KR20010037163A - Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same - Google Patents

Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same Download PDF

Info

Publication number
KR20010037163A
KR20010037163A KR1019990044522A KR19990044522A KR20010037163A KR 20010037163 A KR20010037163 A KR 20010037163A KR 1019990044522 A KR1019990044522 A KR 1019990044522A KR 19990044522 A KR19990044522 A KR 19990044522A KR 20010037163 A KR20010037163 A KR 20010037163A
Authority
KR
South Korea
Prior art keywords
formula
ether
weight
thin film
lithium salt
Prior art date
Application number
KR1019990044522A
Other languages
Korean (ko)
Other versions
KR100344910B1 (en
Inventor
강영구
이창진
서연호
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR1019990044522A priority Critical patent/KR100344910B1/en
Publication of KR20010037163A publication Critical patent/KR20010037163A/en
Application granted granted Critical
Publication of KR100344910B1 publication Critical patent/KR100344910B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: Provided are a heat crosslinkable polysiloxane electrolytic composition and a method for preparing solid high molecular electrolytic thin film which has reinforced mechanical physical properties such as thin film forming property and compression strength, easily introduces low molecular weight polyalkylene oxide, has improved ion conductivity at room temperature and show good adhesive strength with electrode. CONSTITUTION: The polysiloxane electrolytic composition comprises: (i) 10-80 wt.% of polyhydromethylsiloxane having a polyalkylene oxide group represented by the formula(1), wherein each R1 and R2 is H or methyl group, X is -O- or -OCOO- group, each x and y is an integer of 0-20 and each p and q is an integer of 0-1,000; (ii) 1-60 wt.% of cross-linking agent having three allyl groups represented by the formula(2), wherein R is linear or cyclic aliphatic and aromatic compound having 1-10 carbon atoms or hetero alicyclic compound such as triazine and isocyanurate, X is -O- or -OCOO- group and each x, y and z is an integer of 0-20; (iii) polyalkyleneglycol dialkylether which is an oligomer or a polymer for improving dissociation of lithium salt and conductivity of lithium ion and represented by the formula(3), wherein each R1 and R2 is liner or branched alkyl group having 1-10 carbon atoms, each X, Y and Z is H or methyl group and each p, q and r an integer of 0-20; (iv) 3-30 wt.% of lithium salt; and (v) 0.001-1 wt.% of platinum catalyst for hardening.

Description

열가교형 폴리실록산 전해질 조성물 및 이를 이용한 고체 고분자 전해질 박막의 제조방법{Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same}Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same}

본 발명은 에틸렌글리콜 올리고머를 포함하는 3개의 반응성기를 갖는 새로운 가교제, 폴리알킬렌 옥시드기가 도입된 폴리하이드로메틸실록산 폴리머, 리튬염, 폴리알킬렌글리콜 디알킬에테르 및 백금 촉매를 포함하는 가교형 폴리실록산 및 이를 이용하여 고체 고분자 전해질 박막을 제조하는 방법에 관한 것이다. 본 발명에 따른 가교형 고체 폴리실록산 전해질 조성물은 휴대폰, 노트북 컴퓨터 등의 휴대용 정보 단말기 및 캠코더 등의 기기에 적용되는 소형 리튬 폴리머 이차전지 뿐만 아니라 전력 평준화용 전력저장 장치 및 전기 자동차에 적용가능한 대용량 리튬 폴리머 이차전지, 전기 변색 소자 및 센서 등의 전기화학 소자에 적용할 수 있다.The present invention provides a crosslinking polysiloxane comprising a novel crosslinking agent having three reactive groups including an ethylene glycol oligomer, a polyhydromethylsiloxane polymer having a polyalkylene oxide group introduced therein, a lithium salt, a polyalkylene glycol dialkyl ether and a platinum catalyst. And it relates to a method for producing a solid polymer electrolyte thin film using the same. The cross-linked solid polysiloxane electrolyte composition according to the present invention is a large-capacity lithium polymer applicable to electric power storage devices and electric vehicles as well as small lithium polymer secondary batteries applied to devices such as mobile information terminals and camcorders such as mobile phones and laptop computers. It can be applied to electrochemical devices such as secondary batteries, electrochromic devices and sensors.

고체 전해질을 이용한 전기 화학 소자는 종래의 액체 전해질을 이용한 전기화학장치에 비해 용액이 누출되는 문제가 없고, 높은 충방전 효율을 지닌 화학 전지를 제공할 수 있고, 여러 가지 모양의 전지 형태가 가능하며, 박막의 형태로 제조가 가능하며, 소형으로 제작될 수 있는 장점이 있기 때문에 종래부터 집중적인 연구 및 개발의 대상이 되어왔다. 특히, 폴리알킬렌옥시드(PAO)계 고분자 고체 전해질을 사용한 리튬-고분자 전지는 에너지 밀도가 크게 향상된 전지를 제조 할 수 있어 그 중요성이 크게 인식되고 있다.The electrochemical device using the solid electrolyte has no problem of leaking the solution compared to the electrochemical device using the conventional liquid electrolyte, and can provide a chemical battery having a high charge and discharge efficiency. It can be manufactured in the form of a thin film, and has been an object of intensive research and development in the past because it can be manufactured in a small size. In particular, a lithium-polymer battery using a polyalkylene oxide (PAO) -based polymer solid electrolyte has been widely recognized for its importance as it can produce a battery having greatly improved energy density.

PAO계 고분자 고체 전해질은 1975년 ″British Polymer Journal 7권 319페이지″에서 피. 브이. 라이트[P.V. Wright]에 의해 처음 발견되어, 1978년 엠. 아먼드(M. Armand)가 처음으로 이온전도성 고분자로 이름지은 후, 전기화학장치에의 응용 범위가 점점 더 확대되어가고 있다. 전형적인 고체 고분자 전해질은 산소, 질소, 인등의 전자공여성 원자를 가진 고분자들과 리튬염의 착체로 구성되어 있다. 가장 대표적인 예는 폴리에틸렌옥시드(PEO)와 리튬염의 착체로, 이는 상온에서 10-8S/cm 수준의 낮은 이온전도도 값을 보이기 때문에 실온 작동형 용도에는 적용하기 어렵지만, 고온 작동형 전기화학장치의 전원으로는 사용 가능하다.PAO-based polymer solid electrolytes were described in 1975 British Journal 7 vol. 319. V. First discovered by PV Wright, 1978. After M. Armand was first called an ion-conducting polymer, its application to electrochemical devices has been expanding. Typical solid polymer electrolytes consist of a complex of lithium salts with polymers with electron-donating atoms such as oxygen, nitrogen, and phosphorus. The most representative example is a complex of polyethylene oxide (PEO) and a lithium salt, which is difficult to apply to room temperature operation because of its low ion conductivity value of 10 -8 S / cm at room temperature. Can be used as a power source.

이러한 PAO계 고체 고분자 전해질은 상온에서 결정성이 높아 분자 사슬 운동이 제한을 받아 상온에서의 이온 전도도가 매우 낮다. 고체 고분자 전해질의 분자 사슬 운동을 높이기 위하여서는 최대한 고분자 구조 내에 존재하는 결정성 영역을 최소화시켜 비정형 영역을 증대시켜야 한다. 이러한 연구의 일환으로 분자 길이가 비교적 짧은 PAO를 곁가지로 도입하여 빗살형 고분자를 제조하거나 PAO 말단 기에 가교가 가능한 기능기를 한 개 이상 도입한 후 가교시켜 망상 구조의 고체 고분자 전해질을 제조하는 연구가 진행되었다.The PAO-based solid polymer electrolyte has high crystallinity at room temperature and thus has limited molecular chain motion, and thus has very low ionic conductivity at room temperature. In order to increase the molecular chain motion of the solid polymer electrolyte, it is necessary to minimize the crystalline region present in the polymer structure to increase the amorphous region. As part of this research, studies have been made to prepare a comb-type polymer by introducing PAO having a relatively short molecular length as a side chain, or to prepare a solid polymer electrolyte having a network structure by introducing and cross-linking one or more functional groups capable of crosslinking to PAO end groups. It became.

블론스키(Blonsky) 등은 폴리비스메톡시에톡시에톡시포스파진[J. Am. Chem. Soc., 106(1984) 6845 참조], 판탈로니(Pantaloni) 등은 폴리에톡시에톡시에톡시비닐에테르[Electrochim. Acta, 34(1989) 635 참조]등의 빗살형 고체 고분자 전해질에 대한 응용가능성을 보고하였다.Blonsky et al. Described polybismethoxyethoxyethoxyphosphazine [J. Am. Chem. Soc., 106 (1984) 6845], Pantaloni et al., Polyethoxyethoxyethoxyvinyl ether [Electrochim. And report on the applicability of comb-like solid polymer electrolytes to Acta, 34 (1989) 635.

또한, 미국특허 제4,830,939호 및 문헌 ″J. Electrochemm. Soc., 145, 1521(1998)″에서는 불포화 작용 기를 가진 폴리알킬렌글리콜의 아크릴레이트를 포함하고, 이온 전도성 액체 및 전해질 염이 혼합된 조성물로부터 UV 또는 전자 빔(electron-beam) 방사선으로 경화시켜 가교형 고분자 전해질을 제조하는 방법에 대해 기재하고 있다.See also US Pat. No. 4,830,939 and document ″ J. Electrochemm. Soc., 145, 1521 (1998) ″ includes acrylates of polyalkylene glycols with unsaturated functional groups and is cured by UV or electron-beam radiation from a mixture of ion conductive liquids and electrolyte salts. A method for producing a crosslinked polymer electrolyte is described.

특히, 폴리실록산계 고분자는 특유의 유연성과 낮은 유리 전이 온도를 가지므로 분자 사슬운동을 향상시킬 수 있을 것으로 기대되어 폴리알킬렌 옥시드계 가교형 및 빗살형 고체 고분자 전해질의 기본 골격 구조로 응용하려는 연구가 진행되었다[″Macromol. Chem.. Rapid Commun., 7(1986) 115″; 미국특허 제4,673,718호, 동 제4,766,185호, 동 제5,227,043호, 동 제5,440,011호, 및 일본 특허출원 공개 평 5-290616 참조].In particular, polysiloxane-based polymers have unique flexibility and low glass transition temperature, and thus are expected to improve molecular chain motion. Proceeded [Macroromol. Chem. Rapid Commun., 7 (1986) 115 ″; U.S. Patent Nos. 4,673,718, 4,766,185, 5,227,043, 5,440,011, and Japanese Patent Application Laid-Open No. 5-290616.

그러나 이들 빗살형 및 망상형 고체 고분자 전해질들은 상온에서의 전도도가 10-5~10-4S/cm 정도이었으며, 필름으로 성형시 물성이 취약하다는 단점이 있다.However, these comb-shaped and reticular solid polymer electrolytes have a conductivity of about 10 -5 to 10 -4 S / cm at room temperature, and have disadvantages of poor physical properties when molded into a film.

이러한 문제점을 해소하기 위하여 아브라함(Abraham) 등은 비닐디플루오라이드-헥사플루오로프로판 공중합체에 저분자량의 폴리에틸렌옥시드를 첨가한 고체 고분자 전해질을 제조하여 전도도가 다소 향상된 전해질을 제조하였으며(Chem. Mater., 9(1997) 1978 참조), 본 발명자들은 환형 알킬 또는 헤테로 알킬 분자 중심에 에틸렌글리콜 아크릴레이트가 3개 도입된 가교제를 사용하여 기계적 물성을 보강하기도 하였다(한국 특허출원 제99-24732호 참조).In order to solve this problem, Abraham et al prepared a solid polymer electrolyte in which a low molecular weight polyethylene oxide was added to a vinyldifluoride-hexafluoropropane copolymer to prepare an electrolyte having somewhat improved conductivity (Chem. Mater., 9 (1997) 1978), the present inventors have also enhanced mechanical properties by using a crosslinking agent in which three ethylene glycol acrylates are introduced at the center of a cyclic alkyl or hetero alkyl molecule (Korean Patent Application No. 99-24732). Reference).

본 발명의 목적은 폴리하이드로메틸실록산 고분자를 기본 골격 구조로 하고 폴리알킬렌옥시드기가 곁가지 및 가교제로 작용하는 고체 고분자 전해질 조성물을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a solid polymer electrolyte composition having a polyhydromethylsiloxane polymer as a basic skeleton structure and a polyalkylene oxide group acting as a side chain and a crosslinking agent.

본 발명의 또 다른 목적은 기존의 반응기가 2개인 가교제를 대신하여 반응기가 환형 또는 선형의 분자 중심에 3개가 도입된 가교제를 사용할 경우 3차원 망상 구조가 가능하여 박막 성형성, 압착 강도 등의 기계적 물성이 보강되며, 또한 저분자량 폴리알킬렌옥시드의 도입이 용이하여 상온에서의 이온 전도도가 향상된 전해질 박막의 제조방법을 제공하는 데 있다.Another object of the present invention is to use a cross-linking agent in which three reactors are introduced at the center of a cyclic or linear molecule in place of a cross-linking agent having two reactors, thereby enabling a three-dimensional network structure to provide mechanical properties such as thin film formability and compressive strength. The present invention provides a method for preparing an electrolyte thin film having enhanced physical properties and easy introduction of low molecular weight polyalkylene oxide, thereby improving ion conductivity at room temperature.

도 1은 고체 고분자 전해질 조성물의 경화전 및 경화후의 적외선 분광 스펙트럼이고;1 is an infrared spectral spectrum before and after curing of a solid polymer electrolyte composition;

도 2는 고분자 전해질의 전기 화학적 안정성을 주사전압전류법으로 평가한 그래프이다.2 is a graph evaluating the electrochemical stability of the polymer electrolyte by scanning voltammetry.

본 발명에서는 상온에서 높은 이온 전도 특성을 가지는 고체 고분자 전해질 및 이의 제조 방법을 제공한다.The present invention provides a solid polymer electrolyte having high ion conducting properties at room temperature and a method of preparing the same.

본 발명에 의한 고체 고분자 전해질 조성물의 조성은 고체 고분자 전해질의 총 중량 기준으로 할 때 다음과 같다:The composition of the solid polymer electrolyte composition according to the present invention is as follows based on the total weight of the solid polymer electrolyte:

(1)하기 화학식(1)로 표시되는 폴리알킬렌옥시드기가 곁가지로 도입된 폴리하이드로메틸실록산10∼80중량%:(1) 10 to 80% by weight of polyhydromethylsiloxane in which the polyalkylene oxide group represented by the following general formula (1) is introduced side by side:

상기 식에서, R1및 R2는 H 또는 메틸기이며; X는또는기이고; x 및 y는 각각 0∼20의 정수이고; 그리고 p 및 q는 각각 0∼1000의 정수임;Wherein R 1 and R 2 are H or a methyl group; X is or Group; x and y are each an integer of 0 to 20; And p and q are each an integer from 0 to 1000;

(2) 하기 화학식(2)로 표시되는 말단에 3개의 알릴기를 가지는 가교제1∼60중량%:(2) 1 to 60 wt% of a crosslinking agent having three allyl groups at the terminal represented by the following general formula (2):

상기 식에서, R은 C1-C10의 선형 또는 환형 지방족 및 방향족 화합물 또는 트리아진, 이소시아누레이트 등으로 대표되는 헤테로 고리화합물이며, X는또는기이고, x, y 및 z는 0∼20의 정수임;Wherein R is a C 1 -C 10 linear or cyclic aliphatic and aromatic compound or a heterocyclic compound represented by triazine, isocyanurate or the like, X is or And x, y and z are integers from 0 to 20;

(3) 리튬염 해리와 리튬이온 전도성을 양호하게 하기 위하여 올리고머 또는 폴리머로서 하기 화학식(3)의 폴리알킬렌글리콜 디알킬에테르 1~ 80중량%:(3) 1 to 80% by weight of a polyalkylene glycol dialkyl ether of the following general formula (3) as an oligomer or a polymer to improve lithium salt dissociation and lithium ion conductivity:

상기 식에서, R1및 R2는 C1-C10의 사슬형 또는 분지형의 알킬기이며, X, Y 및 Z는 H 또는 메틸기이고, 그리고 p 및 q 및 r은 각각 0∼20의 정수임;Wherein R 1 and R 2 are C 1 -C 10 chained or branched alkyl groups, X, Y and Z are H or methyl groups, and p and q and r are each an integer from 0 to 20;

(4) 리튬염3∼30중량%; 및(4) 3 to 30% by weight of a lithium salt; And

(5) 경화용 백금 촉매0.001∼1중량%.(5) 0.001 to 1% by weight of a hardening platinum catalyst.

상기 전해질 조성물은 열경화에 의해 전해질 박막을 제조하는 데 사용된다.The electrolyte composition is used to prepare an electrolyte thin film by thermosetting.

상기 화학식(1)의 화합물, 화학식(2)의 화합물과 소량의 백금 촉매로 이루어진 혼합물을 열경화시킴으로써 3차원으로 가교된 고분자를 얻는다. 이렇게 가교된 고분자는 박막으로 성형이 가능하며, 또한 화학식(3)으로 표현되는 저분자량의 폴리알킬렌옥시드 및 리튬염과의 상용성을 증대시켜 전도성이 우수한 전해질 박막을 제조할 수 있다.A three-dimensionally crosslinked polymer is obtained by thermosetting a mixture of the compound of formula (1), the compound of formula (2) and a small amount of platinum catalyst. The crosslinked polymer can be molded into a thin film, and can increase the compatibility with a low molecular weight polyalkylene oxide and a lithium salt represented by Chemical Formula (3) to prepare an electrolyte thin film having excellent conductivity.

본 발명에서 사용되는 상기 화학식(1)의 화합물은 하기 반응식 (1)로 나타낸 바와 같이 화학식(4)의 폴리하이드메틸실록산과 알릴알킬렌옥시드를 백금 촉매 하에서 공지의 방법으로 반응시킴으로써 합성될 수 있다:The compound of formula (1) used in the present invention can be synthesized by reacting polymethylsiloxane of formula (4) with allylalkylene oxide of formula (4) by a known method under a platinum catalyst, as shown in the following scheme (1). :

상기 식에서, R1및 R2는 H 또는 메틸기이며; X는또는기이고; x 및 y는 0∼20의 정수이고; p 및 q는 각각 0∼1000의 정수이다.Wherein R 1 and R 2 are H or a methyl group; X is or Group; x and y are integers from 0 to 20; p and q are the integers of 0-1000, respectively.

상기 화학식(1)의 화합물은 고체 고분자 전해질 조성물의 총 중량에 대해 10∼80 중량%, 바람직하게는 20∼50중량%로 혼합된다. 그 함량이 10중량%미만이거나 80중량%를 초과하면 박막으로 성형하기가 힘들며 필름의 기계적 물성이 저하된다.The compound of formula (1) is mixed in an amount of 10 to 80% by weight, preferably 20 to 50% by weight, based on the total weight of the solid polymer electrolyte composition. If the content is less than 10% by weight or more than 80% by weight it is difficult to form a thin film and the mechanical properties of the film is lowered.

이렇게 제조된 고분자는 점성이 있는 액체로 하기의 다른 성분과 상 분리 없이 혼합이 가능하여 별도의 용매를 필요로 하지 않는다.The polymer thus prepared is a viscous liquid and can be mixed with other components without phase separation, and does not require a separate solvent.

본 발명에서 사용되는 화학식(2)의 가교제는 백금 촉매 하에서 화학식(1)의 화합물과 반응하여 3차원 망상 구조를 형성함으로써 기계적 물성 및 이온 전도도를 향상시킨다. 화학식(2)의 가교제는 시판되는 화합물을 이용하거나 공지된 기술로부터 합성될 수 있으며 실시예에서 그 제조 방법을 설명한다. 상기 화학식(2)의 가교제는 고체 고분자 전해질의 총중량에 대해 1∼60중량%, 바람직하게는 5∼30 중량%로 전해질 조성물에 혼합된다. 그 함량이 1중량%미만이거나 60중량%를 초과하면 박막으로 성형하기가 힘들며 필름의 기계적 물성이 저하된다.The crosslinking agent of formula (2) used in the present invention improves mechanical properties and ionic conductivity by forming a three-dimensional network structure by reacting with the compound of formula (1) under a platinum catalyst. Crosslinkers of formula (2) can be synthesized using commercially available compounds or from known techniques and the preparation methods are described in the Examples. The crosslinking agent of the formula (2) is mixed in the electrolyte composition at 1 to 60% by weight, preferably 5 to 30% by weight relative to the total weight of the solid polymer electrolyte. If the content is less than 1% by weight or more than 60% by weight, it is difficult to form a thin film and the mechanical properties of the film are lowered.

본 발명에서는 리튬염 해리와 리튬이온 전도성을 양호하게 하기 위하여 올리고머 또는 폴리머로서 상기 화학식(3)의 폴리알킬렌글리콜 디알킬에테르를 사용한다. 본 발명에서 사용될 수 있는 화학식(3) 화합물의 예로는 폴리에틸렌글리콜디메틸에테르, 폴리에틸렌글리콜디에틸에테르, 폴리에틸렌글리콜디프로필에테르, 폴리에틸렌글리콜디부틸에테르, 폴리에틸렌글리콜디글리시딜에테르, 폴리프로필렌글리콜디메틸에테르 및 폴리프로필렌글리콜디글리시딜에테르; 디부틸에테르 말단의 폴리프로필렌글리콜/폴리에틸렌글리콜 공중합체; 디부틸에테르 말단의 폴리에틸렌글리콜/폴리프로필렌글리콜/폴리에틸렌글리콜 블록 공중합체가 있다. 상기 화학식(3)의 폴리알킬렌글리콜 디알킬에테르는 제조되는 고체 고분자 전해질에 이온전도성을 부여할 목적으로 조성물내에 80중량% 이하, 바람직하게는 30∼70중량%로 투입하여 사용된다. 그 함량이 30중량%미만이면 전도도가 크게 감소하는 단점이 있으며, 70중량%를 초과하면 박막으로 성형하기가 어렵다.In the present invention, in order to improve lithium salt dissociation and lithium ion conductivity, polyalkylene glycol dialkyl ether of the above formula (3) is used as an oligomer or polymer. Examples of the compound of formula (3) which can be used in the present invention include polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether And polypropylene glycol diglycidyl ether; Polypropylene glycol / polyethylene glycol copolymer of dibutyl ether terminal; Polyethylene glycol / polypropylene glycol / polyethylene glycol block copolymers at the end of the dibutyl ether. The polyalkylene glycol dialkyl ether of the formula (3) is used in an amount of 80% by weight or less, preferably 30 to 70% by weight in the composition for the purpose of imparting ionic conductivity to the solid polymer electrolyte to be produced. If the content is less than 30% by weight, there is a disadvantage that the conductivity is greatly reduced, if it exceeds 70% by weight it is difficult to form a thin film.

본 발명에 사용되는 리튬염 성분은 LiClO4, LiCF3SO3, LiBF4, LiPF6, LiAsF6, Li(CF3SO2)2N 등이 있으며, 기존의 고분자전해질 제조용으로 사용된 리튬염은 어느 것이나 사용할 수 있다. 이들 리튬염은 전해질 조성물 총 중량에 대해 3∼30 중량%, 바람직하게는 5∼15중량%의 양으로 사용되는데 필요에 따라, 적절한 혼합 비율로 그 양을 조절할 수 있다. 그 함량이 3중량%미만이거나 30중량%를 초과하면 이온 전도도가 감소한다.Lithium salt components used in the present invention are LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiPF 6 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N and the like, the lithium salt used for the production of conventional polymer electrolyte Any can be used. These lithium salts are used in an amount of 3 to 30% by weight, preferably 5 to 15% by weight based on the total weight of the electrolyte composition, and if necessary, the amount can be adjusted at an appropriate mixing ratio. If the content is less than 3% or more than 30% by weight, the ionic conductivity decreases.

본 발명에서는 고체 고분자 전해질 제조를 위해 경화용 백금 촉매가 첨가되는데, 그 예로는 H2PtCl6, 백금(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산, 백금 활성탄 등이 있으며, 전해질 조성물에 0.001%∼1중량%가 첨가된다. 그 함량이 0.001중량%미만이면 경화속도가 감소하여 공정 시간이 길어지며, 1중량%를 초과하면 경화반응이 급격히 일어나 균일한 박막을 제조하기 어렵다.In the present invention, a hardening platinum catalyst is added to prepare a solid polymer electrolyte, and examples thereof include H 2 PtCl 6 , platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane, Platinum activated carbon and the like, and 0.001% to 1% by weight is added to the electrolyte composition. If the content is less than 0.001% by weight, the curing speed decreases and the process time is long. If the content exceeds 1% by weight, the curing reaction occurs rapidly, making it difficult to produce a uniform thin film.

상기의 각 성분을 포함하는 조성물로 고체 고분자 전해질 박막을 제조하기 위한 방법을 설명하면, 우선 상기 화학식(1)의 실록산 폴리머, 화학식(2)의 가교제와 리튬염을 상기에 명시된 비율로 용기에 넣어 교반기로 교반하여 용액을 제조한 후 백금 촉매를 첨가한 다음 서로 혼합한다. 이때 화학식(3)의 저분자량의 폴리알킬렌옥시드계 화합물이 선택적으로 부가될 수 있다. 제조된 용액을 적절한 두께로 유리판, 테프론 판 또는 상업용 마일러(Mylar) 필름 등의 지지체 상에 코팅하여 30∼150oC 오븐 또는 이에 상응하는 열원을 이용하여 5분∼15시간 경화반응시켜 고체 고분자 전해질 박막을 제조한다.Referring to the method for producing a solid polymer electrolyte thin film with a composition comprising each of the above components, first, the siloxane polymer of formula (1), the crosslinking agent of formula (2) and lithium salt are put in a container at the ratio specified above The solution is prepared by stirring with a stirrer and then platinum catalyst is added and then mixed with each other. At this time, a low molecular weight polyalkylene oxide compound of formula (3) may be optionally added. The prepared solution is coated on a support such as a glass plate, a Teflon plate or a commercial Mylar film to an appropriate thickness, and cured for 5 minutes to 15 hours using a 30 to 150 ° C. oven or a corresponding heat source. Prepare an electrolyte thin film.

본 발명에 따른 폴리실록산 전해질 조성물을 사용하여 고체 전해질 박막을 제조하고, 또 그 박막을 이용하여 전해질 리튬-고분자 이차 전지를 제조한다.A solid electrolyte thin film is prepared using the polysiloxane electrolyte composition according to the present invention, and an electrolyte lithium-polymer secondary battery is prepared using the thin film.

본 발명에서 제조된 고체 고분자 전해질 조성물로 통상의 리튬폴리머 이차전지를 구성할 수 있다. 양극을 리튬금속산화물/도전재/바인더로 제조하고 음극을 카본활물질/도전재/바인더, 리튬메탈 또는 리튬메탈알로이 등으로 제조하여 사용함으로써 리튬폴리머 이차전지를 구성할 수 있다. 여기에서 리튬금속 산화물에는 리튬망간산화물, 리튬니켈산화물, 리튬코발트산화물, 리튬바나듐산화물, 이들의 복합계 금속산화물, 전이금속의 일부로 치환된 금속산화물 및 활물질 내에 산소나 불소가 황등의 화합물로 치환된 형태의 화합물이 포함된다. 카본활물질에는 코우크스 계등의 비정질 카본류, 천연 흑연, 미세 섬유상 또는 비드상의 메조카본등의 흑연계, 주석계 및 이들을 처리한 화합물 등이 포함된다.The solid polymer electrolyte composition prepared in the present invention may constitute a conventional lithium polymer secondary battery. The lithium polymer secondary battery may be configured by manufacturing the positive electrode with a lithium metal oxide / conductive material / binder and using the negative electrode with a carbon active material / conductive material / binder, lithium metal, or lithium metal alloy. Herein, the lithium metal oxide includes lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, lithium vanadium oxide, a complex metal oxide thereof, a metal oxide substituted with a part of transition metal, and oxygen or fluorine in the active material substituted with a compound such as sulfur. Forms of compounds are included. The carbon active materials include amorphous carbons such as coke-based, graphite-based such as natural graphite, fine fibrous or bead-like mesocarbons, tin-based compounds, and compounds treated with these.

상기의 모든 제조 공정은 상온의 아르곤 분위기 하에서 실시한다.All the above manufacturing processes are carried out in an argon atmosphere at room temperature.

이상에서 기술한 바와 같이, 본 발명은 화학식(1)의 폴리알킬렌옥시드가 치환된 폴리하이드로메틸실록산, 화학식(2)의 가교제와 저분자량의 폴리알킬렌옥시드계가 혼합된 조성물을 사용함으로써, 기계적 강도와 이온전도 특성 등의 물성이 보강되어, 리튬 폴리머 이차전지에 사용하기 적합한 고체 고분자 전해질을 제공한다.As described above, the present invention uses a polyhydromethylsiloxane substituted with a polyalkylene oxide of the formula (1), a crosslinking agent of the formula (2) and a composition containing a low molecular weight polyalkylene oxide system, Physical properties such as strength and ionic conductivity are reinforced to provide a solid polymer electrolyte suitable for use in a lithium polymer secondary battery.

이하, 실시예에서 본 발명을 더욱 상세히 설명하지만, 본 발명이 특허청구범위를 이탈하지 않는 한 다음 실시예에 한정되지 않는다.Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following examples as long as the present invention does not depart from the claims.

실시예 1 폴리(에틸렌글리콜)메틸알릴에테르(PEGM350Ae)의 합성Example 1 Synthesis of Poly (ethyleneglycol) methylallylether (PEGM350Ae)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na으로 건조시킨 THF(550ml)에 NaOH 6g과 35g의 폴리(에틸렌글리콜)모노메틸에테르(PEGME, 분자량350)를 넣고, 질소 분위기하 환류하에서 과량의 알릴브로마이드 18.15g을 적하 시킨 후, 12시간 동안 환류시킨다. 반응이 끝나면 여분의 NaOH와 생성된 NaBr을 여과하고 THF를 감압하에서 제거한 후 클로로포름 또는 염화메틸렌과 5%(중량비)NaOH 수용액의 혼합용액으로 3차례에 걸쳐 추출한 다음, MgSO4로 건조시킨 후 진공 건조하여 36.6g의 폴리(에틸렌글리콜)메틸알릴에테르(PEGM350Ae)를 합성하였다.In a 1000 ml three-necked flask equipped with a stirrer, thermometer and dropping device, 6 g of NaOH and 35 g of poly (ethylene glycol) monomethyl ether (PEGME, molecular weight 350) were placed in THF (550 ml) dried with Na, under a nitrogen atmosphere. Excess allylbromide 18.15 g was added dropwise under reflux and refluxed for 12 hours. After the reaction was completed, the excess NaOH and NaBr produced was filtered, THF was removed under reduced pressure, extracted three times with a mixed solution of chloroform or methylene chloride and 5% (weight ratio) NaOH aqueous solution, dried over MgSO 4 and dried in vacuo. 36.6 g of poly (ethylene glycol) methyl allyl ether (PEGM350Ae) was synthesized.

1H-NMR(300MHz, CDCl3): ppm 5.95~6.15(m, CH2=CH, 2H), 5.25~5.50(m, CH2=CH, 1H), 4.14~4.18(m, CH2=CHCH2, 2H), 3.66~3.86(m, OCH2CH2O, 28.8H), 3.52(S, OCH3, 3H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 5.95 to 6.15 (m, CH 2 = CH, 2H), 5.25 to 5.50 (m, CH 2 = CH, 1H), 4.14 to 4.18 (m, CH 2 = CHCH 2 , 2H), 3.66-3.86 (m, OCH 2 CH 2 O, 28.8H), 3.52 (S, OCH 3 , 3H)

실시예 2 폴리(에틸렌글리콜)메틸에테르알릴카보네이트(PEGM350AC)의 합성Example 2 Synthesis of Poly (ethyleneglycol) methyletherallylcarbonate (PEGM350AC)

폴리(에틸렌글리콜)메틸에테르카르보닐이미다졸(PEGMCI)의 합성Synthesis of Poly (ethyleneglycol) methylethercarbonylimidazole (PEGMCI)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(200ml)에 35g의 폴리(에틸렌글리콜)메틸에테르(PEGME, 분자량 350)와 19.45g의 1,1-카르보닐디이미다졸을 첨가하고, 질소 분위기하 40∼50℃를 유지하며 5∼6시간 교반을 계속한다. 반응이 끝나면 여분의 1,1-카르보닐디이미다졸을 여과한 후, 클로로포름 또는 염화메틸렌과 5%(중량비)NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후 진공 건조하여 35.0g의 PEGMCI를 제조하였다(수율 78.6%).In a 1000 ml three-necked flask equipped with a stirring device, a thermometer and a dropping device, THF (200 ml) dried with Na was 35 g of poly (ethylene glycol) methyl ether (PEGME, molecular weight 350) and 19.45 g of 1,1-carbo Nyldiimidazole is added, and stirring is continued for 5 to 6 hours, maintaining 40-50 degreeC in nitrogen atmosphere. After the reaction was completed, the excess 1,1-carbonyldiimidazole was filtered, extracted three times with chloroform or methylene chloride and 5% (by weight) aqueous NaOH solution, dried over MgSO 4, and dried in vacuo to give 35.0 g of PEGMCI was prepared (yield 78.6%).

1H-NMR(300MHz, CDCl3): ppm 8.14(s, NCHNCO, 1H), 7.44(s, NCHCHNCO, 1H), 7.07(s, NCHCHNCO, 1H), 3.66~3.86(m, OCH2CH2O, 28.8H), 3.52(S, OCH3, 3H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 8.14 (s, NCHNCO, 1H), 7.44 (s, NCHCHNCO, 1H), 7.07 (s, NCHCHNCO, 1H), 3.66-3.86 (m, OCH 2 CH 2 O , 28.8H), 3.52 (S, OCH 3 , 3H)

폴리(에틸렌글리콜)메틸에테르알릴카보네이트(PEGM350AC)의 합성Synthesis of Poly (ethyleneglycol) methyletherallylcarbonate (PEGM350AC)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(150ml)에 35g의 PEGMCI와 7.83g의 알릴알코올을 첨가하고 질소 분위기하 환류하에서 24시간 교반을 계속한다. 반응이 끝나면 THF를 휘발시키고 클로로포름 또는 염화메틸렌과 중량비 5% NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후 진공 건조하여 29.2g의 알릴카보네이트가 도입된 PEGM350AC를 제조하였다(수율85.4%).To a 1000 ml three-necked flask equipped with a stirrer, thermometer and dropping device, 35 g PEGMCI and 7.83 g allyl alcohol were added to THF (150 ml) dried with Na and stirring was continued for 24 hours under reflux under a nitrogen atmosphere. After the reaction, THF was evaporated, extracted three times with chloroform or methylene chloride and a 5% NaOH aqueous solution by weight, dried over MgSO 4, and dried in vacuo to prepare PEGM350AC containing 29.2 g of allylcarbonate (yield 85.4%). .

1H-NMR(300MHz, CDCl3): ppm 5.99-5.89(m, CH2=CH, 1H), 5.39-5.24(m, CH2=CH, 2H), 4.63-4.61(d, CH2=CHCH2, 2H), 3.66~3.86(m, OCH2CH2O, 28.8H), 3.52(S, OCH3, 3H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 5.99-5.89 (m, CH 2 = CH, 1H), 5.39-5.24 (m, CH 2 = CH, 2H), 4.63-4.61 (d, CH 2 = CHCH 2 , 2H), 3.66-3.86 (m, OCH 2 CH 2 O, 28.8H), 3.52 (S, OCH 3 , 3H)

실시예 3 PEG가 치환된 폴리하이드로메틸실록산(PMS-A60)의 합성Example 3 Synthesis of PEG Substituted Polyhydromethylsiloxane (PMS-A60)

교반 장치, 온도계, 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 질소 분위기하 실온에서 2g의 폴리하이드로메틸실록산(분자량 3000)과 Na로 건조시킨 톨루엔(20ml)의 혼합용액에 촉매로서 백금(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산(중량비 3% 크실렌 용액)을 6∼10㎕ 첨가한 후 30분 정도 교반해 용액 중에서 Pt촉매가 고르게 분산 되도록 한다. 온도를 40∼50℃로 상승시킨 후, 실시예1에서 합성된 10.4g의 PEGM350Ae를 서서히 적하한다. 적하가 끝난 후 4시간 교반을 계속하고 Pt촉매를 1방울 더 추가한 후 1시간 교반을 계속한다. 반응이 끝난 후 톨루엔을 휘발시키고 디에틸에테르에 재용해시킨 후 -5℃에서 24시간 방치 후 침전물을 제거하고 -20℃에서의 용해분을 제거한 후 활성탄을 첨가하여 실온에서 24시간 교반을 계속하였다. 첨가한 활성탄을 여과하고 용매를 휘발시킨 후 감압하에서 24시간 진공 건조하여 PEG가 치환된 무색의 폴리하이드로메틸실록산(PMS-A60)10.4g을 얻었다. 이때 얻어진 PMS-A60은 NMR로 분석한 결과 60몰%의 하이드로기가 폴리에틸렌 옥시드기로 치환되었음을 알 수 있었다.Platinum (0) as a catalyst in a mixed solution of toluene (20 ml) dried with 2 g of polyhydromethylsiloxane (molecular weight 3000) and Na at room temperature under nitrogen atmosphere in a 1000 ml three-necked flask equipped with a stirring device, a thermometer and a dropping device. 6-10 μl of -1,3-divinyl-1,1,3,3-tetramethyldisiloxane (3% xylene solution by weight) is added and stirred for about 30 minutes to evenly distribute the Pt catalyst in the solution. After the temperature was raised to 40-50 ° C., 10.4 g of PEGM350Ae synthesized in Example 1 was slowly added dropwise. After the dropwise addition, stirring was continued for 4 hours, and another drop of Pt catalyst was added, followed by stirring for 1 hour. After the reaction was completed, toluene was volatilized and redissolved in diethyl ether, and the mixture was left at -5 ° C for 24 hours, the precipitate was removed, the dissolved content at -20 ° C was removed, and activated carbon was added and stirring was continued at room temperature for 24 hours. . The added activated carbon was filtered, and the solvent was evaporated, followed by vacuum drying for 24 hours under reduced pressure to obtain 10.4 g of colorless polyhydromethylsiloxane (PMS-A60) substituted with PEG. The PMS-A60 obtained at this time was analyzed by NMR and found that 60 mol% of the hydro group was substituted with the polyethylene oxide group.

1H-NMR(300MHz, CDCl3): ppm 4.60(s, SiH), 3.54-3.57(m, OCH2CH2O), 3.29(s, OCH3), 1.52(s, SiCH2CH2CH2O), 0.41(s, SiCH2CH2CH2O), 0.00-0.09(m, SiCH3) 1 H-NMR (300 MHz, CDCl 3 ): ppm 4.60 (s, SiH), 3.54-3.57 (m, OCH 2 CH 2 O), 3.29 (s, OCH 3 ), 1.52 (s, SiCH 2 CH 2 CH 2 O), 0.41 (s, SiCH 2 CH 2 CH 2 O), 0.00-0.09 (m, SiCH 3 )

실시예 4 PEG가 치환된 폴리하이드로메틸실록산(PMS-A80)의 합성Example 4 Synthesis of PEG Substituted Polyhydromethylsiloxane (PMS-A80)

폴리하이드로메틸실록산(분자량 3000)2g과 PEGM350Ae 13.85g을 사용하여 실시예3과 같은 방법으로 80몰%의 하이드로기가 폴리에틸렌 옥시드기로 치환된 PMS-A80을 합성하였다.Using 2 g of polyhydromethylsiloxane (molecular weight 3000) and 13.85 g of PEGM350Ae, PMS-A80 having 80 mol% of a hydro group substituted with a polyethylene oxide group was synthesized in the same manner as in Example 3.

1H-NMR(300MHz, CDCl3): ppm 4.60(s, SiH), 3.54-3.57(m, OCH2CH2O), 3.29(s, OCH3), 1.52(s, SiCH2CH2CH2O), 0.41(s, SiCH2CH2CH2O), 0.00-0.09(m, SiCH3) 1 H-NMR (300 MHz, CDCl 3 ): ppm 4.60 (s, SiH), 3.54-3.57 (m, OCH 2 CH 2 O), 3.29 (s, OCH 3 ), 1.52 (s, SiCH 2 CH 2 CH 2 O), 0.41 (s, SiCH 2 CH 2 CH 2 O), 0.00-0.09 (m, SiCH 3 )

실시예 5 PEG가 치환된 폴리하이드로메틸실록산(PMS-AC60)의 합성Example 5 Synthesis of PEG Substituted Polyhydromethylsiloxane (PMS-AC60)

폴리하이드로메틸실록산(분자량 3000)2g 과 실시예2에서 합성된 PEGM350AC 16.6g을 사용하여 실시예 3과 같은 방법으로 60몰%의 하이드로기가 폴리에틸렌 옥시드기로 치환된 PMS-AC80을 합성하였다.Using 2 g of polyhydromethylsiloxane (molecular weight 3000) and 16.6 g of PEGM350AC synthesized in Example 2, PMS-AC80 having 60 mol% of a hydro group substituted with a polyethylene oxide group was synthesized in the same manner as in Example 3.

1H-NMR(300MHz, CDCl3): ppm 4.60(s, SiH), 3.54-3.57(m, OCH2CH2O), 3.29(s, OCH3), 1.52(s, SiCH2CH2CH2O), 0.41(s, SiCH2CH2CH2O), 0.00-0.09(m, SiCH3) 1 H-NMR (300 MHz, CDCl 3 ): ppm 4.60 (s, SiH), 3.54-3.57 (m, OCH 2 CH 2 O), 3.29 (s, OCH 3 ), 1.52 (s, SiCH 2 CH 2 CH 2 O), 0.41 (s, SiCH 2 CH 2 CH 2 O), 0.00-0.09 (m, SiCH 3 )

실시예 6 가교제인 글리세롤(에톡실레이트-프로폭실레이트)트리알릴에테르 (GEPTA)의 합성Example 6 Synthesis of Glycerol (ethoxylate-propoxylate) triallyl ether (GEPTA) as a crosslinking agent

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(200ml)에 26g의 글리세롤 에톡실레이트-프로폭실레이트트리올(GEPTO, 분자량 2600)과 1.8g의 NaOH를 첨가하고 질소 분위기하 환류하에서 5.45g의 알릴브로마이드를 천천히 적하하고 동일 조건하에서 10시간동안 반응을 계속한다. 반응이 끝나면 여분의 NaOH와 생성된 NaBr을 여과하고 THF를 휘발시킨 후 클로로포름 또는 염화메틸렌과 5% NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후 진공 건조하여 알릴이 도입된 25.1g의 GEPTA를 제조하였다.To a 1000 ml three-necked flask equipped with a stirrer, thermometer and dropping device, 26 g of glycerol ethoxylate-propoxylatetriol (GEPTO, molecular weight 2600) and 1.8 g of NaOH were added to THF (200 ml) dried with Na. 5.45 g of allyl bromide was slowly added dropwise under reflux under a nitrogen atmosphere, and the reaction was continued for 10 hours under the same conditions. After the reaction was completed, the excess NaOH and the resulting NaBr was filtered, THF was evaporated, extracted three times with chloroform or methylene chloride and 5% aqueous NaOH solution, dried over MgSO 4 and dried in vacuo to remove 25.1 g of allyl. GEPTA was prepared.

1H-NMR(300MHz, CDCl3): ppm 5.98-5.84(m, CH2=CH, 3H), 5.31-5.15(m, CH2=CH, 6H), 4.03-3.98(d, CH2=CHCH2, 6H), 3.75-3.51(m, OCH2CH2O, OCH2CH2CH2O, OCH2CHOCH2O, 139H), 1.18-1.13(m, OCH2CH2CH2O, 40H)1 H-NMR (300 MHz, CDCl 3 ): ppm 5.98-5.84 (m, CH 2 = CH, 3H), 5.31-5.15 (m, CH 2 = CH, 6H), 4.03-3.98 (d, CH 2 = CHCH 2 , 6H), 3.75-3.51 (m, OCH 2 CH 2 O, OCH 2 CH 2 CH 2 O, OCH 2 CHOCH 2 O, 139H), 1.18-1.13 (m, OCH 2 CH 2 CH 2 O, 40H)

실시예 7 전해질 박막의 제조Example 7 Preparation of Electrolyte Thin Film

실시예 3에서 합성된 PMS-A60 0.2g, 실시예 6에서 제조된 0.21g의 GEPTA, 0.5g의 폴리에틸렌글리콜디메틸에테르(PEGDME, 분자량 400) 및 0.138g의 LiCF3SO3첨가하고 잘 용해시킨 후 Carstedts 촉매인 백금(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산(중량비 3% 크실렌 용액) 6~10㎕를 혼합 용액을 혼합한다. 감압하에서 시료에 함유된 기포를 제거한 후 실온에서 2시간 경화시킨 다음 60℃에서 10시간 경화시킨다. 위의 고분자 고체 전해질의 제조는 모두 아르곤 분위기 하에서 행하였다. PMS-A60과 상기의 방법으로 제조된 전해질의 적외선 분광 스펙트럼을 도 1에 나타내었다. 경화 후에는 2128cm-1의 Si-H 결합의 특정적인 피크가 완전히 사라짐을 알 수 있었다.0.2 g of PMS-A60 synthesized in Example 3, 0.21 g of GEPTA prepared in Example 6, 0.5 g of polyethylene glycol dimethyl ether (PEGDME, molecular weight 400) and 0.138 g of LiCF 3 SO 3 were added and dissolved well. 6-10 μl of platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane (3% by weight xylene solution) by weight of the carstedts catalyst is mixed. After removing the bubbles contained in the sample under reduced pressure, the mixture was cured at room temperature for 2 hours and then cured at 60 ° C for 10 hours. All of the above-mentioned polymer solid electrolytes were prepared under argon atmosphere. Infrared spectroscopy spectra of PMS-A60 and the electrolyte prepared by the above method are shown in FIG. 1. After curing, it was found that the specific peak of Si-H bond of 2128 cm -1 disappeared completely.

이온 전도도 실험Ion conductivity experiment

이온 전도도는 중합체 박막 조성물을 밴드형의 전도성 유리 기판 또는 리튬-구리 호일 위에 코팅시킨 후, 열 경화하여 중합시키고, 충분히 건조시킨 뒤, 질소 분위기하에서 밴드형 또는 샌드위치형의 전극간의 AC 임피던스를 측정하고, 측정치를 주파수 응답 분석기로 분석하여 복소 임피던스를 해석하는 방법으로 구하였다. 밴드형의 전극은 폭 0.5∼2mm의 마스킹테이프를 거리 0.5∼2mm 정도의 간격으로 전도성유리(ITO)중앙에 부착하고 에칭용액에 넣어 에칭시킨 다음 세척, 건조하여 제조하여 사용하였다. 이와 같은 방법으로 측정된 실시예 7의 중합체 박막 고체 전해질의 상온에서의 이온 전도도는 3.24×10-4S/cm이었다.Ionic conductivity is obtained by coating a polymer thin film composition on a band-shaped conductive glass substrate or lithium-copper foil, then thermally curing to polymerize, drying sufficiently, and then measuring the AC impedance between the band-type or sandwich-type electrodes in a nitrogen atmosphere. , The measured values were analyzed by the frequency response analyzer to obtain the complex impedance analysis method. The band electrode was manufactured by attaching a masking tape having a width of 0.5 to 2 mm to the center of the conductive glass (ITO) at intervals of about 0.5 to 2 mm, placing it in an etching solution, etching, washing, and drying. The ion conductivity at room temperature of the polymer thin film solid electrolyte of Example 7 measured in this manner was 3.24 × 10 −4 S / cm.

실시예 8~12 PEGDME 함량에 따른 전해질 박막 제조 및 특성Examples 8-12 Preparation and Properties of Electrolyte Thin Films According to PEGDME Content

실시예 7과 같은 방법으로 PEGDME(분자량 400)의 함량을 변화시키며 전해질 박막을 제조하였다. 이때 리튬염의 함량은 에틸렌옥시드 반복기와 리튬염의 몰비([EO]/[Li])가 15가 되도록 하였다. 제조된 박막의 전도도 및 유리전이 온도를 표1에 나타내었다.In the same manner as in Example 7, an electrolyte thin film was prepared while varying the content of PEGDME (molecular weight 400). At this time, the content of lithium salt was such that the molar ratio ([EO] / [Li]) of the ethylene oxide repeater and the lithium salt was 15. The conductivity and glass transition temperature of the prepared thin film are shown in Table 1.

PEGDME(분자량 400) 함량에 따른 전도도 및 유리 전이 온도Conductivity and glass transition temperature depending on PEGDME (molecular weight 400) content 실시예Example PMS-A60PMS-A60 GEPTAGEPTA PEGDME(분자량400)PEGDME (molecular weight 400) LiCF3SO3 LiCF 3 SO 3 백금촉매Platinum Catalyst 상온이온전도도(×105S/cm)Room temperature ion conductivity (× 10 5 S / cm) 유리전이온도(℃)Glass transition temperature (℃) 88 0.2g0.2 g 0.21g0.21 g -- 0.0547g0.0547 g 6∼10㎕6 to 10 µl 2.352.35 -56.25-56.25 99 0.2g0.2 g 0.21g0.21 g 0.2g0.2 g 0.0756g0.0756 g 6∼10㎕6 to 10 µl 8.108.10 -59.52-59.52 1010 0.2g0.2 g 0.21g0.21 g 0.3g0.3 g 0.0964g0.0964g 6∼10㎕6 to 10 µl 16.116.1 -67.89-67.89 1111 0.2g0.2 g 0.21g0.21 g 0.4g0.4g 0.1173g0.1173 g 6∼10㎕6 to 10 µl 27.927.9 -69.72-69.72 1212 0.2g0.2 g 0.21g0.21 g 0.6g0.6g 0.1801g0.1801 g 6∼10㎕6 to 10 µl 56.056.0 -73.74-73.74

실시예 13~15 PEGDME 분자량에 따른 전해질 박막 제조 및 특성Examples 13-15 Preparation and Properties of Electrolyte Thin Films According to PEGDME Molecular Weight

PEGDME의 분자량을 변화시키며 실시예 7과 같은 방법으로 전해질 박막을 제조하였다. 이때 리튬염의 함량은 에틸렌옥시드 반복기와 리튬염의 몰비([EO]/[Li])가 15가 되도록 하였다. 제조된 박막의 전도도 및 유리전이 온도를 표 2에 나타내었다.The electrolyte thin film was prepared in the same manner as in Example 7, varying the molecular weight of PEGDME. At this time, the content of lithium salt was such that the molar ratio ([EO] / [Li]) of the ethylene oxide repeater and the lithium salt was 15. The conductivity and glass transition temperature of the prepared thin film are shown in Table 2.

PEGDME 분자량에 따른 전도도 및 유리 전이 온도Conductivity and glass transition temperature depending on PEGDME molecular weight 실시예Example PMS-A60PMS-A60 GEPTAGEPTA PEGDMEPEGDME LiCF3SO3 LiCF 3 SO 3 백금촉매Platinum Catalyst 상온이온전도도(×105S/cm)Room temperature ion conductivity (× 10 5 S / cm) 유리전이온도(℃)Glass transition temperature (℃) 분자량Molecular Weight 사용량usage 1313 0.2g0.2 g 0.21g0.21 g 178.23178.23 0.2g0.2 g 0.0547g0.0547 g 6∼10㎕6 to 10 µl 2.352.35 -55.40-55.40 1414 0.2g0.2 g 0.21g0.21 g 250250 0.2g0.2 g 0.0756g0.0756 g 6∼10㎕6 to 10 µl 8.108.10 -78.47-78.47 1515 0.2g0.2 g 0.21g0.21 g 500500 0.2g0.2 g 0.1173g0.1173 g 6∼10㎕6 to 10 µl 27.927.9 -64.29-64.29

실시예 16~19 리튬염 농도에 따른 전해질 박막 제조 및 특성Examples 16-19 Preparation and Properties of Electrolyte Thin Films According to Lithium Salt Concentration

PEGDME의 분자량을 변화시키며 실시예 7과 같은 방법으로 전해질 박막을 제조하였다. 이때 리튬염의 함량은 에틸렌옥시드 반복기와 리튬염의 몰비([EO]/[Li])가 15가 되도록 하였다. 제조된 박막의 전도도 및 유리전이 온도를 표 3에 나타내었다.The electrolyte thin film was prepared in the same manner as in Example 7, varying the molecular weight of PEGDME. At this time, the content of lithium salt was such that the molar ratio ([EO] / [Li]) of the ethylene oxide repeater and the lithium salt was 15. The conductivity and glass transition temperature of the prepared thin film are shown in Table 3.

리튬염 농도에 따른 전도도 및 유리 전이 온도Conductivity and Glass Transition Temperature with Lithium Salt Concentration 실시예Example PMS-A60PMS-A60 GEPTAGEPTA PEGDMe(분자량 400)PEGDMe (molecular weight 400) LiCF3SO3 LiCF 3 SO 3 백금촉매Platinum Catalyst 상온이온전도도(×105S/cm)Room temperature ion conductivity (× 10 5 S / cm) 유리전이온도(℃)Glass transition temperature (℃) 1616 0.2g0.2 g 0.21g0.21 g 0.2g0.2 g 0.1446g0.1446 g 6∼10㎕6 to 10 µl 34.734.7 -63.40-63.40 1717 0.2g0.2 g 0.21g0.21 g 0.2g0.2 g 0.0723g0.0723 g 6∼10㎕6 to 10 µl 50.850.8 -71.66-71.66 1818 0.2g0.2 g 0.21g0.21 g 0.2g0.2 g 0.0482g0.0482 g 6∼10㎕6 to 10 µl 29.429.4 -65.70-65.70 1919 0.2g0.2 g 0.21g0.21 g 0.2g0.2 g 0.03615g0.03615 g 6∼10㎕6 to 10 µl 25.525.5 -64.74-64.74

실시예 20~23 경화제 합성Examples 20-23 Curing Agent Synthesis

실시예 20 글리세롤 에톡실레이트 트리알릴에테르(GETA)의 합성Example 20 Synthesis of Glycerol Ethoxylate Triallyl Ether (GETA)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(150ml)에 10g의 글리세롤 에톡실레이트 트리올(GETO, 분자량 1000)와 1.8g의 NaOH을 첨가하고 질소 분위기하 환류하에서 5.45g의 알릴브로마이드를 천천히 적하한 후 실시예 6과 같은 방법으로 9.48g(수율 84.7%) GETA를 제조하였다.To a 1000 ml three-necked flask equipped with a stirrer, thermometer, and dropping device, 10 g of glycerol ethoxylate triol (GETO, molecular weight 1000) and 1.8 g of NaOH were added to THF (150 ml) dried with Na and under a nitrogen atmosphere. 5.45 g of allyl bromide was slowly added dropwise under reflux, and 9.48 g (yield 84.7%) of GETA was prepared in the same manner as in Example 6.

1H-NMR(300MHz, CDCl3): ppm 5.96-5.84(m, CH2=CH, 3H), 5.31-5.15(m, CH2=CH, 6H), 4.04-4.01(d, CH2=CHCH2, 6H), 3.82-3.59(m, OCH2CH2O, OCH2CHOCH2O, 84H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 5.96-5.84 (m, CH 2 = CH, 3H), 5.31-5.15 (m, CH 2 = CH, 6H), 4.04-4.01 (d, CH 2 = CHCH 2 , 6H), 3.82-3.59 (m, OCH 2 CH 2 O, OCH 2 CHOCH 2 O, 84H)

실시예 21 글리세롤(에톡실레이트-프로폭실레이트)트리알릴카보네이트(GEPTAC)의 합성Example 21 Synthesis of Glycerol (ethoxylate-propoxylate) triallylcarbonate (GEPTAC)

글리세롤(에톡실레이트-프로폭실레이트)트리카르보닐이미다졸(GEPTCI)의 합성Synthesis of Glycerol (ethoxylate-propoxylate) tricarbonylimidazole (GEPTCI)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(200ml)에 26g의 GEPTO(분자량 2600)와 8.11g의 1,1-카르보닐디이미다졸을 첨가하고 질소 분위기하 40∼50℃를 유지하며 5∼6시간 교반을 계속한다. 반응이 끝나면 여분의 1,1-카르보닐디이미다졸을 여과한 후 클로로포름 또는 염화메틸렌과 중량비 5% NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후, 진공 건조하여 26.19g의 GEPTCI를 제조하였다(수율 90.8%).To a 1000 ml three-necked flask equipped with a stirrer, thermometer, and dropping device, 26 g of GEPTO (molecular weight 2600) and 8.11 g of 1,1-carbonyldiimidazole were added to THF (200 ml) dried with Na and a nitrogen atmosphere. The stirring is continued for 5 to 6 hours while maintaining the temperature at 40 to 50 ° C. After the reaction was completed, the excess 1,1-carbonyldiimidazole was filtered, extracted three times with chloroform or methylene chloride and 5% NaOH aqueous solution by weight, dried over MgSO 4, and dried in vacuo to give 26.19 g of GEPTCI. Prepared (yield 90.8%).

1H-NMR(300MHz, CDCl3):ppm 8.14(s, NCHNCO, 3H), 7.44(s, NCHCHNCO, 3H), 7.07(s, NCHCHNCO, 3H), 3.91-3.30(m, OCH2CH2O, OCH2CH2CH2O, OCH2CHOCH2O, 139H), 1.42-1.39(m, OCOCH2CH2CH2O, 6H), 1.19-1.13(m, OCOCH2CH2CH2O, 34H)1 H-NMR (300 MHz, CDCl 3): ppm 8.14 (s, NCHNCO, 3H), 7.44 (s, NCHCHNCO, 3H), 7.07 (s, NCHCHNCO, 3H), 3.91-3.30 (m, OCH 2 CH 2 O, OCH 2 CH 2 CH 2 O, OCH 2 CHOCH 2 O, 139H), 1.42-1.39 (m, OCOCH 2 CH 2 CH 2 O, 6H), 1.19-1.13 (m, OCOCH 2 CH 2 CH 2 O, 34H)

글리세롤(에톡실레이트-프로폭실레이트) 트리알릴카보네이트(GEPTAC)의 합성Synthesis of Glycerol (ethoxylate-propoxylate) triallylcarbonate (GEPTAC)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(150ml)에 26.1g의 GEPTCI와 3.16g의 알릴알코올을 첨가하고 질소 분위기하 환류하에서 24시간 교반을 계속한다. 반응이 끝나면 THF를 휘발시키고 클로로포름 또는 염화메틸렌과 중량비 5% NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후, 진공 건조하여 22.05g의 알릴카보네이트가 도입된 GEPTAC를 제조하였다(수율82.4%).To a 1000 ml three-necked flask equipped with a stirrer, thermometer and dropping device, THF (150 ml) dried with Na was added 26.1 g of GEPTCI and 3.16 g of allyl alcohol and stirring was continued for 24 hours under reflux under a nitrogen atmosphere. After the reaction, THF was evaporated, extracted three times with chloroform or methylene chloride and 5% NaOH aqueous solution by weight, dried over MgSO 4, and dried in vacuo to prepare GEPTAC containing 22.05 g of allylcarbonate (yield 82.4%). ).

1H-NMR(300MHz, CDCl3):ppm 5.99-5.89(m, CH2=CH, 3H), 5.39-5.24(m, CH2=CH, 6H), 4.63-4.61(d, CH2=CHCH2, 6H), 3.65-3.38(m, OCH2CH2O, OCH2CH2CH2O, OCH2CHOCH2O, 139H), 1.28-1.31(m, OCOCH2CH2CH2O, 6H), 1.19-1.13(m, OCOCH2CH2CH2O, 34H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 5.99-5.89 (m, CH 2 = CH, 3H), 5.39-5.24 (m, CH 2 = CH, 6H), 4.63-4.61 (d, CH 2 = CHCH 2 , 6H), 3.65-3.38 (m, OCH 2 CH 2 O, OCH 2 CH 2 CH 2 O, OCH 2 CHOCH 2 O, 139H), 1.28-1.31 (m, OCOCH 2 CH 2 CH 2 O, 6H) , 1.19-1.13 (m, OCOCH 2 CH 2 CH 2 O, 34H)

실시예 22 글리세롤 에톡실레이트 트리알릴카보네이트(GETAC)의 합성Example 22 Synthesis of Glycerol Ethoxylate Triallylcarbonate (GETAC)

글리세롤 에톡실레이트 트리디이미다졸(GETCI)의 합성Synthesis of Glycerol Ethoxylate Tridiimidazole (GETCI)

10g의 GETO(분자량 1000)와 8.11g의 1.1-카르보닐디이미다졸을 첨가하고 질소 분위기하에서 40∼50℃를 유지하며 5∼6시간 교반을 계속한다. 반응이 끝나면 여분의 1,1-카르보닐디이미다졸을 여과한 후 클로로포름 또는 염화메틸렌과 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후, 진공 건조하여 11.4g의 GETCI를 제조하였다(수율 88.7%).10 g of GETO (molecular weight 1000) and 8.11 g of 1.1-carbonyldiimidazole are added and stirring is continued for 5 to 6 hours while maintaining 40 to 50 ° C. under a nitrogen atmosphere. After the reaction was completed, the excess 1,1-carbonyldiimidazole was filtered, extracted three times with chloroform or methylene chloride, dried over MgSO 4 and dried in vacuo to prepare 11.4 g of GETCI (yield 88.7% ).

1H-NMR(300MHz, CDCl3):ppm 8.14(s, NCHNCO, 3H), 7.44(s, NCHCHNCO, 3H), 7.07(s, NCHCHNCO, 3H), 3.75-3.51(m, OCH2CH2O, OCH2CHOCH2O, 84H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 8.14 (s, NCHNCO, 3H), 7.44 (s, NCHCHNCO, 3H), 7.07 (s, NCHCHNCO, 3H), 3.75-3.51 (m, OCH 2 CH 2 O , OCH 2 CHOCH 2 O, 84H)

글리세롤 에톡실레이트 트리알릴카보네이트(GETAC)의 합성Synthesis of Glycerol Ethoxylate Triallylcarbonate (GETAC)

교반장치, 온도계 및 적하 장치를 갖춘 1000ml용량의 3구 플라스크에 Na로 건조시킨 THF(200ml)에 11.4g의 GETCI와 3.09g의 알릴알코올을 첨가하고 질소 분위기하 환류하에서 24시간 교반을 계속한다. 반응이 끝나면 THF를 휘발시키고 클로로포름 또는 염화메틸렌과 중량비 5% NaOH 수용액으로 3차례에 걸쳐 추출하고 MgSO4로 건조시킨 후, 진공 건조하여 7.57g의 알릴카보네이트가 도입된 GETAC를 제조하였다(수율 76.2%).To a 1000 ml three-necked flask equipped with a stirrer, thermometer and dropping device, 11.4 g of GETCI and 3.09 g of allyl alcohol were added to THF (200 ml) dried with Na and stirring was continued for 24 hours under reflux under a nitrogen atmosphere. After the reaction, THF was evaporated, extracted three times with chloroform or methylene chloride and 5% NaOH aqueous solution by weight, dried over MgSO 4, and dried in vacuo to prepare 7.57 g of allylcarbonate-containing GETAC (yield 76.2%). ).

1H-NMR(300MHz, CDCl3): ppm 5.95-5.88(m, CH2=CH, 3H), 5.39-5.24(m, CH2=CH, 6H), 4.64-4.61(d, CH2=CHCH2, 6H), 75-3.51(m, OCH2CH2O, OCH2CHOCH2O, 78.72H) 1 H-NMR (300 MHz, CDCl 3 ): ppm 5.95-5.88 (m, CH 2 = CH, 3H), 5.39-5.24 (m, CH 2 = CH, 6H), 4.64-4.61 (d, CH 2 = CHCH 2 , 6H), 75-3.51 (m, OCH 2 CH 2 O, OCH 2 CHOCH 2 O, 78.72H)

실시예 23~27 경화제에 따른 전해질 박막의 제조 및 특성Examples 23 to 27 Preparation and Properties of Electrolyte Thin Films according to Curing Agents

실시예3에서 합성된 PMS-A60를 사용하고 및 경화제를 표 4에 나타낸 대로 사용하고 실시예7과 같은 방법으로 전해질 박막을 제조하였다. 이때 사용한 경화제는 실시예20~22에서 합성된 것과 시판되는 시약인 2,4,6-트리알릴옥시-1,3,5-트리아진(TAOTA) 및 트리알릴-1,3-5-트리아진-2,4,6-트리온(TATT)을 사용하였으며, 리튬염의 함량은 에틸렌옥시드 반복기와 리튬염의 몰비([EO]/[Li])가 15가 되도록 하였다. 제조된 박막의 전도도 및 유리전이 온도를 표 4에 나타내었다.Using the PMS-A60 synthesized in Example 3 and using a curing agent as shown in Table 4 to prepare an electrolyte thin film in the same manner as in Example 7. The curing agents used at this time were 2,4,6-triallyloxy-1,3,5-triazine (TAOTA) and triallyl-1,3-5-triazine, which are commercially available reagents synthesized in Examples 20-22. -2,4,6-trione (TATT) was used, and the lithium salt content was such that the molar ratio ([EO] / [Li]) of the ethylene oxide repeater and the lithium salt was 15. The conductivity and glass transition temperature of the prepared thin film are shown in Table 4.

경화제에 따른 전도도 및 유리 전이 온도Conductivity and glass transition temperature depending on the hardener 실시예Example PMS-A60PMS-A60 경화제Hardener PEGDME(분자량 400)PEGDME (molecular weight 400) LiCF3SO3 LiCF 3 SO 3 백금촉매Platinum Catalyst 상온이온전도도 (×105S/cm)Room temperature ion conductivity (× 105S / cm) 유리전이온도(℃)Glass transition temperature (℃) 종류Kinds 사용량usage 2323 0.2g0.2 g GETAGETA 0.086g0.086 g 0.2g0.2 g 0.0756g0.0756 g 6∼10㎕6 to 10 µl 20.520.5 -66.93-66.93 2424 0.2g0.2 g GEPTACGEPTAC 0.218g0.218 g 0.2g0.2 g 0.0964g0.0964g 6∼10㎕6 to 10 µl 31.131.1 -- 2525 0.2g0.2 g GETACGETAC 0.096g0.096 g 0.2g0.2 g 0.1173g0.1173 g 6∼10㎕6 to 10 µl 25.725.7 -59.52-59.52 2626 0.2g0.2 g TAOTATAOTA 0.019g0.019 g 0.2g0.2 g 0.0697g0.0697 g 6∼10㎕6 to 10 µl 22.722.7 -- 2727 0.2g0.2 g TATTTATT 0.019g0.019 g 0.2g0.2 g 0.0697g0.0697 g 6∼10㎕6 to 10 µl 26.026.0 --

실시예 28~29 PMS-AC60을 사용한 전해질 박막 제조 및 특성Examples 28-29 Preparation and Properties of Electrolyte Thin Films Using PMS-AC60

실시예5에서 합성된 PMS-AC60를 사용하고 및 경화제로 GEPTAC 및 GETAC 사용하여 실시예7과 같은 방법으로 전해질 박막을 제조하였다. 이때 사용한 리튬염의 함량은 에틸렌옥시드 반복기와 리튬염의 몰비([EO]/[Li])가 15가 되도록 하였다. 제조된 박막의 전도도 및 유리전이 온도를 표 5에 나타내었다.An electrolyte thin film was prepared in the same manner as in Example 7, using PMS-AC60 synthesized in Example 5 and using GEPTAC and GETAC as curing agents. At this time, the content of the lithium salt used was such that the molar ratio ([EO] / [Li]) of the ethylene oxide repeater and the lithium salt was 15. The conductivity and glass transition temperature of the prepared thin film are shown in Table 5.

PMS-AC60을 사용한 전해질 박막의 전도도 및 유리 전이 온도Conductivity and Glass Transition Temperature of Electrolytic Thin Films Using PMS-AC60 실시예Example PMS-AC60PMS-AC60 경화제Hardener PEGDME(분자량400)PEGDME (molecular weight 400) LiCF3SO3 LiCF 3 SO 3 백금촉매Platinum Catalyst 상온이온전도도 (×10-5S/cm)Room temperature ion conductivity (× 10-5S / cm) 유리전이온도(℃)Glass transition temperature (℃) 종류Kinds 사용량usage 2828 0.2g0.2 g GEPTACGEPTAC 0.218g0.218 g 0.2g0.2 g 0.0964g0.0964g 6∼10㎕6 to 10 µl 34.134.1 -64.96-64.96 2929 0.2g0.2 g GETACGETAC 0.096g0.096 g 0.2g0.2 g 0.1173g0.1173 g 6∼10㎕6 to 10 µl 28.728.7 -62.69-62.69

실시예 30 전기 화학적 안정성 실험Example 30 Electrochemical Stability Experiment

1cm×1cm크기의 스테인레스 전극 위에 실시예 12와 같은 방법으로 직접 전해질 박막을 제조하고, 이를 리튬 금속 사이에 샌드위치 시킨 후, 진공 포장하여 전기 화학적 안정성 측정용 셀을 제조하였다. 전기 화학적 안정성은 선형주사전위법을 이용하여 2.0∼5.0V까지 1mV/sec의 속도로 측정하였다. 이 결과를 제2도에 도시하였다. 측정결과 4.75V이하에서는 전해질이 분해되는 전류가 거의 없었다. 이로부터 제조된 고분자 전해질은 리튬기준 전극에서 4.75V 까지 전기 화학적으로 안정하여 리튬-고분자 전지용 고분자 전해질로서 충분한 전기 화학적 안정성을 가짐이 확인되었다.An electrolytic thin film was directly prepared on a 1 cm × 1 cm stainless electrode in the same manner as in Example 12, sandwiched between lithium metals, and vacuum packed to prepare a cell for measuring electrochemical stability. Electrochemical stability was measured at a rate of 1 mV / sec from 2.0 to 5.0 V using the linear scanning potential method. This result is shown in FIG. As a result of the measurement, there was almost no current to decompose the electrolyte below 4.75V. The polymer electrolyte prepared therefrom was electrochemically stable up to 4.75V at the lithium reference electrode, and it was confirmed that the polymer electrolyte had sufficient electrochemical stability as a polymer electrolyte for lithium-polymer batteries.

본 발명에 따른 고체 고분자 전해질 박막은 박막 성형성, 압착 강도 등의 기계적 물성이 보강되었으며, 또한 저분자량 폴리알킬렌옥시드의 도입이 용이하여 상온에서의 이온 전도도가 향상되었고, 전극과의 접착력이 우수하며, 화학적 및 전기 화학적으로 안정하여 리튬-고분자 이차 전지에 사용하기에 적합한 고체 고분자 전해질 박막을 제공할 수 있다.The solid polymer electrolyte thin film according to the present invention has enhanced mechanical properties such as thin film formability and compressive strength, and is easy to introduce low molecular weight polyalkylene oxide, thereby improving ion conductivity at room temperature, and excellent adhesion to electrodes. And, it can be chemically and electrochemically stable to provide a solid polymer electrolyte thin film suitable for use in a lithium-polymer secondary battery.

Claims (5)

고체 고분자 전해질 조성물의 총중량에 대하여,Regarding the total weight of the solid polymer electrolyte composition, (1) 하기 화학식(1)로 표시되는 폴리알킬렌 옥시드기가 곁가지로 도입된 폴리하이드로메틸실록산10∼80중량%:(1) 10 to 80% by weight of polyhydromethylsiloxane in which the polyalkylene oxide group represented by the following general formula (1) is introduced side by side: 상기 식에서, R1및 R2는 H 또는 메틸기이며, X는또는기이고, x 및 y는 각각 0∼20의 정수이고, p 및 q는 각각 0∼1000의 정수임;Wherein R 1 and R 2 are H or a methyl group, X is or X and y are each an integer of 0 to 20, and p and q are each an integer of 0 to 1000; (2) 하기 화학식(2)로 표시되는 말단에 3개의 알릴기를 가지는 가교제1∼60중량%:(2) 1 to 60 wt% of a crosslinking agent having three allyl groups at the terminal represented by the following general formula (2): 상기 식에서, R은 C1-C10의 선형 또는 환형 지방족 및 방향족 화합물 또는 트리아진, 이소시아누레이트 등으로 대표되는 헤테로 고리 화합물이며, X는또는기이고, x, y 및 z는 0∼20의 정수임;Wherein R is a C 1 -C 10 linear or cyclic aliphatic and aromatic compound or a heterocyclic compound represented by triazine, isocyanurate or the like, X is or And x, y and z are integers from 0 to 20; (3) 리튬염 해리와 리튬이온 전도성을 양호하게 하기 위한 올리고머 또는 폴리머로 하기 화학식(3)의 폴리알킬렌글리콜 디알킬에테르:(3) Polyalkylene glycol dialkyl ethers represented by the following general formula (3) as oligomers or polymers for improving lithium salt dissociation and lithium ion conductivity: 상기 식에서, R1및 R2는 C1-C10의 사슬형 또는 분지형의 알킬기이며, X, Y 및 Z는 H 또는 메틸기이고, 그리고 p, q 및 r은 각각 0∼20의 수이고;Wherein R 1 and R 2 are C 1 -C 10 chained or branched alkyl groups, X, Y and Z are H or methyl groups, and p, q and r are each a number from 0 to 20; (4) 리튬염3∼30중량%; 및(4) 3 to 30% by weight of a lithium salt; And (5) 경화용 백금 촉매0.001∼1중량%(5) 0.001 to 1% by weight of a hardening platinum catalyst 를 포함하는 폴리실록산 전해질 조성물.Polysiloxane electrolyte composition comprising a. 제 1항에 있어서, 폴리알킬렌글리콜 디알킬에테르가 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르, 폴리에틸렌글리콜 디프로필에테르, 폴리에틸렌글리콜 디부틸에테르, 폴리에틸렌글리콜 디글리시딜에테르, 폴리프로필렌글리콜 디메틸에테르 및 폴리프로필렌글리콜 디글리시딜에테르; 디부틸에테르 말단의 폴리프로필렌글리콜/폴리에틸렌글리콜 공중합체; 디부틸에테르 말단의 폴리에틸렌글리콜/폴리프로필렌글리콜/폴리에틸렌글리콜 블록 공중합체인 폴리실록산 전해질 조성물.The method of claim 1, wherein the polyalkylene glycol dialkyl ether is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether And polypropylene glycol diglycidyl ether; Polypropylene glycol / polyethylene glycol copolymer of dibutyl ether terminal; Polysiloxane electrolyte composition which is a polyethyleneglycol / polypropylene glycol / polyethyleneglycol block copolymer of a dibutyl ether terminal. 제 1항에 있어서, 리튬염이 LiClO4, LiCF3SO3, LiBF4, LiPF6, LiAsF6또는 Li(CF3SO2)2N인 폴리실록산 전해질 조성물.The polysiloxane electrolyte composition of claim 1, wherein the lithium salt is LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiPF 6 , LiAsF 6, or Li (CF 3 SO 2 ) 2 N. 7. 화학식(1)의 폴리하이드로메틸실록산, 화학식(2)의 가교제와 리튬염을 용기에 넣어 교반기로 교반하여 얻은 용액에 백금 촉매를 첨가하여 혼합한 다음, 화학식(3)의 저분자량의 폴리알킬렌옥시드계 화합물을 선택적으로 부가하여 얻어진 용액을 유리 판, 테프론 판 또는 상업용 마일러(Mylar) 필름 등의 지지체 상에 코팅한 후 30∼150oC에서 5분∼15시간 경화 반응시켜 폴리실록산 고체 전해질 박막을 제조하는 방법.The polyhydromethylsiloxane of the formula (1), the crosslinking agent of the formula (2) and the lithium salt were added to a container, and the platinum catalyst was added to the solution obtained by stirring with a stirrer and mixed, and then the low molecular weight polyalkylene jade of the formula (3) The solution obtained by selectively adding a seed compound is coated on a support such as a glass plate, a Teflon plate or a commercial Mylar film, and then cured and reacted at 30 to 150 ° C. for 5 minutes to 15 hours to form a polysiloxane solid electrolyte thin film. How to prepare. 제 4항에 의해 제조된 폴리실록산 고체 전해질 박막.The polysiloxane solid electrolyte thin film prepared by claim 4.
KR1019990044522A 1999-10-14 1999-10-14 Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same KR100344910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990044522A KR100344910B1 (en) 1999-10-14 1999-10-14 Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990044522A KR100344910B1 (en) 1999-10-14 1999-10-14 Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same

Publications (2)

Publication Number Publication Date
KR20010037163A true KR20010037163A (en) 2001-05-07
KR100344910B1 KR100344910B1 (en) 2002-07-19

Family

ID=19615331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990044522A KR100344910B1 (en) 1999-10-14 1999-10-14 Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same

Country Status (1)

Country Link
KR (1) KR100344910B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371137B1 (en) * 1999-12-16 2003-02-07 한국전자통신연구원 Method of manufacturing a conducting polymer film
WO2006129991A1 (en) * 2005-06-03 2006-12-07 Hee Jung Kim Anion receptor and electrolyte using the same
KR100726888B1 (en) 2005-07-20 2007-06-14 한국과학기술원 Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery
KR100797649B1 (en) * 2005-04-21 2008-01-23 와커 헤미 아게 Process for preparing organopolysiloxanes having triorganosiloxy groups
WO2009061143A1 (en) * 2007-11-09 2009-05-14 Lg Chem, Ltd. Lithium secondary battery containing additive for improved high-temperature characteristics
KR101295678B1 (en) * 2011-01-28 2013-08-14 충북대학교 산학협력단 Polysiloxane resin containing single-ion conductor and a film for lithium secondary battery using the same
WO2018038417A1 (en) * 2016-08-22 2018-03-01 삼성에스디아이주식회사 Electrolyte for lithium metal battery, and lithium metal battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133477B1 (en) 2018-06-25 2020-07-13 전남대학교산학협력단 UV curable polyurethane-solid electrolyte and the method for manufacturing thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635545B2 (en) * 1986-03-11 1994-05-11 住友電気工業株式会社 Ion conductive polymer composition
US5037712A (en) * 1987-10-30 1991-08-06 Ultracell, Inc. Preparation of radiation cured solid electrolytes and electrochemical devices employing the same
JPH0280462A (en) * 1988-09-16 1990-03-20 Toray Dow Corning Silicone Co Ltd Ionically conductive material and its production
JP3279650B2 (en) * 1992-07-31 2002-04-30 三菱電線工業株式会社 Solid electrolyte battery
CA2235166C (en) * 1996-08-20 2008-11-25 Daiso Co., Ltd. Polymer solid electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371137B1 (en) * 1999-12-16 2003-02-07 한국전자통신연구원 Method of manufacturing a conducting polymer film
KR100797649B1 (en) * 2005-04-21 2008-01-23 와커 헤미 아게 Process for preparing organopolysiloxanes having triorganosiloxy groups
WO2006129991A1 (en) * 2005-06-03 2006-12-07 Hee Jung Kim Anion receptor and electrolyte using the same
KR100726888B1 (en) 2005-07-20 2007-06-14 한국과학기술원 Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery
WO2009061143A1 (en) * 2007-11-09 2009-05-14 Lg Chem, Ltd. Lithium secondary battery containing additive for improved high-temperature characteristics
US8758944B2 (en) 2007-11-09 2014-06-24 Lg Chem, Ltd. Lithium secondary battery containing additive for improved high-temperature characteristics
KR101295678B1 (en) * 2011-01-28 2013-08-14 충북대학교 산학협력단 Polysiloxane resin containing single-ion conductor and a film for lithium secondary battery using the same
WO2018038417A1 (en) * 2016-08-22 2018-03-01 삼성에스디아이주식회사 Electrolyte for lithium metal battery, and lithium metal battery comprising same
US11302959B2 (en) 2016-08-22 2022-04-12 Samsung Sdi Co., Ltd. Electrolyte for lithium metal battery and lithium metal battery including the same

Also Published As

Publication number Publication date
KR100344910B1 (en) 2002-07-19

Similar Documents

Publication Publication Date Title
KR100588475B1 (en) Solid polymer electrolyte composite using polysiloxane-based compound
KR100419864B1 (en) New Cross-linker, and Cross-linkable Solid polymer Electrolytes using the same
KR100744835B1 (en) Phosphate acrylate cross-linking agent for polymer electrolyte and composite containing the same
KR100634382B1 (en) Cyclic siloxane-based compounds and solid polymer electrolyte composite containing the same
KR100394077B1 (en) Polyalkylene oxide polymer Composition for Solid polymer Electrolytes
KR100212534B1 (en) Sol-gel composition and its polymeric ion conductive membrane
US20060189776A1 (en) Solid polymeric electrolytes for lithium batteries
WO2006129991A1 (en) Anion receptor and electrolyte using the same
Oh et al. Poly (vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries
KR100726888B1 (en) Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery
KR100344910B1 (en) Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same
KR100663686B1 (en) Setting composition for a battery electrolyte
KR20080009313A (en) Anion receptor and electrolyte using the same
KR100683939B1 (en) Composition of Solid Polymer Electrolyte Based on Interpenetrating Network Structure and Method Thereof
KR101190143B1 (en) Polymer electrolyte composite containing the siloxane-based epoxy compounds and lithium-polymer secondary battery using the same
KR101190145B1 (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
Kang et al. Effect of Poly (ethylene glycol) dimethyl ether Plasticizer on Ionic Conductivity of Cross-Linked Poly [siloxane-g-oligo (ethylene oxide)] Solid Polymer Electrolytes
KR20030096805A (en) Polysiloxane Comb-branched with Alkyl Cyanide groups and/or their Preparation for Solid Polymer Electrolytes.
KR100228029B1 (en) The preparation of rubber elastic copolymer, its ionic conductive thin film composition, ionic conductive thin film and its preparation method and its solid electrochemical devices
Shriver et al. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries
Spiegel et al. Advanced High Energy Lithium Polymer Electrolyte Battery
PL212151B1 (en) Oligomeric boranic lithium salts, their application and the polymeric electrolyte with oligomeric boranic lithium salts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090701

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee