KR20010035700A - A positive electrode plate for a lithium secondary battery - Google Patents

A positive electrode plate for a lithium secondary battery Download PDF

Info

Publication number
KR20010035700A
KR20010035700A KR1019990042394A KR19990042394A KR20010035700A KR 20010035700 A KR20010035700 A KR 20010035700A KR 1019990042394 A KR1019990042394 A KR 1019990042394A KR 19990042394 A KR19990042394 A KR 19990042394A KR 20010035700 A KR20010035700 A KR 20010035700A
Authority
KR
South Korea
Prior art keywords
positive electrode
electrode plate
metal oxide
lithium secondary
lixco1
Prior art date
Application number
KR1019990042394A
Other languages
Korean (ko)
Other versions
KR100346546B1 (en
Inventor
권호진
김기호
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990042394A priority Critical patent/KR100346546B1/en
Priority to CNB001063987A priority patent/CN1181580C/en
Priority to JP2000155373A priority patent/JP4101435B2/en
Priority to US09/579,576 priority patent/US7608365B1/en
Publication of KR20010035700A publication Critical patent/KR20010035700A/en
Application granted granted Critical
Publication of KR100346546B1 publication Critical patent/KR100346546B1/en
Priority to US11/510,301 priority patent/US7655358B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An anode plate for a lithium secondary battery is provided which has excellent heat-stability and high temperature life property. CONSTITUTION: The anode plate for a lithium secondary battery is prepared by adding metallic oxide powder selected from oxides of Ca, Mg, Sr, Ba and mixtures thereof to lithium complex metallic oxide selected from the group consisting of LixCoO2, LixCoS2, LixMnF2, LixMnF2, LixMnS2, LixMn2O4, LixMn2S4, LixMn2F4, LixCoO2-yFy, LixCoO2-ySy, LixCo1-yMyO2, LixCo1-yMyS2, LixCo1-yMyF2, LixCo1-yMyP2, LixCo1-yMyO2-zSz, LixCo1-yMyO2-zFz, LixNi1-y-zCoyMzO2, LixNi1-y-zCoyMzS2 and LixNi1-y-zCoyMzF2, wherein M is a metal selected from the group consisting of Mg, Al, Cr, Fe, Mn, Sr, La and Ce and each x, y and z is above 0 and under 1.

Description

리튬 이차 전지용 양극 극판 {A POSITIVE ELECTRODE PLATE FOR A LITHIUM SECONDARY BATTERY}Positive electrode plate for lithium secondary battery {A POSITIVE ELECTRODE PLATE FOR A LITHIUM SECONDARY BATTERY}

발명의 분야Field of invention

본 발명은 열적 안정성과 고온 수명 특성이 향상된 리튬 이차 전지용 양극 극판에 관한 것으로서, 더욱 상세하게는 양극 활물질에 소량의 금속 산화물 분말을 혼합시켜 열적 안정성과 고온 수명 특성이 우수한 리튬 이차 전지용 양극 극판에 관한 것이다.The present invention relates to a positive electrode plate for lithium secondary batteries having improved thermal stability and high temperature life characteristics, and more particularly, to a positive electrode plate for lithium secondary batteries having excellent thermal stability and high temperature life characteristics by mixing a small amount of metal oxide powder with a positive electrode active material. will be.

종래 기술Prior art

최근 첨단 전자산업의 발달로 전자장비의 소량화 및 경량화가 가능케됨에 따라 휴대용 전자 기기의 사용이 증대되고 있다. 이러한 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전지의 필요성이 증대되어 리튬 이차 전지의 연구가 활발하게 진행되고 있다.Recently, with the development of the high-tech electronic industry, it is possible to reduce the weight and weight of electronic equipment, and thus the use of portable electronic devices is increasing. As a power source for such portable electronic devices, the necessity of a battery having a high energy density has been increased, and research on lithium secondary batteries has been actively conducted.

리튬 이차 전지의 음극재료로 Li-금속이나 탄소재료가 사용되고 있으며 양극재료로는 칼코게나이드(calcogenide) 화합물이 사용되고 있다. Li-금속을 음극재료로 사용할 경우 수지상결정(dentrite)의 형성으로 인하여 전지단락에 의한 폭팔위험성이 있기 때문에 음극재료로서 Li-금속 대신 탄소재료로 대체되어 가고 있다.Li-metal or carbon material is used as a cathode material of a lithium secondary battery, and a chalcogenide compound is used as a cathode material. When Li-metal is used as a negative electrode material, there is a risk of explosion due to short circuit due to the formation of dendrite (dentrite), which is being replaced by carbon material instead of Li-metal as negative electrode material.

일반적으로 양극 활물질로 사용되는 복합 금속 산화물들은 고상방법에 의하여 합성되고 있다. Matsushita는 금속 산화물의 혼합물을 400∼580℃에서 반응시켜 1차적으로 초기 산화물을 형성하고, 600∼780℃에서 완전한 결정성 물질을 합성하는 2단계 연속 소결 공정을 이용하여 복합 금속 산화물을 합성하는 방법을 이용하였다. 이처럼 기존의 복합 금속 산화물 전극을 제조하는 방법은 상당히 복잡하고 많은 설비와 공정을 거치는 단점이 있다.In general, composite metal oxides used as a cathode active material are synthesized by a solid phase method. Matsushita is a method for synthesizing a composite metal oxide using a two-step continuous sintering process in which a mixture of metal oxides is first reacted at 400 to 580 ° C. to form an initial oxide, and a complete crystalline material is synthesized at 600 to 780 ° C. Was used. As such, the method of manufacturing a conventional composite metal oxide electrode is quite complicated and has a disadvantage of undergoing many facilities and processes.

또한 기존의 복합 금속 산화물 합성법은 합성온도가 비교적 높고 반응물의 입자크기가 크기 때문에 표면적이나 기공크기와 같은 표면 특성, 입자의 형상(morphology) 등의 물리적 성질을 조절하는 것이 상당히 어려우며, 또한 이러한 물리적 성질은 전지의 전기화학적 특성에 영향을 미치는 중요한 인자이기 때문에 합성방법의 다변화를 통하여 물리적 성질을 조절하려는 노력이 진행되고 있다. 그러나 종래의 고상방법으로는 형상의 표면 구조 및 형상의 변화를 도모하기 힘들어 표면 변화를 통하여 전지의 전기화학적 특성 향상에 대한 연구가 절실히 요청되고 있다.In addition, the conventional composite metal oxide synthesis method has a relatively high synthesis temperature and a large particle size of the reactants, so it is very difficult to control physical properties such as surface area and pore size, particle morphology, and the like. Since is an important factor affecting the electrochemical properties of the battery, efforts are being made to control the physical properties through the diversification of the synthesis method. However, in the conventional solid state method, it is difficult to achieve a change in the surface structure and shape of the shape, and there is an urgent need for a study on improving the electrochemical characteristics of the battery through the surface change.

양극 활물질로서 현재 많이 사용되고 있는 재료로는 LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiNi1-xCoxO2(0<x<1) 등의 복합 금속 산화물을 들 수 있다. LiCoO2는 양호한 전기 전도도와 높은 전지전압 그리고 우수한 전극특성을 보이며 현재 SONY사 등에서 상업화되어 시판되고 있는 대표적인 양극 전극물질이나 가격이 비싸다는 단점이 있다. LiNiO2는 상기 언급된 양극 전극물질 중 비교적 값이 싸며 가장 높은 방전용량의 전지특성을 나타내고 있으나 합성하기 어려운 문제점이 있다.A material that is currently widely used as a positive electrode active material may include a composite metal oxide of LiCoO 2, LiNiO 2, LiMn 2 O 4, LiMnO 2, such as LiNi 1-x Co x O 2 (0 <x <1). LiCoO 2 has good electrical conductivity, high battery voltage, and excellent electrode characteristics, and is a representative anode electrode material commercialized and sold by SONY, and has a disadvantage of being expensive. LiNiO 2 is relatively inexpensive among the above-mentioned cathode electrode materials and exhibits the highest discharge capacity of battery characteristics, but is difficult to synthesize.

LiMn2O4, LiMnO2등의 Mn-계 전극 물질은 합성하기도 쉽고 가격이 저렴하며 전기화학적 방전 특성이 좋고 환경에 대한 오염도 적기 때문에 활물질로의 응용가능성이 높으나 용량이 작다는 단점을 가지고 있다. 특히 LiMn2O4는 전지시스템의 안정성이 우수하여 전기 자동차, EV의 전력원과 같은 차세대 대형 이차전지의 가장 유망한 양극 활물질 재료로서 부각되고 있으나, 다른 활물질에 비해 방전 용량이 작고, 고율 충·방전시 방전 용량이 급격히 감소된다.Mn-based electrode materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize, inexpensive, have good electrochemical discharge characteristics, and are less polluted to the environment. In particular, LiMn 2 O 4 is emerging as the most promising cathode active material of next-generation large secondary batteries such as electric vehicles and EV power sources due to its excellent stability of the battery system. Discharge capacity is drastically reduced.

또한 Mn-계 활물질은 고온에서 전기화학적 충·방전과 관계없이 망간 이온이 자발적으로 내부구조로부터 전해액으로 분리되어 녹아나오는 문제점도 있다. 상기 망간 이온은 LiPF6와 같은 전해염이 전해액 및 극판에 존재하는 물과 반응하여 생성되는 HF 등과 같은 산물질에 의하여 용출된다. 용출된 망간 이온은 전지의 용량과 수명이 감소하는 등 전지 성능을 저하시키는 요인으로 작용한다.In addition, the Mn-based active material also has a problem in that manganese ions spontaneously separate from the internal structure into an electrolyte solution regardless of electrochemical charge / discharge at high temperatures. The manganese ions are eluted by an acidic substance such as HF produced by reacting an electrolytic salt such as LiPF 6 with water present in the electrolyte and the electrode plate. The eluted manganese ions act as a factor that degrades battery performance, such as a decrease in battery capacity and lifetime.

이러한 문제점을 해결하기 위한 방법으로 리튬의 당량을 1보다 크게 하여 합성하거나 최근에는 스피넬(spinel) 구조의 산소의 일부를 불소로 치환하여 고온 수명 특성을 향상시키는 방법이 알려져 있다.As a method for solving this problem, a method of synthesizing a lithium equivalent greater than 1 or recently replacing a part of oxygen having a spinel structure with fluorine is known to improve high temperature life characteristics.

본 발명의 목적은 열적 안전성과 고온 수명 특성을 향상시키는 리튬 이차 전지용 양극 극판을 제공하기 위한 것이다.An object of the present invention is to provide a positive electrode plate for a lithium secondary battery that improves thermal safety and high temperature life characteristics.

본 발명의 다른 목적은 망간이온을 용출시키는 산물질과 반응하여 전지의 내압을 기체를 생성시키지 않음으로써 전지의 고온 수명특성과 안전성을 향상시킨 리튬 이차 전지용 양극 극판을 제공하기 위한 것이다.Another object of the present invention is to provide a positive electrode plate for a lithium secondary battery which improves the high temperature life characteristics and safety of the battery by not reacting with an acid material that elutes manganese ions, thereby producing gas in the battery.

도 1은 실시예 4 및 비교예 2의 전지 제조용 극판에 대한 DSC 측정 결과를 나타낸 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the DSC measurement result about the electrode plate for battery manufacture of Example 4 and the comparative example 2. FIG.

도 2는 실시예 3에 따라 제조된 코인 타입 반전지에 대한 상온(20℃)과 고온(50℃)에서의 수명 특성을 나타낸 그래프.Figure 2 is a graph showing the life characteristics at room temperature (20 ℃) and high temperature (50 ℃) for a coin type half-cell prepared according to Example 3.

도 3은 실시예 3과 4 및 비교예 2에 따라 제조된 코인 타입 반전지에 대한 50℃에서의 고온 수명 특성을 나타낸 그래프.Figure 3 is a graph showing the high temperature life characteristics at 50 ℃ for coin type half-cell prepared according to Examples 3 and 4 and Comparative Example 2.

상기 본 발명의 목적을 달성하기 위하여, 리튬 복합 금속 산화물에 금속 산화물 분말을 첨가하여 양극 극판을 제조한다.In order to achieve the object of the present invention, a metal oxide powder is added to a lithium composite metal oxide to prepare a positive electrode plate.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 리튬 이차 전지의 열적 안정성과 고온 수명 특성을 향상시키기 위하여 양극 활물질인 리튬 복합 금속 산화물에 금속 산화물 분말을 첨가하여 양극 극판을 제조한다.In the present invention, to improve the thermal stability and high temperature life characteristics of the lithium secondary battery, a positive electrode plate is prepared by adding a metal oxide powder to a lithium composite metal oxide as a positive electrode active material.

상기 양극 활물질로 사용되는 리튬 복합 금속 산화물로는 LixCoO2, LixCoS2, LixCoF2, LixMnO2, LixMnF2, LixMnS2, LixMn2O4, LixMn2S4, LixMn2F4, LixCoO2-yFy, LixCoO2-ySy, LixCo1-yMyO2, LixCo1-yMyS2, LixCo1-yMyF2, LixCo1-yMyP2, LixCo1-yMyO2-zSz, LixCo1-yMyO2-zFz, LixNi1-y-zCoyMzO2, LixNi1-y-zCoyMzS2, LixNi1-y-zCoyMzF2등이 사용될 수 있다. 상기식에서 M은 Mg, Al, Cr, Fe, Mn, Sr, La, Ce 중 어느 하나의 금속이고 x, y 및 z는 0보다 크고 1보다 작은 범위의 수이다.Examples of the lithium composite metal oxide used as the cathode active material include Li x CoO 2 , Li x CoS 2 , Li x CoF 2 , Li x MnO 2 , Li x MnF 2 , Li x MnS 2 , Li x Mn 2 O 4 , Li x Mn 2 S 4 , Li x Mn 2 F 4 , Li x CoO 2-y F y , Li x CoO 2-y S y , Li x Co 1-y M y O 2 , Li x Co 1-y M y S 2 , Li x Co 1-y M y F 2 , Li x Co 1-y M y P 2 , Li x Co 1-y M y O 2-z S z , Li x Co 1-y M y O 2 -z F z , Li x Ni 1-yz Co y M z O 2 , Li x Ni 1-yz Co y M z S 2 , Li x Ni 1-yz Co y M z F 2, and the like may be used. Wherein M is a metal of any one of Mg, Al, Cr, Fe, Mn, Sr, La, Ce and x, y and z are numbers in the range of greater than 0 and less than 1.

상기 금속 산화물로는 Ca, Mg, Sr, Ba 또는 이들의 혼합물의 산화물이 사용될 수 있으며, 분말 형태로 첨가되어 양극 극판에 균일하게 분산되어 있다. 금속 산화물의 첨가량은 양극 활물질에 대하여 0.01∼10 중량%인 것이 바람직하다. 금속 산화물의 첨가량이 0.01 중량% 미만인 경우에는 첨가 효과가 미미하고, 10 중량%를 초과하는 경우에는 부반응의 진행으로 전지 성능을 저하시키는 문제점이 있다.As the metal oxide, an oxide of Ca, Mg, Sr, Ba, or a mixture thereof may be used. The metal oxide may be added in powder form and uniformly dispersed in the positive electrode plate. It is preferable that the addition amount of a metal oxide is 0.01 to 10 weight% with respect to a positive electrode active material. If the addition amount of the metal oxide is less than 0.01% by weight, the effect of addition is insignificant, and if it exceeds 10% by weight, there is a problem of deteriorating battery performance due to the progress of side reactions.

상기 금속 산화물중 하나인 CaO, MgO, SrO 또는 BaO는 HF와 반응하여 각각 CaF2, MgF2, SrF2또는 BaF2등의 플루오라이드 화합물을 생성시킨다. 이러한 플루오라이드 화합물들은 고체 상태의 화합물이기 때문에 전지의 내압을 상승시키지 않는다. 또한 CaF2는 전기 전도도가 우수하여 전극 물질로도 사용되고 있는 물질이므로 전지 성능을 향상시키는 역할을 한다.The metal oxide, one of CaO, MgO, SrO or BaO of which is to produce a fluoride compound such as by reaction with HF respectively, CaF 2, MgF 2, SrF 2, or BaF 2. Since these fluoride compounds are solid compounds, they do not increase the internal pressure of the battery. In addition, CaF 2 is excellent in electrical conductivity and is also used as an electrode material, thereby improving battery performance.

본 발명의 리튬 이차 전지용 극판은 다음과 같은 단계로 제조된다. 본 발명의 리튬 복합 금속 산화물에 Ca, Mg, Sr, Ba 또는 이들의 혼합물의 산화물로 이루어진 군으로부터 선택된 금속 산화물을 첨가한 다음 바인더와 도전제를 첨가한 혼합물을 용매에 용해시켜 슬러리를 제조한다. 제조된 슬러리를 Al-foil 위에 부은 다음 닥터 블레이드를 이용하여 얇은 극판으로 제조하고, 건조후 압연하여 극판을 제조한다.The electrode plate for a lithium secondary battery of the present invention is manufactured in the following steps. A slurry is prepared by adding a metal oxide selected from the group consisting of Ca, Mg, Sr, Ba, or a mixture of oxides to the lithium composite metal oxide of the present invention, and then dissolving the mixture in which a binder and a conductive agent are added to a solvent. The prepared slurry is poured on Al-foil, and then manufactured into a thin electrode plate using a doctor blade, and dried and rolled to prepare a electrode plate.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 및 비교예Examples and Comparative Examples

실시예 1Example 1

94 중량부의 LiCoO2분말 (Nippon Chemical사의 C-10)에 바인더로서 3 중량부의 폴리비닐리덴 플루오라이드(PVDF)와 3 중량부의 도전제(Super P)를 혼합시킨 극판 성분에 0.1 중량%의 CaO 분말(-325mesh)을 첨가하였다. 상기 혼합물을 N-메틸 피롤리돈(NMP) 용매에 넣어 극판 제조용 슬러리를 제조하였다. 제조된 슬러리를 Al-foil 위에 부은 후 닥터 블레이드를 이용하여 얇은 극판으로 제조하였다. 상기 극판을 120℃ 오븐에서 3시간 건조한 후 압연하여 전지 제조용 극판을 제작하였다. 이 극판과 리튬 금속을 대극으로 하고 비수 전해액으로 1M의 LiPF6와 에틸렌 카보네이트/디메틸 카보네이트(EC/DMC)(1/1)를 포함하는 코인(coin) 타입의 반전지(half cell)를 구성하였다.0.1 wt% of CaO powder in a cathode plate component in which 3 parts by weight of polyvinylidene fluoride (PVDF) and 3 parts by weight of a conductive agent (Super P) are mixed with 94 parts by weight of LiCoO 2 powder (C-10 from Nippon Chemical) (-325mesh) was added. The mixture was placed in an N-methyl pyrrolidone (NMP) solvent to prepare a slurry for preparing a plate. The prepared slurry was poured onto Al-foil and then manufactured into a thin electrode plate using a doctor blade. The pole plate was dried in an oven at 120 ° C. for 3 hours, and then rolled to prepare a pole plate for battery manufacture. A coin-type half cell comprising the electrode plate and lithium metal as a counter electrode and containing 1 M LiPF 6 and ethylene carbonate / dimethyl carbonate (EC / DMC) (1/1) as a nonaqueous electrolyte was constructed. .

실시예 2Example 2

CaO 분말을 0.5 중량%의 양으로 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1, except that CaO powder was added in an amount of 0.5% by weight.

실시예 3Example 3

양극 활물질로서 LiMn2O4분말 (Nikki 사의 LM4)을 사용하고 CaO 분말을 1.0 중량%의 양으로 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1 except that LiMn 2 O 4 powder (LM4 manufactured by Nikki) was used as the positive electrode active material and CaO powder was added in an amount of 1.0% by weight.

실시예 4Example 4

양극 활물질로서 LiMn2O4분말 (Nikki 사의 LM4)을 사용하고 CaO 분말을 0.5 중량%의 양으로 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1 except that LiMn 2 O 4 powder (LM4 manufactured by Nikki) was used as the positive electrode active material and CaO powder was added in an amount of 0.5% by weight.

실시예 5Example 5

양극 활물질로서 LiNi0.9Co0.1Sr0.00202분말 (Honjo사 제품)을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1, except that LiNi 0.9 Co 0.1 Sr 0.002 0 2 powder (manufactured by Honjo) was used as the cathode active material.

실시예 6Example 6

양극 활물질로서 LiNi0.9Co0.1Sr0.00202분말 (Honjo 사 제품)을 사용하고 CaO 분말을 0.5 중량%의 양으로 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1, except that LiNi 0.9 Co 0.1 Sr 0.002 0 2 powder (manufactured by Honjo) was used as the cathode active material and CaO powder was added in an amount of 0.5% by weight.

비교예 1Comparative Example 1

금속 산화물인 CaO를 첨가하지 않은 것을 제외하고 상기 실시예 1과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 1, except that CaO, which is a metal oxide, was not added.

비교예 2Comparative Example 2

금속 산화물인 CaO를 첨가하지 않은 것을 제외하고 상기 실시예 3과 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 3, except that CaO, which is a metal oxide, was not added.

비교예 3Comparative Example 3

금속 산화물인 CaO를 첨가하지 않은 것을 제외하고 상기 실시예 5와 동일한 방법으로 반전지를 제조하였다.A half cell was prepared in the same manner as in Example 5 except that CaO, which is a metal oxide, was not added.

극판의 열적 안정성 평가Thermal Stability Evaluation of the Plate

실시예 4와 비교예 2의 전지 제조용 극판을 4.3V에서 충전시킨 다음 동일한 양의 EC/DMC 전해액에 함침시켜 DSC를 이용하여 열적 안정성을 평가하였다. 이 결과를 도 1에 나타내었다. 실시예 4의 극판의 경우 2단계 반응이 진행되었음을 확인할 수 있는데 먼저 극판에 존재하는 CaO와 전해액의 반응에 의하여 흡열 피크가 나타나고, 연이어서 CaO와 반응에 참여하지 못한 잔류하고 있는 전해액과 충전된 양극 활물질인 LiMn2O4과의 반응에 의한 발열 피크를 보였다. 이에 비하여 비교예 2의 극판의 경우에는 충전된 양극으로부터 발생하는 O2와 전해액과의 반응에 의하여 250℃ 부근에서 발열 피크만이 관찰되었다.The battery plates of Example 4 and Comparative Example 2 were charged at 4.3 V, and then impregnated in the same amount of EC / DMC electrolyte to evaluate thermal stability using DSC. This result is shown in FIG. In the case of the electrode plate of Example 4, it can be confirmed that a two-step reaction was performed. First, an endothermic peak appears due to the reaction between the CaO and the electrolyte solution in the electrode plate, and the remaining electrolyte solution and the charged electrode which did not participate in the reaction with CaO successively. The exothermic peak by reaction with LiMn 2 O 4 which is an active material was shown. In contrast, in the case of the electrode plate of Comparative Example 2, only an exothermic peak was observed at around 250 ° C. due to the reaction between O 2 generated from the charged anode and the electrolyte solution.

전지의 수명특성 조사Investigation of battery life characteristics

상기 실시예 4의 코인 타입의 반전지에 대하여 4.3∼3.0V의 범위에서 0.1C, 0.2C, 0.5C 및 1C으로 전류량을 변화시키면서 상온(20℃) 및 고온(50℃)에서 100회 충·방전을 실시하여 방전용량을 측정하여 도 2에 나타내었다. The coin-type half cell of Example 4 was charged and discharged 100 times at room temperature (20 ° C) and high temperature (50 ° C) while varying the amount of current at 0.1C, 0.2C, 0.5C and 1C in the range of 4.3 to 3.0V. It was shown in Figure 2 by measuring the discharge capacity.

고온 수명특성 조사Investigation of high temperature life characteristics

상기 실시예 3과 4 및 비교예 2의 코인 타입의 반전지에 대하여 4.3∼3.0V의 범위에서 0.1C, 0.2C, 0.5C 및 1C으로 전류량을 변화시키면서 50℃에서 100회 충·방전을 실시하여 방전용량을 측정하여 도 3에 나타내었다.The coin-type half-cells of Examples 3 and 4 and Comparative Example 2 were charged and discharged 100 times at 50 ° C. while varying the amount of current at 0.1 C, 0.2 C, 0.5 C and 1 C in the range of 4.3 to 3.0 V. Discharge capacity was measured and shown in FIG. 3.

본 발명에 따라 제조된 리튬 복합 금속 산화물에 금속 산화물 분말을 첨가하여 제조된 양극 극판은 열적안정성이 우수하다. 상기 양극 극판을 적용한 리튬 이차 전지는 수명 특성과 전지의 안정성이 향상된다. 특히 Mn-계 양극 활물질에 금속 산화물 분말이 첨가된 극판을 리튬 이차 전지에 적용할 경우 우수한 고온 수명 특성을 보인다.The positive electrode plate prepared by adding a metal oxide powder to a lithium composite metal oxide prepared according to the present invention has excellent thermal stability. The lithium secondary battery to which the positive electrode plate is applied has improved life characteristics and stability of the battery. In particular, when the electrode plate to which the metal oxide powder is added to the Mn-based cathode active material is applied to a lithium secondary battery, it exhibits excellent high temperature life characteristics.

Claims (4)

양극 활물질인 리튬 복합 금속 산화물에 금속 산화물 분말을 첨가하여 제조된 리튬 이차 전지용 양극 극판.The positive electrode plate for lithium secondary batteries manufactured by adding metal oxide powder to the lithium composite metal oxide which is a positive electrode active material. 제1항에 있어서, 상기 리튬 복합 금속 산화물은 LixCoO2, LixCoS2, LixCoF2, LixMnO2, LixMnF2, LixMnS2, LixMn2O4, LixMn2S4, LixMn2F4, LixCoO2-yFy, LixCoO2-ySy, LixCo1-yMyO2, LixCo1-yMyS2, LixCo1-yMyF2, LixCo1-yMyP2, LixCo1-yMyO2-zSz, LixCo1-yMyO2-zFz, LixNi1-y-zCoyMzO2, LixNi1-y-zCoyMzS2, 및 LixNi1-y-zCoyMzF2(상기식에서 M은 Mg, Al, Cr, Fe, Mn, Sr, La, 및 Ce 으로 이루어진 군으로부터 선택된 어느 하나의 금속이고 x, y 및 z는 0보다 크고 1보다 작은 범위의 수임)로 이루어진 군으로부터 선택된 리튬 이차 전지용 양극 극판.The method of claim 1, wherein the lithium composite metal oxide is Li x CoO 2 , Li x CoS 2 , Li x CoF 2 , Li x MnO 2 , Li x MnF 2 , Li x MnS 2 , Li x Mn 2 O 4 , Li x Mn 2 S 4 , Li x Mn 2 F 4 , Li x CoO 2-y F y , Li x CoO 2-y S y , Li x Co 1-y M y O 2 , Li x Co 1-y M y S 2 , Li x Co 1-y M y F 2 , Li x Co 1-y M y P 2 , Li x Co 1-y M y O 2-z S z , Li x Co 1-y M y O 2 -z F z , Li x Ni 1-yz Co y M z O 2 , Li x Ni 1-yz Co y M z S 2 , and Li x Ni 1-yz Co y M z F 2 (wherein M is Mg , Al, Cr, Fe, Mn, Sr, La, and Ce, any one metal selected from the group consisting of x, y and z is a number in the range of greater than 0 and less than 1) Pole plate. 제1항에 있어서, 상기 금속 산화물 분말은 Ca, Mg, Sr, Ba 및 이들의 혼합물의 산화물로 이루어진 군으로부터 선택된 리튬 이차 전지용 양극 극판.The positive electrode plate of claim 1, wherein the metal oxide powder is selected from the group consisting of Ca, Mg, Sr, Ba, and oxides thereof. 제3항에 있어서, 상기 금속 산화물 분말의 첨가량은 양극 활물질에 대하여 0.01∼10 중량%인 리튬 이차 전지용 양극 극판.The positive electrode plate for lithium secondary battery according to claim 3, wherein the amount of the metal oxide powder added is 0.01 to 10 wt% based on the positive electrode active material.
KR1019990042394A 1999-05-25 1999-10-01 A positive electrode plate for a lithium secondary battery KR100346546B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019990042394A KR100346546B1 (en) 1999-10-01 1999-10-01 A positive electrode plate for a lithium secondary battery
CNB001063987A CN1181580C (en) 1999-05-25 2000-05-25 Positive active material composition of chargeable lithium cell and prepn. of plus plate using the composition thereof
JP2000155373A JP4101435B2 (en) 1999-05-25 2000-05-25 Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same
US09/579,576 US7608365B1 (en) 1999-05-25 2000-05-25 Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US11/510,301 US7655358B2 (en) 1999-05-25 2006-08-25 Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990042394A KR100346546B1 (en) 1999-10-01 1999-10-01 A positive electrode plate for a lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20010035700A true KR20010035700A (en) 2001-05-07
KR100346546B1 KR100346546B1 (en) 2002-07-26

Family

ID=19613681

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990042394A KR100346546B1 (en) 1999-05-25 1999-10-01 A positive electrode plate for a lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100346546B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916088B1 (en) * 2001-11-30 2009-09-08 산요덴키가부시키가이샤 Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
US9252429B2 (en) 2004-02-07 2016-02-02 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916088B1 (en) * 2001-11-30 2009-09-08 산요덴키가부시키가이샤 Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
US9252429B2 (en) 2004-02-07 2016-02-02 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same

Also Published As

Publication number Publication date
KR100346546B1 (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
US7314682B2 (en) Lithium metal oxide electrodes for lithium batteries
TWI437753B (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP3142522B2 (en) Lithium secondary battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
EP2500967B1 (en) Anode active material for a rechargeable lithium battery
JP4106741B2 (en) Nonaqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
KR20030063930A (en) Positive active material slurry composition for rechargeable lithium battery
KR100743982B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
KR100307165B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
KR100454238B1 (en) composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell
KR20010063879A (en) Mn-based positive active material for Li-ion battery and method of preparing the same
KR100570417B1 (en) Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added
KR100346546B1 (en) A positive electrode plate for a lithium secondary battery
KR100794168B1 (en) Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP3497420B2 (en) Lithium secondary battery
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
KR100312689B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
KR20020065191A (en) Positive active material for lithium secondary battery and method for preparing the same
JPH1064542A (en) Nonaqueous electrolyte secondary battery
KR100424638B1 (en) Method of preparing positive active material for rechargeable lithium batteries and preparing the same
KR20040086813A (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
US20030235758A1 (en) Positive electrode material of Li-ion secondary battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170622

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 18