.The present invention relates to an apparatus and a method for removing organic matter and nutrients from sewage or wastewater. An anaerobic reaction tank and an aerobic reaction tank are installed in a sedimentation built-in type or an external type of oxidizing sphere, and in the anaerobic reaction tank, a phosphorus release reaction is performed and the oxygen-free reaction tank is performed. In the denitrification reaction, the oxidative sphere is ingested in excess of phosphorus, nitrification and aerobic decomposition of organic matter, so it is related to the advanced sewage treatment system that can remove nitrogen and phosphorus economically without omitting the internal circulation pump and pipeline.

하폐수중의 오염물질에는 유기물과 영양염류인 질소와 인이 주종을 이루고 있으며 생물학적 질소제거는 질산화(Nitrification)반응을 위한 호기성반응조(Aerobic Reactor)와 탈질(Denitrification)반응을 위한 무산소반응조(Anoxic Reactor)로 분리된 2조이상의 반응조에서 질산화반응과 탈질반응이 이루어진다. 또한 생물학적 방법에 의하여 인을 효과적으로 제거하기 위해서는 활성슬러지로부터 인이 방출되는 혐기성반응조(Anaerobic Reactor)가 추가되어야 한다.Contaminants in sewage water are mainly composed of organic matter and nutrients nitrogen and phosphorus, and biological nitrogen removal is aerobic reactor for nitrification reaction and anoxic reactor for denitrification reaction. Nitrification and denitrification occur in two or more tanks separated by. In addition, in order to effectively remove phosphorus by a biological method, an anaerobic reactor that releases phosphorus from activated sludge should be added.

질소산화물이 환원되는 탈질반응의 형태는 유입하폐수에 함유된 유기물을 이용하는 전탈질방법과 외부에서 유기물을 공급해야 되는 후탈질방법으로 분류되며, 유입하폐수중의 유기물을 이용하는 전탈질방법이 경제적으로 유리한 측면이 있으나 장치의 구성이 복잡하고 내부순환에 따른 동력소요가 큰 문제점이 있다.Types of denitrification in which nitrogen oxides are reduced are classified into total denitrification method using organic substances contained in influent wastewater and post denitrification method using organic materials from outside, and total denitrification method using organic substances in influent wastewater is economically advantageous. Although there is a side, the configuration of the device is complicated and there is a big problem of power consumption due to internal circulation.

종래의 기술중 본 발명에서와 같은 전탈질방법으로서 대표적인 공법에 해당되는 A2O공법(Anaerobic Anoxic Oxic Process)과 장치의 구성에 대하여 좀더 자세히 설명하면, 도1에서와 같이 혐기성반응조(101)에서는 침전지(111)에서 반송되는 활성슬러지로부터 인방출반응이 이루어지고, 무산소반응조(102)에서는 탈질반응이, 호기성반응조(103)에서는 질산화와 유기물분해 및 인의 초과섭취가 이루어지는 공정으로 구성된다.The A 2 O method (Anaerobic Anoxic Oxic Process) and if greater detail the configuration of a device, the anaerobic tank 101, as shown in Figure 1, which is a typical method as before denitration method as in the invention of the prior art The phosphorus release reaction is carried out from the activated sludge returned from the settling basin 111, the denitrification reaction in the oxygen-free reaction tank 102, the nitrification and organic decomposition and the excess intake of phosphorus in the aerobic reactor (103).

호기성반응조(103)에는 유기물의 분해와 질산화 반응을 위하여 포기장치가 설치되며 반응액을 무산소반응조(102)로 내부순환시키기 위한 내부순환펌프(107)가 설치되어야 한다. 이와 같은 구성의 상기 A2O공법에서는 내부순환펌프(107)와 내부순환관로등이 설치되므로, 시설비와 동력비 측면에서 비경제적이며 유지관리면에서도 어려움이 많은 문제점이 있다.The aerobic reactor 103 is provided with an aeration device for decomposition and nitrification of organic matter, and an internal circulation pump 107 for circulating the reaction liquid into the oxygen-free reactor 102 should be installed. In the A 2 O method of the above configuration, since the internal circulation pump 107 and the internal circulation pipe are installed, there are many problems in terms of facility cost and power cost, which are uneconomical and difficult in maintenance.

또한 종래의 산화구는 순환거리가 비교적 긴 수로형의 반응조이므로 일부구간은 무산소조건 또는 혐기성조건이 형성되어 질소와 인이 효과적으로 제거될수 있는 것처럼 막연히 주장되기도 하였다. 그러나 산화구에서 슬러지가 침전되지 않기 위해서는 순환수류의 유속은 약 0.3m/sec(1ft/sec)가 유지되어야 하며 이러한 유속에서는 순환거리가 매우 긴 산화구, 예를 들면 순환거리가 100M인 대형 산화구에서도 1회 순환에 소요되는 시간은 6분미만이므로 호기성구간, 무산소구간 나아가서는 혐기성구간이 형성된다는 것은 거의 불가능하고 따라서 산화구 단일반응조에서의 질소와 인의 제거효율은 높지 못하였다.In addition, since the conventional oxidation sphere is a channel having a relatively long circulation distance, some sections have been vaguely claimed as nitrogen and phosphorus can be effectively removed by forming anoxic or anaerobic conditions. However, in order to prevent sludge settling in the oxidizing sphere, the flow rate of the circulating water must be maintained at about 0.3 m / sec (1 ft / sec), and at this flow rate, even in a large oxidizing sphere having a long circulating distance, for example, a large oxidizing sphere having a circulating distance of 100 M 1 Since the cycle time is less than 6 minutes, it is almost impossible to form aerobic, anaerobic, and anaerobic sections. Therefore, the removal efficiency of nitrogen and phosphorus in the oxidizing zone was not high.

산화구를 이용하여 질소, 인제거 효율을 크게하기 위하여 덴마트의 크뢰어사에서는 2개이상의 산화구와 외장형 침전지를 조합하여 유로변경 및 간헐포기방식으로 운영하는 PID공법을 개발하였으나 앞단계에는 인방출반응을 위하여 4조의 반응기를 거치는 구조이므로 공정이 매우 복잡하고 시설비 소요가 큰 문제점이 있다.In order to increase the efficiency of nitrogen and phosphorus removal using oxidizing spheres, Denmart Kreuer developed a PID method that operates by changing the flow path and intermittent aeration method by combining two or more oxidizing spheres and an external sedimentation basin. In order to pass through the four sets of reactors in order to process the process is very complicated and there is a large cost requirement.

출원인이 발명하여 PhiCD(Phased isolated intra Clarifier Ditch)시스템으로 명명한 한국특허 제225971호 질소·인제거를 위한 하폐수처리장치 및 방법은 2개이상의 침전지내장형산화구를 조합하여 유로변경 및 간헐포기방식으로 운영하는 하폐수처리시스템을 구성한 것으로 PID공법보다 공정이 단순하고 처리효율이 개선된 공법이다. 그러나 PID공법의 Phase B, Phase D에서는 한 개의 호기성조건의 산화구에서 하폐수의 유입과 유출이 이루어지므로 미생물의 생체에 합성되는 것을 제외하고는 별다른 질소·인제거 기능이 없어 질소와 인의 유출농도가 증가되기도 하며, 출원인이 발명한 상기 PhiCD공법에서도 (c)단계와 (f)단계에서는 PID에서와 같은 문제점이 발생된다.Apparatus and method for treating sewage and wastewater for nitrogen and phosphorus removal in Korea, which the applicant invented and named as PhiCD (Phased isolated intra Clarifier Ditch) system, combines two or more sedimentation-embedded oxidizing spheres and operates the channel change and intermittent aeration method. It is composed of sewage treatment system, which is simpler than PID method and has improved treatment efficiency. However, in the phase B and phase D of the PID method, the inflow and outflow of sewage water is carried out in one aerobic oxidizing sphere, so there is no nitrogen / phosphorus removal function except that it is synthesized in microorganisms. In the PhiCD method invented by the applicant, the same problem as in PID occurs in steps (c) and (f).

이에 본 발명은 상술한 제 문제점을 해소하기 위하여 안출된 것으로, 2조이상의 산화구를 조합하여 유로변경 및 간헐포기방식으로 운영하는 하폐수처리시스템의 모든 단계에서 질소·인제거 효율을 높게 유지할수 있음은 물론, 단일 산화구도 질소와 인 제거기능을 구비하고 별도의 내부순환시설을 생략할수 있는 경제적이고 효율적인 하폐수처리시스템을 제공하고자 한다.Accordingly, the present invention has been made to solve the above-mentioned problems, and it is possible to maintain high nitrogen and phosphorus removal efficiency at all stages of the wastewater treatment system operated by changing the flow path and intermittent aeration by combining two or more trillion oxide spheres. Of course, a single oxidation sphere also has a nitrogen and phosphorus removal function, and to provide an economical and efficient wastewater treatment system that can omit a separate internal circulation facility.

먼저 탈질목적을 달성하기 위하여 본 발명에서는 순환수로형의 호기성반응조인 산화구와 침전지로 구성된 하폐수처리시스템에서, 상기 산화구의 내부에 벽체를 설치하고 무산소반응조를 구성하여 상기 무산소반응조에 하폐수와 반송슬러지가 유입되도록 하고 상기 산화구에서 순환하는 반응액의 일부도 상기 무산소반응조로 유입되도록 하여 탈질이 완료된 반응액은 상기 산화구로 유출되는 구조이다.First, in order to achieve the purpose of denitrification, in the present invention, a wastewater treatment system composed of an oxidizing sphere and a sedimentation basin, which is an aerobic reaction tank of a circulating water channel, is provided with a wall inside the oxidizing sphere, and an anoxic reaction tank is formed to treat wastewater and return sludge in the anoxic reactor. A part of the reaction solution circulated in the oxidizing sphere is also introduced into the anoxic reaction tank so that the denitrification completes the reaction liquid to the oxidizing sphere.

이와 같은 구조의 하폐수처리시스템의 작용을 설명하면, 상기 무산소반응조에서는 미생물이 유입유기물을 이용하여 산화구에서 유입되는 순환수류중의 질소산화물을 환원시키는 탈질반응이 이루어지게 되며, 상기 산화구에서는 호기성조건에서 질산화와 유기물의 분해가 이루어지게 된다. 이때 무산소반응조에 순환수류가 과다하게 유입되면 체류시간이 부족되고 무산소조건의 유지가 어렵게 되므로 순환수류의 유입량을 조절할수 있도록 상기 무산소반응조의 유입구에는 수문등을 설치하는 것이 바람직하다.Referring to the operation of the wastewater treatment system having such a structure, in the anoxic reaction tank, the denitrification reaction is performed in which the microorganisms reduce nitrogen oxides in the circulating water stream flowing from the oxidizing port using the inflowing organic matter, and in the oxidizing sphere under aerobic conditions. Nitrification and decomposition of organic matter are achieved. At this time, if the circulating water flows excessively into the anoxic reaction tank, the residence time is insufficient and it is difficult to maintain the anoxic condition. Therefore, it is preferable to install a water gate at the inlet of the anoxic reaction tank to control the inflow of the circulating water.

또한 탈질기능에 탈인기능을 추가하기 위하여 상기 무산소반응조 앞단계에 혐기성반응조를 추가로 설치하고 하폐수와 반송슬러지는 상기 혐기성반응조로 유입시키고 상기 혐기성반응조의 유출수와 산화구의 순환수류는 상기 무산소반응조로 유입되도록 구성한다. 생물학적 질소·인 제거기능을 병행할수 있는 하폐수처리시스템의 작용을 설명하면, 상기 혐기성반응조에서는 활성슬지로부터 인방출이 이루어지고 상기 무산소반응조에서는 탈질반응이 이루어지며 상기 산화구에서는 질산화 반응과 인의 초과섭취 및 유기물의 호기성 분해가 각각 이루어지게 된다.In addition, in order to add dephosphorization function to the denitrification function, an anaerobic reaction tank is additionally installed in the front stage of the anoxic reaction tank, and sewage and return sludge flow into the anaerobic reaction tank, and the effluent and anaerobic circulation flow of the anaerobic reaction tank are introduced into the anoxic reaction tank. Configure to Referring to the action of the sewage water treatment system which can perform the biological nitrogen and phosphorus removal function, the anaerobic reaction tank is phosphorus discharge from the activated sludge, the anoxic reaction tank is denitrification reaction, the oxidation sphere nitrification reaction and excess intake of phosphorus and Aerobic decomposition of organics is achieved respectively.

이와 같이 반응액이 순환하는 순환수로형의 반응조인 산화구의 내부에 무산소반응조를 설치하거나 또는 혐기성반응조와 무산소반응조를 함께 설치하므로서 내부순환펌프 및 관로를 생략하고서도 종래의 AO 또는 A2O공법에서와 같이 질소와 인을 제거할 수 있게 된다.In this way, an oxygen-free reaction tank is installed inside the oxidizing sphere, which is a circulating channel type reaction tank in which the reaction solution circulates, or an anaerobic reaction tank and an oxygen-free reaction tank are installed together, so that the internal circulation pump and the pipe are omitted, and the conventional AO or A 2 O method is used. Likewise, nitrogen and phosphorus can be removed.

또한 침전지가 내장된 침전지내장형산화구에 상기 무산소반응조를 설치하거나 혐기성반응조와 무산소반응조를 함께 설치하게 되면 슬러지 수집장치 또는 슬러지반송펌프 및 관로시설도 불필요하게 되므로 더욱 경제적이다. 특히 본 발명에 의한 방법은 이미 건설이 완료되어 가동중인 재래식 산화구와 침전지내장형산화구에도 용이하게 적용하여 고도처리공법으로 변경시킬수 있으며, 종래 PID공법 또는 출원인이 발명한 PhiCD공법에 적용하여 질소와 인의 제거효율을 향상시킬수 있다.In addition, when the anoxic reaction tank is installed in the sedimentation basin built-in oxidizing sphere in which the sedimentation basin is built, or when the anaerobic reaction tank and the anoxic reaction tank are installed together, the sludge collecting device or the sludge conveying pump and the pipe line facility are also unnecessary, which is more economical. In particular, the method according to the present invention can be easily applied to conventional oxidized spheres and sedimentation-type oxidized spheres which have already been constructed and operated, and can be changed to a high-treatment method, and applied to the conventional PID method or the PhiCD method invented by the applicant to remove nitrogen and phosphorus. It can improve the efficiency.

본 발명에 따른 산화구를 2조이상 조합하여 유로변경 및 간헐포기방식으로 구성 및 운영하는 하폐수고도처리시스템을 구성하므로서 종래의 PID공법의 (B)Phase와 (D)Phase 그리고 PhiCD공법의 (C)단계와 (F)단계에서 질소와 인의 유출농도를 감소시킬수 있게 되어 처리효율을 향상시키게 된다.(B) Phase and (D) Phase and PhiCD method of the conventional PID method by constructing the wastewater advanced water treatment system which is configured and operated in the channel change and intermittent aeration method by combining two or more sets of oxidation spheres according to the present invention. In step and (F) it is possible to reduce the outflow concentration of nitrogen and phosphorus to improve the treatment efficiency.

도 1은 종래의 전탈질방법에 의한 질소, 인 제거 시스템의 흐름도,1 is a flow chart of a nitrogen, phosphorus removal system by a conventional total denitrification method,

도 2는 본 발명에 따른 질소 제거기능이 구비된 하폐수처리시스템의 개략 구성도,2 is a schematic configuration diagram of a wastewater treatment system equipped with a nitrogen removal function according to the present invention;

도3은 본 발명에 따른 질소, 인 제거기능이 구비된 하폐수처리시스템의 개략 구성도,3 is a schematic configuration diagram of a wastewater treatment system equipped with a nitrogen and phosphorus removing function according to the present invention;

도4는 본 발명에 따른 질소, 인 제거기능이 구비되고 침전지가 내장된 하폐수처리시스템의 개략 구성도이다.Figure 4 is a schematic diagram of the sewage treatment system equipped with a nitrogen, phosphorus removal function and built-in sedimentation basin according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 산화구 2 : 침전지1: Oxidized sphere 2: Sedimentation basin

3 : 혐기성반응조 4 : 무산소반응조3: anaerobic reactor 4: anaerobic reactor

5 : 벽체 6 : 수 문5: wall 6: male door

7 : 내장형 침전지 11 : 순환수류7: built-in sedimentation basin 11: circulating water flow

이하, 본 발명의 구성 및 작용을 첨부된 예시도면을 통하여 상세하게 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail through the accompanying drawings.

도2는 본 발명에 따른 탈질반응을 위한 무산소반응조가 구비된 순환수로형 하폐수처리시스템의 평면도이다.2 is a plan view of a circulating water channel type sewage treatment system equipped with an oxygen-free reaction tank for denitrification according to the present invention.

순환수로형의 호기성반응조인 산화구(1)와 침전지(2)로 구성된 하폐수처리시스템에서, 상기 산화구에 벽체(5)를 설치하여 무산소반응조(4)를 구성하고 유입하폐수 및 반송슬러지는 상기 무산소반응조로 유입되는 구조이다. 상기 산화구내의 순환수류(11)의 일부는 상기 무산소반응조로 유입되며 무산소반응조의 유입구에는 수문(6)을 설치하여 상기 순환수류의 유입량이 조절되도록 구성하였다.In the wastewater treatment system consisting of an oxidizing sphere (1) and a sedimentation basin (2), which are aerobic reaction tanks of circulation channel type, a wall (5) is installed in the oxidizing sphere to form an anaerobic reaction tank (4), and the influent wastewater and the return sludge are the anoxic reaction tank. Inflow to the structure. Part of the circulating water 11 in the oxidizing sphere flows into the anoxic reaction tank, and a water gate 6 is installed at the inlet of the anoxic reaction tank to control the inflow of the circulating water.

이와 같은 구조의 상기 하폐수처리시스템에서는 별도의 내부순환펌프가 없어도 상기 산화구에서의 순환수류가 순환유속에 의하여 상기 무산소반응조로 유입되므로 경제적으로 질소산화물의 탈질반응이 이루어지게 된다.In the wastewater treatment system having such a structure, even without a separate internal circulation pump, the circulating water flow in the oxidizing sphere flows into the anoxic reaction tank by the circulation flow rate, thereby economically denitrifying the nitrogen oxide.

도3은 본 발명에 따른 질소와 인을 동시에 제거할수 있도록 무산소반응조와 혐기성반응조가 함께 구비된 순환수로형 하폐수처리시스템의 평면도이다.Figure 3 is a plan view of the circulating channel type sewage treatment system equipped with an anoxic reactor and an anaerobic reactor to remove nitrogen and phosphorus simultaneously according to the present invention.

본 실시예에서는 탈질과 탈인을 병행하기 위하여 무산소반응조(4) 앞단계에 혐기성반응조(3)를 추가로 설치하고 하폐수와 반송슬러지는 상기 혐기성반응조로 유입시키고 상기 혐기성반응조의 유출수와 산화구의 순환수류(11)는 상기 무산소반응조로 유입되도록 구성하며 상기 혐기성반응조에는 상기 순환수류가 유입되지 않는 구조이다. 본 실시예의 작용을 설명하면, 상기 혐기성반응조에서는 활성슬러지로부터 인방출이 이루어지고 상기 무산소반응조에서는 산화구에서 순환유속에 의하여 유입되는 순환수류중의 질소산화물의 탈질반응이 이루어지며 상기 산화구에서는 질산화 반응과 인의 초과섭취 및 유기물의 호기성 분해가 각각 이루어지게 된다.In this embodiment, an anaerobic reaction tank (3) is additionally installed at the front of the anaerobic reaction tank (4) in order to perform denitrification and dephosphorization in parallel. Sewage and return sludge are introduced into the anaerobic reaction tank, and the effluent water of the anaerobic reaction tank and the circulating water flow of the oxidizing port. (11) is configured to flow into the anoxic reaction tank and the circulation water flow does not flow into the anaerobic reaction tank. Referring to the operation of the present embodiment, the anaerobic reaction tank is phosphorus discharge from the activated sludge, the anoxic reaction tank is denitrification reaction of the nitrogen oxide in the circulating water flow by the circulating flow rate from the oxidizing sphere and the nitrification reaction in the oxidizing sphere Excessive intake of phosphorus and aerobic decomposition of organics are achieved respectively.

도4는 본 발명에 따른 질소와 인을 제거하며 침전지가 내장된 순환수로형 하폐수처리시스템의 평면도이다. 본 실시예에서는 도2의 실시예에서 침전지(7)를 산화구(1)의 내부에 설치하여 침전지내장형산화구로 구성한 것으로 외장형 침전지를 사용하는 다른 실시예에서보다 경제적인 시설을 제공할수 있다.Figure 4 is a plan view of the circulating channel type sewage treatment system in which nitrogen and phosphorus are removed and a sedimentation basin is built according to the present invention. In this embodiment, in the embodiment of FIG. 2, the sedimentation basin 7 is installed inside the oxidation sphere 1, and the sedimentation basin built-in oxidization sphere is configured to provide a more economical facility than in the other embodiments using the external sedimentation basin.

상술한 바와 같이 본 발명의 순환수로형 고도하폐수처리시스템은, 별도의 내부순환펌프 및 관로시설을 생략하고서도 전탈질방법에 의한 질소제거가 가능하게 되므로 시설비와 동력비에서 경제적이며, 이미 건설이 완료되어 가동중인 산화구에 의한 하폐수처리시설에도 용이하게 적용하여 질소와 인을 높은 효율로 제거할수 있는 한편, 산화구에 의한 유로변경 및 간헐포기방식의 하폐수처리시스템과 침전지내장형산화구에도 광범위하게 적용하여 경제적이고 효율적으로 질소, 인 제거효율을 향상시킬수 있게 된다.As described above, the circulating waterway type advanced sewage treatment system of the present invention is economical in facility cost and power cost because nitrogen can be removed by total denitrification without omitting a separate internal circulation pump and pipeline facility. It can be easily applied to wastewater treatment facilities by oxidizing spheres to remove nitrogen and phosphorus with high efficiency, while it is widely applied to the wastewater treatment system of oxidized spheres and intermittent aeration wastewater treatment system and sedimentation built-in oxidizing spheres. As a result, nitrogen and phosphorus removal efficiency can be improved.

Claims (5)

순환수로형의 호기성반응조인 산화구와 침전지로 구성된 하폐수처리시스템에서, 상기 산화구에는 무산소반응조를 구성하고, 유입하폐수 및 반송슬러지는 상기 무산소반응조에 유입시키고, 상기 산화구에서 순환하는 반응액의 일부는 순환유속에 의하여 상기 무산소반응조에 유입되도록 하는 것을 특징으로 하는 질소, 인제거를 위한 순환수로형 하폐수처리시스템.In the sewage treatment system consisting of an oxidizing sphere and a settling basin, an aerobic reaction tank of circulation channel type, the oxidizing sphere constitutes an anaerobic reaction tank, and the influent wastewater and return sludge flow into the anoxic reaction tank, and a part of the reaction liquid circulated in the oxidizing sphere is circulated. The circulating channel type sewage treatment system for nitrogen and phosphorus removal, characterized in that it is introduced into the anoxic reaction tank by the flow rate. 제1항에 있어서, 상기 산화구에는 혐기성반응조를 추가로 구성하고, 유입하폐수 및 반송슬러지는 상기 혐기성반응조에 유입되도록 하고, 상기 혐기성반응조의 유출수는 상기 무산소반응조에 유입되도록 하는 것을 특징으로 하는 질소, 인제거를 위한 순환수로형 하폐수처리시스템.The method of claim 1, wherein the oxidizing sphere further comprises an anaerobic reactor, influent wastewater and return sludge to be introduced into the anaerobic reactor, the effluent of the anaerobic reactor is nitrogen, characterized in that the inflow to the oxygen-free reactor Circulation channel type sewage treatment system for phosphorus removal. 제1항에 있어서, 상기 무산소반응조의 유입구는 유입 단면적을 조절할수 있는 가변형으로 구성하여 상기 산화구로부터 상기 무산소반응조로 유입되는 순환수류의 유입량이 조절되도록 하는 것을 특징으로 하는 질소, 인제거를 위한 순환수로형 하폐수처리시스템.According to claim 1, wherein the inlet of the anoxic reaction tank is configured in a variable type to control the inlet cross-sectional area nitrogen, characterized in that the inlet flow of the circulating water flowing into the anoxic reaction tank is controlled to remove the nitrogen, phosphorus Waterway sewage treatment system. 제1항에 있어서, 상기 순환수로형 하폐수처리시스템을 2시스템이상 조합하여 유로변경방식으로 구성하고, 상기 산화구의 순환수로 부분은 포기와 비포기 교반을 반복하는 간헐포기방식으로 운영하는 것을 특징으로 하는 질소, 인제거를 위한 순환수로형 하폐수처리시스템.The method of claim 1, wherein the circulating channel type sewage treatment system is combined with two or more systems to form a flow path changing method, and the circulating channel part of the oxidizing port is operated by an intermittent aeration method of repeating aeration and aeration. Circulating channel type sewage treatment system for nitrogen and phosphorus removal. 제1항에 있어서, 상기 침전지는 상기 산화구의 내부에 설치하여 침전지내장형산화구로 구성하는 것을 특징으로 하는 질소, 인제거를 위한 순환수로형 하폐수처리시스템.The wastewater treatment system of claim 1, wherein the sedimentation basin is installed inside the oxidizing sphere to form a sedimentation basin built-in oxidizing sphere.
KR1019990045760A 1999-10-21 1999-10-21 Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal KR100350050B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990045760A KR100350050B1 (en) 1999-10-21 1999-10-21 Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990045760A KR100350050B1 (en) 1999-10-21 1999-10-21 Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal

Publications (2)

Publication Number Publication Date
KR20010037974A true KR20010037974A (en) 2001-05-15
KR100350050B1 KR100350050B1 (en) 2002-08-24

Family

ID=19616279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990045760A KR100350050B1 (en) 1999-10-21 1999-10-21 Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal

Country Status (1)

Country Link
KR (1) KR100350050B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469327B1 (en) * 2002-02-27 2005-02-02 한상배 Submersible Aerator with the Function of Air Priming, Intermittent Aeration, Deoderization and Mixing
CN101628775B (en) * 2009-08-09 2011-07-27 江苏鼎泽环境工程有限公司 Improved Carrousel oxidation ditch
WO2021093214A1 (en) * 2019-11-17 2021-05-20 凌志环保股份有限公司 Oxidation ditch and moving bed biofilm reactor integrated sewage treatment equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533248B (en) * 2020-04-20 2021-08-24 扶志远 Synchronous built-in denitrification system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548712A (en) * 1977-11-04 1985-10-22 Reid John H Conservation of momentum in a barrier oxidation ditch
JPS6068097A (en) * 1983-09-21 1985-04-18 Nishihara Environ Sanit Res Corp Removing apparatus of n and p in sewage
US4818391A (en) * 1983-09-28 1989-04-04 Love Leonard S Integral Clarifier
JPS60132700A (en) * 1983-12-21 1985-07-15 Sumitomo Jukikai Envirotec Kk Biological denitrification treatment of sewage in recirculation water channel type aeration tank
JP2587712B2 (en) * 1990-06-26 1997-03-05 株式会社クボタ Wastewater treatment equipment
US5275722A (en) * 1992-02-25 1994-01-04 Beard Harold J Oxidation ditch wastewater treatment and denitrification system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469327B1 (en) * 2002-02-27 2005-02-02 한상배 Submersible Aerator with the Function of Air Priming, Intermittent Aeration, Deoderization and Mixing
CN101628775B (en) * 2009-08-09 2011-07-27 江苏鼎泽环境工程有限公司 Improved Carrousel oxidation ditch
WO2021093214A1 (en) * 2019-11-17 2021-05-20 凌志环保股份有限公司 Oxidation ditch and moving bed biofilm reactor integrated sewage treatment equipment

Also Published As

Publication number Publication date
KR100350050B1 (en) 2002-08-24

Similar Documents

Publication Publication Date Title
EP3747836B1 (en) Anaerobic ammonia oxidation-based sewage treatment process using mbr
KR100350893B1 (en) Nitrogen and Phosphorous Removing Methods and Equipment with Solids Separation between the Reactors, Dynamic Flow and Intermittent Aeration
US6830689B2 (en) Process for removing phosphorus from wastewater utilizing a triple basin wastewater treatment system
CN101792230A (en) Non-reflux continuous aeration type sewage treatment system and treatment method
CN204211601U (en) Sewerage integrated processing system
CN103613194A (en) Divisional water feed type D-A<2>0 sewage treatment device
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
KR101366867B1 (en) Oxidation ditch retrofitting process for biological nutrient removal using hybrid separation function and compact type contact media
KR19990002774A (en) Wastewater treatment plant and method for nitrogen and phosphorus removal
KR100350050B1 (en) Circular Waterway Type Waste Water Treatment System for Nitrogen & Phosphorous Removal
CN106396105A (en) Multi-mode reaction tank for sewage treatment
KR101269877B1 (en) Advanced Sewage Treatment System by Party Wall in MBR using SND
KR100258637B1 (en) A sewage disposal method
KR100272667B1 (en) A method for arranging reaction receptacle in an incorporated septic tank and a sewage and waste water disposal system
KR20010000876A (en) Internally-recycled aerobic biofilm reactor and the operation method of the reactor
KR100670211B1 (en) Process packed with float media using biosorption mechanism
KR100464244B1 (en) Thick sewage disposal facilities
KR100446107B1 (en) Bioreactor for Treating Wastewater
KR100321231B1 (en) Nitrogen & Phosphorous Removing Methods & Equipment with Intermittent Aeration, Dynamic Flow and Variation of Hydraulic Level
KR100243565B1 (en) Apparatus for purifying wastewater
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
CN221141460U (en) Anaerobic-anoxic-aerobic biochemical pond group combined in series
KR100321562B1 (en) Cross-connected, Two-Bed Biofilm Reactor System and Method for Simultaneous Treatment of Organics, Solids, Nitrogen and Phosphorous in Waste Water
KR100422300B1 (en) A Waste Water Disposal Plant for Digesting Membrane
KR100302895B1 (en) Advanced wastewater treatment system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120719

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130718

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140812

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee