KR20010017493A - A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating - Google Patents

A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating Download PDF

Info

Publication number
KR20010017493A
KR20010017493A KR1019990033038A KR19990033038A KR20010017493A KR 20010017493 A KR20010017493 A KR 20010017493A KR 1019990033038 A KR1019990033038 A KR 1019990033038A KR 19990033038 A KR19990033038 A KR 19990033038A KR 20010017493 A KR20010017493 A KR 20010017493A
Authority
KR
South Korea
Prior art keywords
steel
cold rolled
enamel
direct
rolling
Prior art date
Application number
KR1019990033038A
Other languages
Korean (ko)
Other versions
KR100402001B1 (en
Inventor
윤정봉
손원호
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0033038A priority Critical patent/KR100402001B1/en
Publication of KR20010017493A publication Critical patent/KR20010017493A/en
Application granted granted Critical
Publication of KR100402001B1 publication Critical patent/KR100402001B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%

Abstract

PURPOSE: A method for manufacturing cold rolled steel plate for direct porcelain enamel is provided to improve quality of porcelain enamel and greatly reduce cost for treating porcelain enamel by controlling a content of steel and a reduction ratio. CONSTITUTION: A method for manufacturing cold rolled steel plate for direct porcelain enamel comprises the processes of cold rolling the wound steel with a reduction ratio of 50 to 85 and continuously annealing the cold rolled steel after winding the steel at a normal temperature after hot rolling aluminum killed steel with a final temperature of hot rolling being Ar3 transformation point or more, wherein the aluminum killed steel comprises 0.005 wt.% or less of C, 0.05 to 0.3 wt.% of Mn, 0.005 to 0.02 wt.% of S, 0.02 wt.% or less of P, 0.01 to 0.1 wt.% of Al, 0.002 to 0.01 wt.% of B, 0.004 to 0.015 wt.% of N, and a balance of Fe and inevitable impurities, wherein 0.0005<N-1.3B<0.01.

Description

직접 법랑용 냉연강판의 제조방법{A METHOD FOR MANUFACTURING THE COLD ROLLED SHEET STEEL FOR THE DIRECT-ON ENAMEL COATING}Method of manufacturing cold rolled steel sheet for direct enamel {A METHOD FOR MANUFACTURING THE COLD ROLLED SHEET STEEL FOR THE DIRECT-ON ENAMEL COATING}

본 발명은 가스레인지, 전자레인지 및 가전제품의 부품 등에 적용되는 법랑처리제품의 소지강판을 제조하는 방법에 관한 것으로, 보다 상세하게는 법랑 밀착성이 우수하고 법랑제품의 치명적인 결함인 피쉬스케일 (Fishscale)결함을 전혀 발생하지 않는 직접 법랑용 냉연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a steel sheet of enamel processing products applied to gas stoves, microwave ovens, and parts of home appliances, and more particularly, fish scale, which is excellent in enamel adhesion and a fatal defect of enamel products. The present invention relates to a method for producing an enameled cold rolled steel sheet which does not generate any defects.

통상 법랑용 강판제조시 법랑처리중 고용된 수소는 법랑처리후 냉각시 강판과 법랑층 계면에 집적되어 고압을 형성하는데, 법랑층이 수소의 고압을 견디지 못하면 파괴되고 수소는 밖으로 방출되게 된다. 이 때, 법랑층이 파괴된 모양이 생선비늘과 비슷하여 피쉬스케일이라 하는데, 이 결함은 외관상 보기가 흉할 뿐 아니라, 대기와 직접 접촉되어 부식이 진행되므로 법랑제품에서는 가장 치명적인 결함중 하나이다.Normally, hydrogen produced during enamel processing during enamel processing is accumulated at the interface between the steel sheet and the enamel layer during enameling and cooling to form high pressure. If the enamel layer does not withstand the high pressure of hydrogen, it is destroyed and hydrogen is released. At this time, the shape of the enamel layer is destroyed, so it is called fish scale. This defect is one of the most fatal defects in enamel products because not only the appearance is unsightly, but also the corrosion is in direct contact with the atmosphere.

종래강은, 법랑제품에서 가장 치명적인 결함으로 알려진 피쉬스케일 (Fishscale)결함을 방지하기 위해서, 강중에 석출물 또는 산화물 생성원소를 첨가하여 내피쉬스케일성을 확보하였다. 연속주조방식으로 생산되는 종래강은 주로 2회 법랑-2회 소성처리를 하였기 때문에 법랑층의 두께가 두꺼워 작은 충격에도 쉽게 깨지고, 소성처리 회수가 많아 법랑처리원가가 높은 단점이 있었다. 종래강 중 탈탄소둔강의 경우는, 직접 법랑처리가 가능하나 조괴법으로 생산하고 탈탄소둔처리를 해야 하므로 생산원가가 높은 단점이 있었다.In order to prevent fish scale defects, which are known to be the most fatal defects in enamel products, conventional steel is added to precipitates or oxide generating elements in the steel to secure fish scale resistance. The conventional steel produced by the continuous casting method is mainly subjected to two enamel firings twice, so that the thickness of the enamel layer is thick and easily broken even by a small impact. In the case of the decarbonized annealing steel of the conventional steel, it is possible to directly enamel treatment, but the production cost is high because the decarbonization process must be produced and decarbonized annealing.

이에, 본 발명은 강성분을 제어하고 압하율을 적절히 제어함으로써, 법랑제품으로 적용시 법랑품질이 향상되고 법랑처리원가가 크게 절감될 뿐 아니라, 연속주조방법을 적용하면서도 직접 법랑처리가 가능한 냉연강판을 얻을 수 있는 방법을 제공하는데, 그 목적이 있다.Thus, the present invention by controlling the steel components and appropriately control the reduction ratio, when applied as an enamel product, not only enamel quality is improved and enamel processing cost is greatly reduced, but also cold rolled steel sheet which can be directly enameled while applying continuous casting method To provide a way to obtain, the purpose is.

상기 목적을 달성하기 위한 본 발명은, 중량로 C:0.005이하, Mn:0.05~0.3, S:0.005~0.02, P:0.02이하, Al:0.01~0.1, B:0.002~0.01, N:0.004~0.015를 함유하고, 0.0005< N-1.3B< 0.01인 조건을 만족하고, 잔부Fe 및 불가피한 불순물을 포함하는 알루미늄킬드강을 열간압연시 열간마무리 압연온도를 Ar₃변태점이상으로 하고, 통상의 온도에서 권취한 다음, 압하율을 50~85로 하여 냉연압연한 후 연속소둔하는 것을 특징으로 하는 직접 법랑용 냉연강판의 제조방법에 관한 것이다.The present invention for achieving the above object, C: 0.005 or less by weight, Mn: 0.05 to 0.3, S: 0.005 to 0.02, P: 0.02 or less, Al: 0.01 to 0.1, B: 0.002 to 0.01, N: 0.004 to The aluminum finished steel containing 0.015 and satisfying the conditions of 0.0005 <N-1.3B <0.01 and containing residual Fe and unavoidable impurities at the time of hot rolling at the hot finish rolling temperature above Ar3 transformation point and wound at a normal temperature Then, the present invention relates to a method for manufacturing a cold rolled steel sheet for direct enamel, characterized by continuous rolling after cold rolling at a reduction ratio of 50 to 85.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기 탄소는 0.005이하로 첨가시키는데, 그 함량이 0.005를 초과하는 경우, 강 중 고용탄소의 양이 많아 소둔시 집합조직의 발달을 방해하거나 결정립이 미세하여 성형성이 크게 낮아지므로, 탄소의 상한값을 0.005로 제한하는 것이다.The carbon is added below 0.005. If the content exceeds 0.005, the amount of solid solution carbon in the steel is too large to hinder the development of the aggregate structure during annealing or the crystal grains are fine so that the formability is greatly lowered. The limit is 0.005.

상기 망간은 강내에 고용된 황을 망간황화물로 석출하여 고용된 황에 의한 적열취성(hot shortness)을 방지하기 위해 첨가하는데, 망간황화물은 냉간압연중 연신되어 보론질화물을 제외한 다른 산화물 또는 석출물보다 수소흡장능이 우수하므로, 강중에 잔존하는 황을 충분히 석출하기 위하여 최소 첨가량을 0.05로 하는 것이다. 상기 망간이 고용상태로 존재할 경우, 강도를 증가하는 효과는 있지만 강화효과는 크지 않으면서 성형성을 해치므로, 상한값을 0.3로 제한하는 것이다.The manganese is added to prevent the hot shortness of the solid solution of sulfur dissolved in the river as a manganese sulfide, sulfur dissolved in the solution, the manganese sulfide is stretched during cold rolling to hydrogen than other oxides or precipitates except boron nitride Since the absorbing ability is excellent, the minimum amount is added to 0.05 in order to sufficiently precipitate the sulfur remaining in the steel. When the manganese is in a solid solution state, it has an effect of increasing the strength, but the reinforcing effect is not so large that the moldability is impaired, so the upper limit is limited to 0.3.

상기 황은 일반적으로 강의 물성을 저해하는 원소로 알려져 있으나, 본 발명강에서는, 망간황화물을 석출하여 내피쉬스케일성을 향상하기 위해 첨가한다. 상기 황의 함량이 0.005미만이면 망간황화물 석출량이 너무 적어 효과가 거의 없고, 0.02를 초과하면 망간황화물의 석출량이 너무 많아 성형성을 저하하므로, 본 발명에서는 상기 황의 함량을 0.005~0.02로 제한하는 것이다.Sulfur is generally known as an element that inhibits the properties of steel, but in the steel of the present invention, manganese sulfide is precipitated and added to improve fish scale resistance. If the sulfur content is less than 0.005, the amount of precipitation of manganese sulfide is too small to have little effect. If the amount of sulfur exceeds 0.02, the amount of precipitation of manganese sulfide is too high, so that moldability is lowered.

상기 인은 냉연강판에서는 성형성을 크게 저하하지 않으면서 강도를 효과적으로 상승시키는 원소로 알려져 있지만, 첨가량이 0.02를 초과하는 경우에는 강도의 증가와 함께 성형성을 저하시키므로 상한값을 0.02로 하였다.Phosphorus is known as an element that effectively increases the strength without significantly reducing the formability in cold rolled steel sheets. However, when the added amount exceeds 0.02, the upper limit is set to 0.02 because the formability decreases with the increase in strength.

상기 알루미늄은 탈산제로 첨가되지만, 본 발명에서는 강중에 잔존하는 고용질소를 석출하여 성형성을 향상하기 위해 첨가한다. 본 발명에서 제시한 성분에서 고용상태로 잔존하는 0.0005질소를 석출하는데는 약 0.001의 알루미늄이 필요하지만, 고용질소를 완전히 석출하기 위해 충분한 양의 알루미늄을 첨가할 필요가 있으므로 하한값을 0.01로 하는 것이다. 상기 알루미늄을 과량 첨가할 경우, 성형성이 저하할 뿐만아니라 보론질화물의 석출효과를 감소할 수 있으므로 상한값을 0.1로 제한하는 것이다.The aluminum is added as a deoxidizer, but in the present invention, it is added in order to precipitate the solid solution nitrogen remaining in the steel to improve moldability. Although about 0.001 aluminum is required to precipitate 0.0005 nitrogen remaining in the solid solution state in the components shown in the present invention, the lower limit is set to 0.01 because a sufficient amount of aluminum needs to be added to completely precipitate the solid solution nitrogen. When the aluminum is added in excess, the upper limit is limited to 0.1 because not only the moldability is lowered but also the deposition effect of boron nitride can be reduced.

상기 보론은 상기 질소와 결합해 보론질화물을 생성하여 내피쉬스케일성을 향상한다. 보론첨가량이 0.002를 초과한 경우 피쉬스케일 결함이 발생하지 않기 때문에, 하한값을 0.002로 제한하였으며, 보론의 첨가량이 많을수록 내피쉬스케일성은 향상하지만 적정 이상의 내피쉬스케일성을 확보할 필요는 없으며, 너무 많은 양의 보론을 첨가할 경우 성형성이 크게 저하하므로 상한값은 0.01로 제한하는 것이다.The boron combines with the nitrogen to form boron nitride to improve fish scale resistance. Since the fish scale defect does not occur when the amount of boron added exceeds 0.002, the lower limit is limited to 0.002. The more the amount of boron added, the more the fish scale is improved, but it is not necessary to secure the fish scale more than appropriate. If the amount of boron is added, the moldability is greatly reduced, so the upper limit is limited to 0.01.

상기 질소는 보론과 결합해 보론질화물로 석출되어 내피쉬스케일성을 향상하기 때문에 첨가된다. 보론첨가량의 최소값인 0.002를 석출하는데 필요한 질소량은 0.0026정도이지만, 고용상태로 잔존하는 보론을 완전히 석출하기 위해서는 최소한 0.004이상의 질소가 필요하므로 하한값을 0.004로 하는 것이다. 또한, 상기 질소의 첨가량이 증가할수록 석출되는 석출물의 양이 많아져 내피쉬스케일성은 향상하지만, 너무 많을 경우 성형성을 저하하므로 상한값은 0.015로 제한하는 것이다.The nitrogen is added because it binds to boron and precipitates as boron nitride to improve fish scale resistance. The amount of nitrogen required to precipitate 0.002, the minimum value of boron addition amount, is about 0.0026. However, at least 0.004 or more nitrogen is required to completely deposit boron remaining in solid solution, so the lower limit is 0.004. In addition, as the amount of added nitrogen increases, the amount of precipitates to be precipitated increases, and the fish scale resistance is improved. However, when the amount of nitrogen is increased, the upper limit is limited to 0.015 because the moldability decreases.

상기 보론 또는 상기 질소의 첨가량을 0.0005< N-1.3B< 0.01로 제어하여 N-1.3B의 하한값을 0.0005로 한 이유는 강중에 고용 보론이 잔존할 경우 내피쉬스케일성의 향상효율이 낮을 뿐만 아니라 성형성이 급격히 저하하기 때문이고, N-1.3B의 상한 값을 0.01로 한 이유는 강중에 보론과 결합하고 남은 질소의 양이 너무 많을 경우 알루미늄질화물이 과다 석출하거나 고용상태로 잔존하는 질소의 양이 많아서 성형성이 저하하기 때문이다.The lower limit of N-1.3B was set to 0.0005 by controlling the addition amount of boron or nitrogen to 0.0005 <N-1.3B <0.01, in order to reduce the efficiency of improving the fish scale resistance when solid boron remained in steel. The reason is that the upper limit of N-1.3B is 0.01, and the reason why the upper limit of N-1.3B is 0.01 is that if the amount of nitrogen remaining in combination with boron in the steel is too high, the amount of nitrogen that is excessively precipitated or remains in solid solution It is because a lot of moldability falls.

상기한 바와 같은 강성분의 알루미늄킬드강을 연속주조하여 주편으로 얻을 수 있으며, 얻어진 주편을 이용하여 다음과 같은 방법으로 냉연강판을 얻는다.The aluminum-kilted steel of the steel component as described above can be continuously cast to obtain a cast steel, and a cold rolled steel sheet is obtained by the following method using the obtained cast steel.

본 발명에 있어 열간압연은 통상의 방법으로 행할 수 있으며, 열간압연시 마무리 압연온도를 Ar₃변태점 이상에서 행한다. 이는, 변태온도 미만의 온도에서 열간압연할 경우 압연립의 생성으로 가공성이 저하되기 때문이다.In the present invention, hot rolling can be performed by a conventional method, and the finish rolling temperature at the time of hot rolling is performed at an Ar 3 transformation point or more. This is because, when hot rolling at a temperature below the transformation temperature, workability is reduced due to the formation of rolled grains.

또한, 본 발명에서는 통상의 온도에서 권취를 행하고, 냉간압연을 행한다.Moreover, in this invention, it winds up at normal temperature and cold rolling is performed.

상기 냉간압연시 압하율을 50~85로 제어하는데 그 이유는 다음과 같다. 상기 열간압연시 생성되어 성장한 석출물이 냉간압연시 파괴 또는 연신되는 과정에서 미세한 틈이 생기고 연속소둔후 대부분 그대로 잔존하여 중요한 수소흡장원으로 작용하는데, 냉간압하율이 50미만이면 미세한 틈의 생성면적이 작아져 수소흡장능이 저하하므로 피쉬스케일 발생확율이 높아지기 때문에, 냉간압하율의 하한값은 50로 하는 것이다. 또한, 냉간압하율이 85를 초과하게 되면, 미세한 틈이 너무 압착되어 피쉬스케일 발생확률이 높아진다.The cold rolling reduction rate is controlled to 50 to 85 because of the following reasons. In the process of forming or growing the precipitates during hot rolling during the cold rolling, the fine gaps are generated and remain as they are after the continuous annealing, which acts as an important hydrogen storage source. If the cold reduction rate is less than 50, the formation area of the fine gaps is Since the hydrogen storage ability decreases and the fish scale generation probability increases, the lower limit of the cold reduction rate is 50. In addition, if the cold reduction rate exceeds 85, the minute gap is too squeezed to increase the probability of occurrence of fish scale.

또한, 본 발명에서는 연속소둔을 행하는데, 통상의 방법을 적용할 수 있다.Moreover, in this invention, although continuous annealing is carried out, a conventional method can be applied.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기, 표1과 같은 성분을 갖는 강을 연속주조에 의해 주편으로 제조한 다음, 1250℃가열로에 1시간 유지후 열간압연을 실시하였다. 이 때 열간마무리 압연온도는 900℃, 권취온도는 650℃로 하였으며, 최종두께를 3.2mm로 하였다. 열간압연된 시편은 산세처리하여 표면의 산화피막을 제거한 후 하기 표1과 같은 압하율(70)로 냉간압연을 실시하였다.Next, steel having the components shown in Table 1 was produced into cast steel by continuous casting, and then hot rolling was performed after holding for 1 hour in a 1250 ° C. heating furnace. At this time, the hot finish rolling temperature was 900 ℃, the coiling temperature was 650 ℃, the final thickness was 3.2mm. The hot rolled specimen was pickled to remove the oxide film on the surface, and then cold rolled at a reduction ratio 70 as shown in Table 1 below.

시료번호Sample Number 화학성분(중량)Chemical composition (weight) N-1.3BN-1.3B 냉간압하율()Cold Rolling Rate () CC MnMn PP SS sol.Alsol.Al BB NN 발명강1Inventive Steel 1 0.00150.0015 0.220.22 0.0130.013 0.0110.011 0.0350.035 0.00530.0053 0.00770.0077 0.00080.0008 7070 발명강2Inventive Steel 2 0.00180.0018 0.250.25 0.0110.011 0.0090.009 0.0380.038 0.00630.0063 0.01160.0116 0.00340.0034 발명강3Invention Steel 3 0.00230.0023 0.210.21 0.0110.011 0.0120.012 0.0410.041 0.00490.0049 0.00830.0083 0.00200.0020 발명강4Inventive Steel 4 0.00240.0024 0.180.18 0.0120.012 0.0090.009 0.0420.042 0.00440.0044 0.00730.0073 0.00160.0016 비교강5Comparative Steel 5 0.00220.0022 0.190.19 0.0100.010 0.0120.012 0.0390.039 0.00130.0013 0.01090.0109 0.00920.0092 비교강6Comparative Steel 6 0.00250.0025 0.250.25 0.0110.011 0.0080.008 0.0380.038 0.01300.0130 0.01200.0120 -0.0049-0.0049 비교강7Comparative Steel 7 0.00290.0029 0.210.21 0.0100.010 0.0100.010 0.0350.035 0.00660.0066 0.00230.0023 -0.0063-0.0063 비교강8Comparative Steel 8 0.00220.0022 0.200.20 0.0120.012 0.0110.011 0.0360.036 0.00560.0056 0.00540.0054 -0.0019-0.0019 비교강9Comparative Steel 9 0.0240.024 0.250.25 0.0110.011 0.0090.009 0.0420.042 0.00600.0060 0.00920.0092 -0.0014-0.0014

냉간압연이 완료된 시편은 법랑특성을 조사하기 위한 법랑처리시편 및 기계적 특성을 조사하기 위한 인장시편으로 가공한 후 연속소둔을 실시하였다. 법랑처리시편은 70mm×150mm의 크기로 절단하였으며, 인장시편은 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 연속소둔은 소둔온도 830℃로 하여 소둔을 실시하였다. 소둔이 완료된 인장시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율 및 r값을 측정하였으며, 그 측정결과를 하기 표2에 나타내었다. 법랑처리용 시편은 완전히 탈지한 후 70℃, 10황산용액에서 5분간 침적하는 산처리를 실시하여, 온수로 세척한 후 80℃로 유지한 7황산니켈용액에 5분간 침적하는 니켈처리를 하였다. 니켈처리가 끝난 시편은 온수로 세척한 후, 85℃로 유지한 3.6g/ |탄산소다 + 1.2g|/ 붕사수용액에 5분간 침적하는 중화처리하였다. 전처리가 완료된 시편에 상유유약(Cover Coat)을 도포한 후 200℃에서 10분간 건조하여 수분을 완전히 제거하였다. 건조가 끝난 시편은 800℃에서 7분간 유지하여 소성처리를 실시한 후 공냉하는 법랑처리를 하였다. 이 때 소성로의 분위기 조건은 노점온도 30℃로 피쉬스케일결함이 가장 발생하기 쉬운 가혹한 조건으로 하였다. 법랑처리가 끝난 시편은 200℃ 유지로에 20시간동안 유지하여 피쉬스케일 가속처리후 발생한 피쉬스케일 결함수를 육안으로 조사하였으며, 그 결과를 하기 표2에 나타내었다. 법랑밀착성 평가는 밀착시험기기(ASTM C313-78규격에 의한 시험기기)를 이용하여 밀착지수를 측정하였다.Cold rolled specimens were processed into enameled specimens for enameling and tensile specimens for mechanical properties, followed by continuous annealing. The enameled specimens were cut to 70mm × 150mm, and the tensile specimens were processed into standard specimens according to ASTM E-8 standard. Continuous annealing was performed at an annealing temperature of 830 ° C. After the annealing was completed, the tensile tester (INSTRON, Model 6025) was used to measure yield strength, tensile strength, elongation, and r, and the results are shown in Table 2 below. The enameled specimens were completely degreased and then subjected to acid treatment, which was then deposited for 5 minutes in a 10-sulfuric acid solution at 70 ° C., washed with hot water, and then nickel-treated for 5 minutes in a nickel sulfate solution maintained at 80 ° C. The nickel-treated specimens were washed with warm water and neutralized by immersion in 3.6 g / | soda carbonate + 1.2 g | / borax solution maintained at 85 ° C. for 5 minutes. After coating the coated glaze (Cover Coat) was completed for 10 minutes at 200 ℃ to completely remove the moisture. The dried specimens were kept at 800 ° C. for 7 minutes, and then subjected to calcination, followed by enameling of air cooling. At this time, the atmospheric conditions of the kiln were the harsh conditions where fish scale defects were most likely to occur at a dew point temperature of 30 ° C. The enameled specimens were kept at 200 ° C. for 20 hours to visually examine the number of fish scale defects that occurred after the fish scale acceleration treatment, and the results are shown in Table 2 below. In the enamel adhesion evaluation, the adhesion index was measured using an adhesion test device (test device according to ASTM C313-78 standard).

상기 표2는 본 발명강 및 비교강의 법랑특성 및 기계적 성질을 조사한 결과를 나타낸 표이다. 본 발명의 범위에 속하는 발명강(1~4)는 가혹한 조건에서도 피쉬스케일이 발생하지 않아 내피쉬스케일성을 확보하였으며, 법랑밀착지수가 95이상으로 높은 밀착성을 나타내었다. 한편, 성형성 지수인 r값이 1.75이상으로 높은 성형성을 나타내므로, 깊은 오므림 가공이 가능하였다. 반면, 비교강(5)는 보론의 함량이 0.0013로 본 발명 범위보다 낮아 피쉬스케일 결함이 발생하였다. 비교강(6)은 보론의 첨가량이 본 발명 범위보다 높을 뿐만아니라 N-1.3B값이 -0.0049로 본 발명의 범위에서 크게 벗어나 r값이 크게 낮았다. 비교강(7)은 질소의 함량이 본 발명 범위보다 낮을 뿐만아니라 N-1.3B값도 -0.0063으로 매우 낮아 피쉬스케일 결함이 발생하였으며 r값도 1.38로 매우 낮았다. 비교강(8)은 피쉬스케일 결함발생은 없었지만 N-1.3B이 -0.0018로 낮아 r값이 1.43으로 매우 낮았다. 비교강(9)는 피쉬스케일 결함발생은 없었지만 탄소의 함량이 본 발명 범위에서 벗어나 표면결함이 발생하였으며 r값 1.21로 매우 낮았다.Table 2 is a table showing the results of the enamel and mechanical properties of the present invention steel and comparative steel. Inventive steels (1 to 4) belonging to the scope of the present invention did not generate fish scale even under severe conditions, thereby securing fish scale resistance, and exhibited high adhesion to the enamel adhesion index of 95 or more. On the other hand, since r value which is a moldability index is 1.75 or more, and shows high moldability, deep recessing was possible. On the other hand, the comparative steel (5) has a boron content of 0.0013 lower than the scope of the present invention, a fish scale defect occurred. Comparative steel (6) was not only higher than the amount of boron added in the range of the present invention, but also significantly lower than the value of N-1.3B in the range of the present invention at -0.0049. Comparative steel (7) was not only lower than the nitrogen content of the present invention range, but also very low N-1.3B value of -0.0063, fish scale defects occurred, r value was also very low as 1.38. Comparative steel (8) had no fish scale defect but N-1.3B was -0.0018, so the r value was very low, 1.43. Comparative steel (9) had no fish-scale defects, but the carbon content is out of the scope of the present invention and surface defects occurred, the r value was 1.21 was very low.

상술한 바와 같은 본 발명에 의하면, 강성분을 제어하고 압하율을 제어함으로써, 법랑제품의 치명적인 결함인 피쉬스케일을 전혀 발생하지 않는 고품질 법랑제품을 얻을 수 있고, 또한 법랑처리원가를 크게 절감할 수 있다.According to the present invention as described above, by controlling the steel components and control the rolling reduction rate, it is possible to obtain a high-quality enamel product that does not generate fish scale, which is a fatal defect of the enamel product, and also greatly reduce the enamel processing cost. have.

Claims (1)

중량로 C:0.005이하, Mn:0.05~0.3, S:0.005~0.02, P:0.02이하, Al:0.01~0.1, B:0.002~0.01, N:0.004~0.015를 함유하고, 0.0005<N-1.3B< 0.01인 조건을 만족하고, 잔부Fe 및 불가피한 불순물을 포함하는 알루미늄킬드강을 열간압연시 열간마무리 압연온도를 Ar₃변태점이상으로 하고, 통상의 온도에서 권취한 다음, 압하율을 50~85로 하여 냉연압연한 후 연속소둔하는 것을 특징으로 하는 직접 법랑용 냉연강판의 제조방법.C: 0.005 or less by weight, Mn: 0.05 to 0.3, S: 0.005 to 0.02, P: 0.02 or less, Al: 0.01 to 0.1, B: 0.002 to 0.01, N: 0.004 to 0.015, and 0.0005 <N-1.3 When hot-rolled aluminum-kilted steel containing a balance of Fe and unavoidable impurities, satisfying the condition of B <0.01, the hot rolling rolling temperature was set at an Ar3 transformation point and wound up at a normal temperature, and then the reduction ratio was 50 to 85. Method of producing a cold rolled steel sheet for direct enamel, characterized in that by continuous rolling after cold rolling.
KR10-1999-0033038A 1999-08-12 1999-08-12 A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating KR100402001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0033038A KR100402001B1 (en) 1999-08-12 1999-08-12 A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0033038A KR100402001B1 (en) 1999-08-12 1999-08-12 A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating

Publications (2)

Publication Number Publication Date
KR20010017493A true KR20010017493A (en) 2001-03-05
KR100402001B1 KR100402001B1 (en) 2003-10-17

Family

ID=19606891

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0033038A KR100402001B1 (en) 1999-08-12 1999-08-12 A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating

Country Status (1)

Country Link
KR (1) KR100402001B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048027A (en) * 2002-12-02 2004-06-07 주식회사 포스코 A method for manufacturing enameling steel plate with excellent formability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472018A (en) * 1990-07-10 1992-03-06 Sumitomo Metal Ind Ltd Production of cold rolled steel sheet for porcelain enameling excellent in workability
JPH07122099B2 (en) * 1991-01-10 1995-12-25 川崎製鉄株式会社 Method for producing steel sheet for enameled, which has excellent adhesion, bubble resistance and black spot defect resistance
JPH0559444A (en) * 1991-06-18 1993-03-09 Sumitomo Metal Ind Ltd Production of cold rolled steel sheet for porcelain enameling

Also Published As

Publication number Publication date
KR100402001B1 (en) 2003-10-17

Similar Documents

Publication Publication Date Title
KR20100021274A (en) Enameling steel sheet and manufacturing method thereof
KR970011629B1 (en) Method of manufacturing cold rolling sheet
KR100360095B1 (en) Manufacturing method of high adhesion enameled steel sheet with excellent formability
KR100345703B1 (en) A method of manufacturing high strength steel with good for mability for enamel application
KR100470056B1 (en) A cold rolled steel sheet for direct-on enamel applications with excellent adherence
KR100402001B1 (en) A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating
JP2002012943A (en) Thin steel sheet for press molding and its production method
CN114015925A (en) Method for producing anti-scale explosion cold-rolled enamel steel
JP3384265B2 (en) Manufacturing method of cold rolled steel sheet for enamel with excellent nail jump resistance
KR100828926B1 (en) Surface-treated steel sheet for automobile use, having high-strengh, high-formability, and manufacturing process thereof
KR960006036B1 (en) Making method of enamel cold rolling steel sheet
JPH02156043A (en) Al killed steel sheet for porcelain enameling and its production
KR100347570B1 (en) Method for manufacturing steel sheet for enameled ironware with excellent formability and surface property
KR101294477B1 (en) Method of manufacturing steel sheet for enamel with excellent dip-drawing property and adhesion
KR20100134547A (en) Enameling steel sheet and manufacturing method thereof
KR100402009B1 (en) A method for manufacturing a hot rolled sheet steel for the both side enamel coating
KR100514788B1 (en) A method for manufacturing cold rolled steel sheets having superior surface quality
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability
JPH08104965A (en) Production of hot-dip zinc aluminum alloy plated steel sheet for fire-resistant structure excellent in corrosion resistance
KR910003878B1 (en) Making process for black plate
KR101142500B1 (en) Enameling steel sheet with bubble defect free and manufacturing method thereof
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JPH0356656A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent aging resistance
KR101294575B1 (en) Method of manufacturing cold-rolled steel sheet for enamel with excellent fish scale resistance
JP2571585B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee