KR20010017376A - Nonocomposite rare earth magnet and it manufacturing method - Google Patents

Nonocomposite rare earth magnet and it manufacturing method Download PDF

Info

Publication number
KR20010017376A
KR20010017376A KR1019990032859A KR19990032859A KR20010017376A KR 20010017376 A KR20010017376 A KR 20010017376A KR 1019990032859 A KR1019990032859 A KR 1019990032859A KR 19990032859 A KR19990032859 A KR 19990032859A KR 20010017376 A KR20010017376 A KR 20010017376A
Authority
KR
South Korea
Prior art keywords
magnetic
pos
rare earth
post
permanent magnet
Prior art date
Application number
KR1019990032859A
Other languages
Korean (ko)
Other versions
KR100340592B1 (en
Inventor
양충진
박언병
김상면
Original Assignee
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원 filed Critical 신현준
Priority to KR1019990032859A priority Critical patent/KR100340592B1/en
Publication of KR20010017376A publication Critical patent/KR20010017376A/en
Application granted granted Critical
Publication of KR100340592B1 publication Critical patent/KR100340592B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: A rare earth based nanocomposite permanent magnet and its fabrication method are provided to give excellent magnetic properties by the magnetic coupling between the magnetically hard and soft phases. CONSTITUTION: The rare earth based nanocomposite permanent magnet has a structure consisting of a magnetically hard phase and a magnetically soft phase partly replaced with cobalt each finely dispersed in the other in a fineness. The rare earth based nanocomposite permanent magnet is Nd<SB POS="POST">3+y</SB>Fe<SB POS="POST">78.5-x</SB>Co<SB POS="POST">x</SB>Hf<SB POS="POST">0.5</SB>Ga<SB POS="POST">0.5</SB>B<SB POS="POST">18.5-y</SB> with the range of 3 ≤ x ≤ 7, 0 ≤ y ≤ 3 and with a particle diameter from 10 nm to 30 nm. To prepare the amorphous magnet, materials are melted and high-speed solidification of the alloy melt is performed with the range of 10<SP POS="POST">5</SP> and 10<SP POS="POST">6</SP> °C/sec. Heat treatment of the alloy to effect microcrystallization for a finely dispersed structure is performed about 610 and 740 °C during 5 or 20 minutes.

Description

초미세립 희토류 영구자석 조성물 및 이를 이용한 영구자석 제조방법{NONOCOMPOSITE RARE EARTH MAGNET AND IT MANUFACTURING METHOD}Ultrafine rare earth permanent magnet composition and manufacturing method of permanent magnet using same {NONOCOMPOSITE RARE EARTH MAGNET AND IT MANUFACTURING METHOD}

본 발명은 강자성체 Nd2Fe14B와 약자성체 Fe3B를 공존복합화하여 자기특성이 우수한 Nd-Fe-B계 초미세립 희토류 영구자석 조성물 및 이를 이용한 영구자석 제조방법에 관한 것이며, 보다 상세하게는, 코발트를 3~7원자첨가하여 강자성체 Nd2Fe14B와 약자성체 Fe3B 결정을 미세화시킴과 아울러 입도분포를 고르게 함으로써 두 자성체 결정입간의 상호교환작용의 향상을 통하여 우수한 자기특성을 갖는 Nd-Fe-B계 초미세립 희토류 영구자석 조성물 및 이를 이용한 영구자석 제조방법에 관한 것이다.The present invention relates to an Nd-Fe-B-based ultrafine grain rare earth permanent magnet composition having excellent magnetic properties by co-complexing ferromagnetic Nd 2 Fe 14 B and weak magnetic Fe 3 B, and more particularly, to a method of preparing permanent magnets using the same. , By adding 3 ~ 7 atoms of cobalt to refine the ferromagnetic Nd 2 Fe 14 B and weak magnetic Fe 3 B crystals, and evenly distribute the particle size to improve the interaction between the grains of N 2 magnetic particles. -Fe-B-based ultrafine grain rare earth permanent magnet composition and a permanent magnet manufacturing method using the same.

영구자석재료는 주로 구동모터의 회전자(rotor) 역활을 하는 부품의 소재로 사용되고 있으며, 전통적으론 경자석 페라이트를 주원료로 하는 바륨페라이트 (Ba-ferrite) 또는 스트론튬 페라이트(Sr-ferrite) 영구자석을 들 수 있다. 이들은 가격이 싼반면에 자기특성 또한 무난하여 각종 범용모터, 소형 가전모터 및 자동차 모터등에 광범위하게 사용되고 있다. 그러나, 최근의 전기,전자제품을 보면 크기는 작아지면서 반면에 모터의 전기적 특성은 더욱 향상된 제품을 요하는 경박단소화의 추세를 보이고 있다. 따라서 회전자의 소재가되는 영구자석의 자기특성이 훨씬 우수한 재료가 요구되고 있다.Permanent magnet material is mainly used as a component of the rotor of the drive motor. Traditionally, bar-ferrite or strontium ferrite permanent magnets, which are mainly made of hard magnet ferrite, are used. Can be mentioned. They are inexpensive but have good magnetic properties and are widely used in various general-purpose motors, small household motors, and automobile motors. However, in recent years, the electric and electronic products have become smaller and smaller, while the electric characteristics of the motor require more improved products. Therefore, there is a demand for a material having much superior magnetic properties of a permanent magnet that is a material of a rotor.

이러한 전통적인 영구자석의 한계를 극복하기 위한 재료로서 잔류자화값 (remanent magnetization)과 고유보자력(intrinsic coercivity)이 동시에 향상된 희토류계 영구자석재료가 개발되었다. 즉, Nd2Fe14B 화합물 자성체가 그것인데, 이는 철(Fe)을 주 원소로 하고 희토류원소인 니오디늄(Nd)을 부원소로 하는 금속간화합물 자성체이다. 이러한 자성체는 결정구조의 원천적인 특징때문에 이방화에너지 (anisotropic energy)가 클 뿐만아니라 그 결정체의 자화력 또한 커서 새로운 자성체로서 그 용도가 급격히 확장되고 있으며, 최근의 고성능 소형모터에는 이러한 희토류 자석이 채용되는 경향이 두드러지고 있다. 그러나, 이러한 희토류자석은 자기적 특성이 우수한 반면에 가격이 비싸 종전의 경자성 페라이트를 완전히 대체할 수 는 없는 실정이다.As a material for overcoming the limitations of the traditional permanent magnets, a rare earth permanent magnet material having improved both residual magnetization and intrinsic coercivity has been developed. In other words, the magnetic substance of the Nd 2 Fe 14 B compound is an intermetallic compound magnetic substance having iron (Fe) as a main element and a rare earth element niobium (Nd) as a secondary element. Due to the original characteristics of the crystal structure, the magnetic material has a large anisotropic energy as well as its large magnetization power, and its use is rapidly expanding as a new magnetic material. In recent years, such rare earth magnets are employed in high performance small motors. There is a tendency to be. However, these rare earth magnets have excellent magnetic properties but are expensive and cannot completely replace the conventional hard magnetic ferrites.

상기의 문제를 해결하기 위한 기술의 일예로서 본 발명자의 대한민국 특허출원(출원번호 95-66229)이 있다. 이에 의하면 강자성체 Nd2Fe14B와 약자성체 Fe3B 및 α-Fe가 혼합상을 이루는 코발트가 3 원자이하로 첨가된 Nd-Fe-B계 영구자석재료 및 그 제조방법이 제시되어 있다. 상기의 자성재료에서는 그 재료내에 존재하는 두 자성상의 결정입도를 나노미터(nano meter)범위로 조절하고 두 자성체 결정입간의 입경계(grain boundary)를 제거된다. 따라서 두 경계면간의 물리적으로 자기모멘트(magnetic moment)가 상호교환작용(exchange coupling)을 하여 보자력과 자화력이 그 강자성체와 약자성체의 특성에 따라 향상되어 우수한 자기특성을 가질뿐만아니라 고가 희토류원소인 Nd의 사용량을 줄일 수 있으므로 재료의 가격을 낮출 수 있다는 장점이 있다. 그러나 상기 자성재료에 있어서는 각 자성체의 결정입도를 20nm미만으로 제어하기 힘들뿐만아니라 각 자성체의 입도분포의 균일을 도모할 수 없어 우수한 자기특성을 안정적으로 얻을 수 없다는 문제가 있다.As an example of the technology for solving the above problems there is a Korean patent application (Application No. 95-66229) of the present inventors. As a result, a Nd-Fe-B based permanent magnet material having cobalt added to a ferromagnetic Nd 2 Fe 14 B, a weak magnetic Fe 3 B, and α-Fe of 3 atoms or less and a method of manufacturing the same are proposed. In the magnetic material described above, the grain size of the two magnetic phases present in the material is controlled in the nanometer range and the grain boundary between the two magnetic grains is removed. Therefore, the magnetic moment between the two interfaces physically exchanges, and the coercive force and the magnetization force are improved according to the characteristics of the ferromagnetic and weak magnetic bodies, so that they have not only excellent magnetic properties but also Nd, a high rare earth element. Since the amount of used can be reduced, the price of the material can be lowered. However, in the magnetic material, it is difficult to control the grain size of each magnetic body to be less than 20 nm, and there is a problem in that excellent magnetic properties cannot be stably obtained because uniformity of the particle size distribution of each magnetic body cannot be achieved.

강자성체(Nd2Fe14B)과 약자성체(Fe3B 및α-Fe )가 혼합공존하는 미세희토류 자성재료의 또다른 제조방법으로 열처리중 비정질자성체 길이방향에 수평되게 자장을 인가함으로써 각 자성체의 결정입도를 감소시켜 자기특성의 향상을 도모한 본 발명자의 대한민국 특허출원(출원번호 95-68462)이 있다. 그러나, 이 방법으로도 가 자성체의 입도분포의 균일을 도모할 수 없을 뿐만아니라 새로이 자장을 인가해야한다는 점에서 불편이 따른다.Another method for manufacturing a micro-rare earth magnetic material in which ferromagnetic materials (Nd 2 Fe 14 B) and weak magnetic materials (Fe 3 B and α-Fe) coexist and is applied. There is a Korean patent application (Application No. 95-68462) of the present inventor to reduce the grain size and improve the magnetic properties. However, this method is inconvenient in that it is not possible to achieve uniformity of the particle size distribution of the magnetic substance and also to apply a new magnetic field.

본 발명자는 상기의 문제점을 해결하기 위하여 수많은 연구결과, 코발트를 적정함량 첨가할 경우 상기 강자성체와 약자성체의 결정상의 결정화온도제어가 가능하고, 이에따라 각 자성체의 입도미세화를 꾀함과 아울러 입도분포의 균일이 가능함을 발견하고 본 발명을 완성하기에 이르렀다.In order to solve the above problems, the present inventors have found that, when an appropriate amount of cobalt is added, the crystallization temperature of the ferromagnetic and weak magnetic phases can be controlled. The discovery of this possibility has led to the completion of the present invention.

따라서 본 발명은 코발트를 3~7원자로 함유시켜 강자성체(Nd2Fe14B)과 약자성체(Fe3B)의 입도미세화 및 입도분포균일을 도모하여 상기 자성체 결정입간의 상호교환작용을 활성화시킴으로써 잔류자화력 및 보자력이 우수한 Nd-Fe-B계 초미세립 희토류 영구자석 조성물을 제공함에 그 목적이 있다.Therefore, in the present invention, cobalt is contained in 3 to 7 atoms, and thus the fine particles and particle size distribution of the ferromagnetic substance (Nd 2 Fe 14 B) and the weak magnetic substance (Fe 3 B) are promoted to activate the interaction between the grains of the magnetic substance. An object of the present invention is to provide an Nd-Fe-B-based ultrafine grain rare earth permanent magnet composition having excellent magnetization and coercivity.

또한, 본 발명은, 상기 영구자석 조성물을 이용하여 소정의 온도로 열처리 함으로써 각 자성체의 입도미세화 및 입도분포균일을 도모하여 잔류자화력 및 보자력이 우수한 Nd-Fe-B계 초미세립 희토류 영구자석 제조방법을 제공함에 그 목적이 있다.In addition, the present invention, by the heat treatment at a predetermined temperature using the permanent magnet composition to achieve a fine particle size and particle size distribution of each magnetic material to produce an Nd-Fe-B-based ultrafine grain rare earth permanent magnet excellent in residual magnetization and coercivity The purpose is to provide a method.

상기의 목적을 달성하기 위한 본 발명은, Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y의 조성을 갖고, 강자성상인 Nd2Fe14B와 약자성상인 Fe3B가 공존 복합화되어 있으며 각 자성상의 결정입도가 10~30nm범위에 있는 Nd-Fe-B계 초미세립 희토류 영구자석 조성물을 제공한다. 단, 상기 식에서 x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다.In order to achieve the above object, the present invention has a composition of Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y , wherein the ferromagnetic phase Nd 2 Fe 14 B and the weak magnetic phase Fe 3 B coexist and complex It provides a Nd-Fe-B-based ultrafine grain rare earth permanent magnet composition having a crystal grain size of 10 ~ 30nm in each magnetic phase. Where x and y are in the range of 3 ≦ x ≦ 7 and 0 ≦ y ≦ 3.

또한, 본 발명은 Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y(단, x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다) 조성을 갖는 모재를 용해후 105~106℃/sec의 냉각속도로 급냉시켜 비정질 자성체를 형성하고, 상기 자성체를 610~740℃의 온도범위에서 5~20분간 열처리함을 포함하는 Nd-Fe-B계 초미세립 희토류 영구자석 제조방법을 제공한다.In addition, the present invention dissolves the base material having a composition of Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y (where x and y are in the range of 3≤x≤7, 0≤y≤3) After quenching at a cooling rate of 10 5 ~ 10 6 ℃ / sec to form an amorphous magnetic material, Nd-Fe-B-based ultrafine grain rare earth including heat treatment for 5 to 20 minutes in the temperature range of 610 ~ 740 ℃ It provides a permanent magnet manufacturing method.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 의한 영구자석 조성물은 낮은 함량의 Nd를 사용하여 강자성을 나타내는 Nd2Fe14B상 뿐만아니라 자화력이 최고값을 나타내는 철(Fe)을 근간으로 하는 약자성상인 α-Fe 및 Fe3B를 동시에 공존하게 함으로써 교환상호작용(exchange coupling)을 발생시켜 잔류자화력을 극대화하고 고유보자력(intrinsic coercivity)를 사용가능한 범위에 이르도록 하는 것이므로, 우수한 자기특성의 확보를 위하여 상기 자성체 결정입간의 교환상호작용의 극대화가 필요하다.Permanent magnet composition according to the present invention using a low content of Nd as a ferromagnetic Nd 2 Fe 14 B phase, as well as a weak magnetic phase α-Fe and Fe 3 based on iron (Fe) showing the highest magnetizing power By coexisting B at the same time to generate the exchange coupling (exchange coupling) to maximize the residual magnetization force and intrinsic coercivity to reach the usable range, so as to secure excellent magnetic properties Maximization of exchange interactions is necessary.

이러한 교환상호작용의 극대화는 Nd-Fe-B계 자성재료의 용융체를 급속냉각기술을 이용하여 비정질 자성체로 만든후 열처리를 통해 Nd2Fe14B 및 Fe3B 결정상을 형성할때 각 결정상의 결정화온도(crystallization temperature)를 조절하고, 이에따라 각 상의 결정입성장속도를 제어함으로써 가능해 진다. 즉, 열처리단계에서 각 자성체의 결정입 성장속도를 적절히 조절함으로써 각 자성체의 입도미세화 및 입도분포의 균일을 도모하여 교환상호작용의 극대화를 꾀할 수 있는 것이다.The maximization of this exchange interaction is achieved by crystallizing each crystal phase when Nd 2 Fe 14 B and Fe 3 B crystal phases are formed by heat treatment of a melt of Nd-Fe-B-based magnetic material into an amorphous magnetic material using a rapid cooling technique. This is made possible by controlling the crystallization temperature and controlling the grain growth rate of each phase accordingly. In other words, by appropriately controlling the grain growth rate of each magnetic material in the heat treatment step, it is possible to maximize the exchange interaction by minimizing the particle size and uniformity of the particle size distribution of each magnetic material.

그러나, 종래의 급냉응고에 의해 얻어진 비정질 자성체를 600~750℃의 범위에서 열처리를 실시하면 585~615℃의 온도범위에서 약자성체인 Fe3B 결정입이 생성되고, 강자성체인 Nd2Fe14B 결정입은 630~655℃ 에서 생성되어 시간의 경과에 따라 성장되므로 각 자성체의 입도미세화와 입도분포 균일을 동시에 확보하기는 곤란하다.However, when the amorphous magnetic body obtained by conventional quenching and solidification is heat-treated in the range of 600 to 750 ° C, a weak magnetic Fe 3 B grain is formed in the temperature range of 585 to 615 ° C, and Nd 2 Fe 14 B is a ferromagnetic material. Since the grains are produced at 630 ~ 655 ℃ and grow over time, it is difficult to simultaneously secure the particle size distribution and uniform particle size distribution of each magnetic material.

이와 관련하여, 본 발명자는 상기 희토류계 자성재료에 코발트를 3 원자이상 첨가함으로써 상기 각 자성체의 결정화온도의 제어가 가능함을 발견하고 본 발명을 착상하게 되었다. 상세하게 설명하면, 첨가되는 Co의 함량에 따라 각 자성체의 결정화온도가 다르게 나타나는데, 그 첨가량이 많을수록 약자성체인 Fe3B 결정입 생성온도(결정화온도)는 585→610℃로 상향조절되고 강자성체인 Nd2Fe14B 결정입의 생성온도는 655→630℃로 하향조절된다. 따라서, Co를 3원자이상 첨가한 경우 상기 비정질 자성체의 열처리동안 약자성체인 Fe3B의 결정입 성장을 되도록 억제하면서 강자성체인 Nd2Fe14B의 생성을 도모할 수 있어 각 상의 결정입도미세화뿐만아니라 입도분포의 균일을 꾀할 수 있으므로 각 상의 평균입도분포가 좁아져 Fe3B 및 Nd2Fe14B 결정입간에 발생하는 상호교환작용효과의 극대화가 가능한 것이다.In this regard, the inventors of the present invention have found that the addition of three atoms or more of cobalt to the rare earth-based magnetic material makes it possible to control the crystallization temperature of each of the magnetic bodies, and came up with the present invention. In detail, the crystallization temperature of each magnetic material is different depending on the amount of Co added. The more the amount is added, the higher the Fe 3 B grain formation temperature (crystallization temperature) is adjusted to 585 → 610 ° C. and the ferromagnetic material is The formation temperature of Nd 2 Fe 14 B grains is controlled down to 655 → 630 ° C. Therefore, when more than 3 atoms of Co are added, the ferromagnetic Nd 2 Fe 14 B can be produced while suppressing the grain growth of the weak magnetic Fe 3 B during the heat treatment of the amorphous magnetic material, thereby minimizing the grain size of each phase. However, since the particle size distribution can be uniform, the average particle size distribution of each phase can be narrowed, thereby maximizing the interaction effect between the grains of Fe 3 B and Nd 2 Fe 14 B.

따라서 본 발명의 조성물은 Nd-Fe-B 계 Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y의 조성식을 가지며(상기 식에서 x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다), 이러한 새로은 조성물을 급속냉각하여 비정질 자성체로 형성시킨 다음 특정 조건하에 열처리하면, 그 결정입도가 10~30nm의 범위에 있으며 결정입도분포도 균일한 강자성체 Nd2Fe14B와 약자성체 Fe3B의 공존복합체가 형성되는 것이다.Therefore, the composition of the present invention has a compositional formula of Nd-Fe-B-based Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y (where x and y are reactors 3≤x≤7, 0≤ a y≤3 range), if the rapid cooling these compositions saeroeun heat treatment under the following specific conditions were formed of an amorphous magnetic material, that the crystal grain size in the range of 10 ~ 30nm grain size distribution uniform ferromagnetic Nd 2 Fe 14 B and stands for Co-complex of adult Fe 3 B is formed.

상술한 바와같이 본 발명은 각 자성체간의 상호교환작용의 극대화를 위하여 Co가 3원자이상 첨가될 것을 요하는데, 바람직하게는 3 ~7원자로 첨가하는 것이다. 이는 만일 Co가 3원자미만으로 첨가되면 결정입도 미세화효과가 없으며, 만일 7원자를 초과할 경우 재료의 가격이 상승하고 전반적인 제조공정이 어려워질뿐만아니라 열처리온도도 상승하기 때문이다.As described above, the present invention requires that at least 3 atoms of Co be added in order to maximize the interaction between the magnetic materials. Preferably, 3 to 7 atoms are added. This is because if Co is added less than 3 atoms, the grain size is not refined, and if it exceeds 7 atoms, the price of materials increases, the overall manufacturing process becomes difficult, and the heat treatment temperature also increases.

한편, 첨가되는 Co의 함량을 3~5원자를 제한함이 보다 바람직한데, 이는 첨가되는 Co의 양이 5원자를 초과할 경우 재료의 가격이 상승할 뿐만아니라 자기특성, 특히 잔류자속밀도가 떨어지는 경향이 있기 때문이다.On the other hand, it is more preferable to limit the amount of Co added to 3 to 5 atoms, which is not only increases the price of the material when the amount of Co added exceeds 5 atoms, but also lowers magnetic properties, particularly residual magnetic flux density. Because there is a tendency.

또한, 본 발명에 따라 Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y(단, x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다) 조성을 갖는 자성체에서 강자성체인 Nd2Fe14B와 약자성체인 Fe3B의 부피분율은 재료의 자기특성에 중요하다. 이러한 부피분율은 첨가되는 붕소(B)의 량과 급냉시의 냉각속도 및 이후의 열처리조건에 따라 결정되는데, 본 발명에선 강자성체인 Nd2Fe14B와 약자성체인 Fe3B의 부피분율은 Nd2Fe14B: Fe3B = (20~30체적) : (70~80체적)인 것이 바람직하다. 이는 만일 약자성체인 Fe3B의 체적분율이 상기를 초과하면 보자력의 급격한 감소가 야기되며, 강자성체인 Nd2Fe14B의 체적분율이 상기를 초과하면 보자력은 상승되나 잔류자속밀도의 급격한 감소를 초래할 수 있기 때문이다.In addition, according to the present invention, in a magnetic body having a composition of Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y (where x and y are in the range of 3≤x≤7, 0≤y≤3) The volume fraction of ferromagnetic Nd 2 Fe 14 B and weak magnetic Fe 3 B is important for the magnetic properties of the material. The volume fraction is determined by the amount of boron (B) added, the cooling rate during quenching and subsequent heat treatment conditions. In the present invention, the volume fraction of the ferromagnetic Nd 2 Fe 14 B and the weak magnetic Fe 3 B is Nd. 2 Fe 14 B: It is preferable that Fe 3 B = (20-30 volume): (70-80 volume). This is an emergency weak-magnetic material is Fe if the volume fraction of the 3 B exceeds the above is caused a sharp decrease in the coercive force, the ferromagnetic an Nd 2 Fe 14 B when the volume fraction exceeds the coercivity of the rise, but a sharp decrease in the residual magnetic flux density Because it can cause.

또한, 본 발명의 조성을 갖는 자성체에서 석출되는 강자성체와 약자성체 각각의 결정입의 크기는 10~30nm로 제한되나, 우수한 자기특성을 담보하기 위해선 그 크기를 10~20nm로 제한하고 그 입도분포가 균일함이 바람직하다. 본 발명의 자성체 조성물에 존재하는 강자성체와 약자성체의 결정입의 크기와 그 입도분포는 상기 자성체 결정입간의 상호교환작용에 영향을 미치는 자기특성에 중요한 인자이다. 이러한 각 자성체의 결정입도 및 그 입도분포는 일반적으로 열처리조건에 의해 영향을 받는다. 즉, 열처리 온도가 높거나 열처리 시간이 길어지면 각 자성상들의 결정입이 크게되고 잔류자속밀도의 감소를 초래할 수 있으므로 적절한 열처리 조건의 선택이 필요하다. 그러나, 상술한 바와 같이 강자성체 Nd2Fe14B 결정입의 생성온도와 약자성체 Fe3B 결정입의 생성온도가 다르므로 각 자성체의 결정입도의 미세화 및 입도분포의 균일을 동시에 확보하기 어려운 실정이다.In addition, the grain size of each of the ferromagnetic and weak magnetic particles precipitated in the magnetic body having the composition of the present invention is limited to 10 to 30 nm, but in order to ensure excellent magnetic properties, the size is limited to 10 to 20 nm and the particle size distribution is uniform. It is preferable to. The grain size and the particle size distribution of the ferromagnetic and weak magnetic bodies present in the magnetic composition of the present invention are important factors for the magnetic properties affecting the interaction between the magnetic grains. The crystal grain size and its particle size distribution of each magnetic body are generally affected by the heat treatment conditions. In other words, if the heat treatment temperature is high or the heat treatment time is long, the grains of the magnetic phases may be large and the residual magnetic flux density may be reduced. Therefore, an appropriate heat treatment condition should be selected. However, as described above, since the formation temperatures of the ferromagnetic Nd 2 Fe 14 B grains and the formation temperatures of the weak magnetic Fe 3 B grains are different, it is difficult to attain both the grain size of each magnetic body and the uniformity of the particle size distribution at the same time. .

따라서 본 발명에서는 각 자성체의 결정입의 생성온도를 조절할 수 있는 Co를 3~7원자첨가시키므로써 각 자성체의 결정입도의 미세화뿐만아니라 그 입도분포의 균일을 동시에 도모함에 그 특징이 있다.Therefore, in the present invention, by adding 3 to 7 atoms of Co, which can control the formation temperature of the grains of each magnetic body, the crystal grain size of each magnetic body is not only refined, but also the uniformity of the particle size distribution is characterized.

이하, 본 발명의 영구자석 제조방법을 상세히 설명한다.Hereinafter, the permanent magnet manufacturing method of the present invention will be described in detail.

먼저, Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y(단, x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다) 의 조성을 갖는 본 발명의 희토류 조성물을 유도용해(induction melting)와 플라즈마 아크용해방식등으로 용해하여 용탕을 만든 후 급속냉각장치에서 급냉시켜 리본 또는 분말형태의 급냉자성체 비정질재료를 제조한다.First, the rare earth composition of the present invention having a composition of Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y (where x and y are in the range of 3≤x≤7, 0≤y≤3) Is melted by induction melting, plasma arc melting, etc. to make a molten metal and then quenched in a rapid cooling apparatus to prepare a quenching magnetic material amorphous in the form of ribbon or powder.

상술한 바와같이, 급냉속도는 상기 자성체 조성물을 구성하는 각 자성체의 체적분율에 영향을 미친다. 즉, 냉각속도가 증가할수록 약자성체인 Fe3B 생성량이 과다하여 보자력의 급격한 감소를 초래하며, 반대의 경우 강 자성체인 Nd2Fe14B 생성량이 과다하여 잔류자속밀도의 급격한 감소를 초래한다. 따라서, 본 발명에선 그 냉각속도를 105~106℃/sec로 제한함이 바람직하다. 상기와 같이 급냉시켜 제조된 비정질 자성체는 진공분위기의 열처리로에서 열처리하여 최종 복합자성체 화합물을 얻을 수 있다.As described above, the rapid cooling rate affects the volume fraction of each magnetic body constituting the magnetic body composition. That is, with increasing cooling rate stands, and results in a magnetic material is Fe 3 B amount is excessive by an abrupt decrease in the coercive force, and to the contrary steel magnetic material Nd 2 Fe 14 B amount is excessive, resulting in a rapid decrease in the residual magnetic flux density. Therefore, in the present invention, the cooling rate is preferably limited to 10 5 ~ 10 6 ℃ / sec. The amorphous magnetic material prepared by quenching as described above may be heat-treated in a heat treatment furnace in a vacuum atmosphere to obtain a final composite magnetic compound.

열처리가 진행되면 상술한 바와 같이 585~615℃에서 약자성체인 Fe3B 결정입이 생성되며, 뒤이어 630~655℃ 범위에서 강자성체 Nd2Fe14B 결정입이 생성되기 시작한다. 그러나 각 자성체의 결정화온도를 제어할 수 있는 Co를 3~7원자첨가시키면 그 첨가되는 함량의 증가에 따라 상기 약자성체의 생성온도(결정화온도)는 높은 온도쪽으로 조절되며(585→610℃으로 상향), 상기 강자성체의 생성온도는 655→630℃로 하향조절될 수 있다. 이때 결정화온도의 정확한 수치는 제조조건과 제조설비등의 차이에 따라 변할 수 있다. 따라서 본 발명에선 Co룰 3~7원자첨가함으로서 열처리동안 약자성체인 Fe3B의 결정입 성장을 되도록 억제하면서 강자성체인 Nd2Fe14B의 생성을 도모할 수 있어 각 상의 결정입도미세화뿐만아니라 입도분포의 균일을 꾀할 수 있는 것이다.As the heat treatment proceeds, as described above, Fe 3 B grains, which are weak magnetic bodies, are produced at 585 to 615 ° C., and ferromagnetic Nd 2 Fe 14 B grains are then started to be formed in the range of 630 to 655 ° C. However, when Co is added to 3 to 7 atoms that can control the crystallization temperature of each magnetic material, the formation temperature (crystallization temperature) of the weak magnetic material is controlled toward a higher temperature as the amount of the added content increases (585 → 610 ° C). ), The production temperature of the ferromagnetic material can be adjusted down to 655 → 630 ℃. At this time, the exact value of the crystallization temperature may vary depending on the manufacturing conditions and manufacturing facilities. Therefore, in the present invention, by adding Co-rules 3 to 7 atoms, the ferromagnetic Nd 2 Fe 14 B can be produced while suppressing the grain growth of the weak magnetic material Fe 3 B during the heat treatment, thereby minimizing the grain size of each phase as well as the particle size. Uniform distribution can be achieved.

상기의 점을 고려하여 본 발명에선 그 열처리가 610~740℃의 온도에서 5~20분간 행하여 짐이 바람직한데, 이는 열처리 온도가 740℃를 초과하거나 열처리시간이 20분을 넘을 경우 결정입도의 성장으로 잔류자속밀도가 열화되며, 만일 열처리 온도가 610℃미만이거나 5분이하일 경우에는 비정질 자성체의 완전한 결정화가 일어나지 않아 초미세립 복합상 형성에 적절하지 않기 때문이다.Considering the above point, in the present invention, the heat treatment is preferably carried out for 5 to 20 minutes at a temperature of 610 ~ 740 ℃, which is the growth of grain size when the heat treatment temperature exceeds 740 ℃ or heat treatment time exceeds 20 minutes This is because the residual magnetic flux density deteriorates, and if the heat treatment temperature is less than 610 ° C. or less than 5 minutes, the complete crystallization of the amorphous magnetic material does not occur, which is not suitable for forming an ultrafine composite phase.

한편, 상호교환작용이 가장 원할히 발생하는 임계결정입도를 형성하기 위해선 660~690℃에서 5분간 열처리됨이 가장 바람직하다.On the other hand, it is most preferable that the heat treatment is performed for 5 minutes at 660 ~ 690 ℃ in order to form the critical grain size that the interaction occurs most smoothly.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

Nd4Fe76.5Hf0.5Ga0.5B18.5, Nd4Fe73.5Co3Hf0.5Ga0.5B18.5, Nd4Fe72.5Co4Hf0.5Ga0.5B18.5및 Nd4Fe72.5Co5Hf0.5Ga0.5B18.5조성의 자성체 화합물을 플라즈마 아크에 의해 용해한 후 균일 조성이 되도록 수차례 반복 재용해하였다. Nd 4 Fe 76.5 Hf 0.5 Ga 0.5 B 18.5, Nd 4 Fe 73.5 Co 3 Hf 0.5 Ga 0.5 B 18.5, Nd 4 Fe 72.5 Co 4 Hf 0.5 Ga 0.5 B 18.5 and Nd 4 Fe 72.5 magnetic material Co5Hf 0.5 Ga 0.5 B 18.5 Composition The compound was dissolved by plasma arc and then re-dissolved several times to obtain a uniform composition.

용해된 합금은 잉곳트를 만들어 유도용해로에서 재용해한 후 고속으로 회전하는 급냉회전체에 용사하여 급속냉각된 리본으로 비정질 자성체 리본으로 제작하였다. 이때 회전체표면의 회전속도는 24m/sec 였다.The molten alloy was ingot made, re-dissolved in an induction furnace, and then sprayed on a quench rotor rotating at high speed to produce an amorphous magnetic ribbon. At this time, the rotational speed of the surface of the rotating body was 24 m / sec.

상기와 같이 제조된 리본을 X-ray 회절시험으로 분석한 결과 전량 비정질의 조직이 생성되었음을 확인하였다. 또한, 상기의 리본을 열자기분석기(thermo-magnetic analyzer)을 통하여 Fe3B와 Nd2Fe14B상의 결정화온도를 측정하고, 아울러 Co함량의 변화에 따른 각 상의 결정화온도의 변화를 확인하여 하기 표 1에 나타내었다. 또한, 상기와 같이 제조된 비정질자성체 리본을 진공열처리로에서 열처리를 실시하였다. 이때 초기 진공도는 4×10-6Torr 이하로 하여 원하는 온도로 가열하였으며, 지정한 열처리온도는 680℃로 고정하고 열처리시간은 10분으로 하였다. 그리고 열처리된 자성체 리본을 뫼스바우어(Mossbauer spectroscopy) 분광분석을 통해 각각의 Fe3B와 Nd2Fe14B상의 부피분율을 파악하여 하기 표 1에 나타내었다.As a result of analyzing the ribbon prepared as described above by X-ray diffraction test, it was confirmed that the entire amount of amorphous tissue was produced. In addition, by measuring the crystallization temperature of the Fe 3 B and Nd 2 Fe 14 B phase through the thermo-magnetic analyzer (Thermo-magnetic analyzer), and the change of the crystallization temperature of each phase according to the change of Co content Table 1 shows. In addition, the amorphous magnetic ribbon prepared as described above was subjected to heat treatment in a vacuum heat treatment furnace. At this time, the initial vacuum was 4 × 10 -6 Torr or less and heated to the desired temperature, the specified heat treatment temperature was fixed at 680 ℃ and the heat treatment time was 10 minutes. And the volume fraction of the Fe 3 B and Nd 2 Fe 14 B phase through the Mossbauer spectroscopy spectroscopic analysis of the heat-treated magnetic ribbon is shown in Table 1 below.

Co 첨가에 따른 각 자성체의 결정화 온도의 변화 및 부피분율Changes in Crystallization Temperature and Volume Fraction of Magnetic Materials with Co Addition 합금조성Alloy composition 결정화온도(℃Crystallization Temperature (℃ 부피분율()Volume fraction () Fe3BFe 3 B Nd2Fe14BNd 2 Fe 14 B Fe3BFe 3 B Nd2Fe14BNd 2 Fe 14 B Nd4Fe76.5Hf0.5Ga0.5B18.5 Nd 4 Fe 76.5 Hf 0.5 Ga 0.5 B 18.5 598598 646646 7979 2121 Nd4Fe73.5Co3Hf0.5Ga0.5B18.5 Nd 4 Fe 73.5 Co 3 Hf 0.5 Ga 0.5 B 18.5 599599 641641 72.472.4 27.627.6 Nd4Fe72.5Co4Hf0.5Ga0.5B18.5 Nd 4 Fe 72.5 Co 4 Hf 0.5 Ga 0.5 B 18.5 603603 638638 7272 2828 Nd4Fe72.5Co5Hf0.5Ga0.5B18.5 Nd 4 Fe 72.5 Co5Hf 0.5 Ga 0.5 B 18.5 608608 635635 71.671.6 28.428.4

상기 표 1에 나타나 있는바와 같이 Co의 첨가량이 증가할 수록 강자성상 Nd2Fe14B 결정체의 결정화온도는 하향조절되고 약자성상 Fe3B 결정체의 결정화온도는 상향조절됨을 알 수 있다. 또한, Co 첨가에 따른 각 자성상(magnetic phase)의 부피분율 변화는 미약하게 측정되고 있으나, 그 범위를 볼때 크게 차이가 없음을 알 수 있다.As shown in Table 1, it can be seen that the crystallization temperature of the ferromagnetic phase Nd 2 Fe 14 B crystals is down-regulated and the crystallization temperature of the weak magnetic phase Fe 3 B crystals is up-regulated as the amount of Co is increased. In addition, although the volume fraction change of each magnetic phase according to the addition of Co is measured slightly, it can be seen that there is no significant difference in view of the range.

(실시예 2)(Example 2)

상기 실시예 1에서와 동일한 조성의 자성체 화합물을 동일한 방법으로 급속냉각시켜 비정질 자성체 리본을 제조하였다. 제조된 비정질 자성체 리본은 상기 실시예 1과 동일한 방법으로 진공 열처리로에서 열처리 하였다. 그러나, 열처리온도는 각기 다른 온도에서 실시하였으며, 열처리시간은 조성에 관계없이 동일하게 10분을 적용하였다. 그리고 상기와 같이 열처리된 열처리된 자성체 리본의 자기특성을 진동시편자력계(vibrating sample magnetometer)를 사용하여 측정하였으며, 각각의 조건의 시편을 3회 측정한 결과의 평균치를 하기 표 2에 나타내었다.The magnetic compound of the same composition as in Example 1 was rapidly cooled in the same manner to prepare an amorphous magnetic ribbon. The prepared amorphous magnetic ribbon was heat-treated in a vacuum heat treatment furnace in the same manner as in Example 1. However, the heat treatment temperature was performed at different temperatures, the heat treatment time was applied to 10 minutes the same regardless of the composition. And the magnetic properties of the heat-treated magnetic ribbon heat-treated as described above using a vibrating sample magnetometer (vibrating sample magnetometer) was measured, and the average value of the results of measuring the specimen three times of each condition is shown in Table 2 below.

상기 표 2에 나타난 바와같이, Co를 첨가함에 따라 일반적으로 자기특성이 개선됨을 알 수있다. 그러나 Co를 3원자이상 함유한 본 발명의 발명강의 경우가 Co를 3원자미만으로 첨가된 비교강의 경우에 비하여 동일한 열처리온도에서 더욱 우수한 자기특성을 나타냄을 알 수 있다. 특히 본 발명강에 있어서 그 열처리온도가 680℃일때 가장 우수한 자기특성을 나타내는데, 이는 이 온도부근에서 임계결정입도, 즉 상호교환작용이 가장 활발한 결정입도가 적절하게 형성에 따른 결과임을 알 수 있다.As shown in Table 2, it can be seen that the magnetic properties are generally improved by adding Co. However, it can be seen that the inventive steel containing more than 3 atoms of Co exhibits better magnetic properties at the same heat treatment temperature than that of comparative steel containing less than 3 atoms of Co. Particularly, in the inventive steel, when the heat treatment temperature is 680 ° C., it shows the best magnetic property, which indicates that the critical grain size, that is, the most active grain size in the vicinity of the temperature, is a result of proper formation.

따라서, 상술한 바와같이 본 발명은 Co의 첨가량을 3~7원자로 제어함으로써 강자성체와 약자성체의 결정입도 미세화뿐만아니라 입도분포의 균일을 꾀할 수 있으며, 이에따라 상기 자성체 결정입간의 상호교환작용이 활발해져서 자기특성이 우수한 Nd-Fe-B계 초미세입 희토류 자성체의 제조에 유용한 효과가 있음을 알 수 있다.Therefore, as described above, in the present invention, by controlling the amount of Co added to 3 to 7 atoms, not only the grain size of the ferromagnetic and weak magnetic particles can be refined, but also the uniformity of the particle size distribution can be achieved. It can be seen that there is a useful effect in the production of Nd-Fe-B-based ultrafine rare-earth magnetic material having excellent magnetic properties.

Claims (7)

Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y의 조성을 갖고, 강자성체인 Nd2Fe14B와 약자성상체 Fe3B가 공존 복합화되어 있으며 각 자성체의 결정입도가 10~30nm범위에 있는 Nd-Fe-B계 초미세립 희토류 영구자석 조성물Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y , ferromagnetic Nd 2 Fe 14 B and the weak magnetic phase Fe 3 B co-composite complex, the crystal grain size of each magnetic material 10 ~ 30nm Nd-Fe-B Ultrafine Grain Rare Earth Permanent Magnet Composition 단, 상기 식에서 x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다.Where x and y are in the range of 3 ≦ x ≦ 7 and 0 ≦ y ≦ 3. 제 1항에 있어서, 상기 조성식에서 x 는 3≤x≤5의 범위에 있음을 특징으로 하는 조성물The composition of claim 1, wherein x is in the range of 3 ≦ x ≦ 5. 제 1항 또는 2항에 있어서, 상기 자성체 Nd2Fe14B와 Fe3B 결정입의 크기가 각각 10~20nm임을 특징으로하는 조성물The composition according to claim 1 or 2, wherein the sizes of the magnetic bodies Nd 2 Fe 14 B and Fe 3 B grains are 10-20 nm, respectively. 제 3항에 있어서, 상기 Nd2Fe14B와 Fe3B는 Nd2Fe14B: Fe3B = (20~30체적) : (70~80체적)부피비율로 혼재되어 있음을 특징으로 하는 조성물The method of claim 3, wherein the Nd 2 Fe 14 B and Fe 3 B are mixed with Nd 2 Fe 14 B: Fe 3 B = (20 ~ 30 volume): (70 ~ 80 volume) volume ratio Composition Nd3+yFe78.5-xCoxHf0.5Ga0.5B18.5-y(단, x 및 y는 원자로 3≤x≤7, 0≤y≤3 범위이다) 조성을 갖는 모재를 용해후 105~106℃/sec의 냉각속도로 급냉시켜 비정질 자성체를 형성하고, 상기 자성체를 610~740℃의 온도범위에서 5~20분간 열처리함을 포함하는 Nd-Fe-B계 초미세립 희토류 영구자석 제조방법 Nd 3 + y Fe 78.5-x Co x Hf 0.5 Ga 0.5 B 18.5-y after dissolving the base material having the composition (where, x and y are atom 3≤x≤7, 0≤y≤3 range) 10 5-10 Method of producing an Nd-Fe-B-based ultrafine grain rare earth permanent magnet comprising quenching at a cooling rate of 6 ℃ / sec to form an amorphous magnetic material, and heat-treating the magnetic material at a temperature range of 610 ~ 740 ℃ for 5 to 20 minutes 제 5항에 있어서, 상기 조성식에서 x는 3≤x≤5 범위에 있음을 특징으로 하는 영구자석 제조방법The method of claim 5, wherein in the composition formula x is in the range 3≤x≤5 manufacturing method of a permanent magnet 제 5항 또한 6항에 있어서, 상기 비정질 자성체를 670~690℃의 온도에서 10분간 열처리함을 특징으로 하는 영구자석 제조방법The method of claim 5, wherein the amorphous magnetic material is heat-treated for 10 minutes at a temperature of 670 ~ 690 ℃, permanent magnet manufacturing method
KR1019990032859A 1999-08-11 1999-08-11 Nonocomposite rare earth magnet and it manufacturing method KR100340592B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990032859A KR100340592B1 (en) 1999-08-11 1999-08-11 Nonocomposite rare earth magnet and it manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990032859A KR100340592B1 (en) 1999-08-11 1999-08-11 Nonocomposite rare earth magnet and it manufacturing method

Publications (2)

Publication Number Publication Date
KR20010017376A true KR20010017376A (en) 2001-03-05
KR100340592B1 KR100340592B1 (en) 2002-06-15

Family

ID=19606775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990032859A KR100340592B1 (en) 1999-08-11 1999-08-11 Nonocomposite rare earth magnet and it manufacturing method

Country Status (1)

Country Link
KR (1) KR100340592B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472502A (en) * 1987-09-11 1989-03-17 Hitachi Metals Ltd Permanent magnet for accelerating particle beam
KR970008708B1 (en) * 1994-12-30 1997-05-28 김만제 Ferrite - rare earth compounds magnet and production thereof
JPH09275004A (en) * 1995-07-07 1997-10-21 Daido Steel Co Ltd Permanent magnet and its manufacture
JPH0945522A (en) * 1995-07-27 1997-02-14 Hitachi Metals Ltd Anisotropic rare-earth magnet and its manufacture

Also Published As

Publication number Publication date
KR100340592B1 (en) 2002-06-15

Similar Documents

Publication Publication Date Title
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP4596645B2 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
CN109930080B (en) Copper-free nanocrystalline magnetically soft alloy and preparation method thereof
Chang et al. The effects of La-substitution on the microstructure and magnetic properties of nanocomposite NdFeB melt spun ribbons
JPH11186012A (en) Rare-earth permanent magnet material and its manufacture
JPH118109A (en) Rare earth permanent magnet material and its manufacture
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JPS62177101A (en) Production of permanent magnet material
US4116726A (en) As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching
Jin et al. Microstructure and magnetic properties of (Pr, Tb) 2 (Fe, Nb, Zr) 14B/α-Fe nanocomposites
CN109087766B (en) Permanent magnet alloy and preparation method thereof
KR100340592B1 (en) Nonocomposite rare earth magnet and it manufacturing method
JP3777225B2 (en) Isotropic permanent magnet powder having high magnetic flux density and method for producing the same
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
CN112992456A (en) Mn-Bi-Sb based magnetic substance and method for producing same
Inoue et al. Hard magnetic properties of Fe-Nd-B alloys containing intergranular amorphous phase
CN116864253B (en) Nanocrystalline soft magnetic material and preparation method thereof
Jin et al. The influence of Tb substitution on the magnetic properties of nanocomposite Pr/sub 2/Fe/sub 14/B//spl alpha/-Fe magnets
CN113205939B (en) Zirconium-containing sintered neodymium-iron-boron magnet and preparation method thereof
US4969961A (en) Sm-Fe-V magnet alloy and method of making same
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
RU2815774C1 (en) SOFT MAGNETIC AMORPHOUS ALLOY BASED ON Fe-Co WITH HIGH SATURATION MAGNETISATION
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JPH0845718A (en) Magnetic material and its manufacture
JPS6373502A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080603

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee