KR20010016543A - On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters - Google Patents

On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters Download PDF

Info

Publication number
KR20010016543A
KR20010016543A KR1020000078838A KR20000078838A KR20010016543A KR 20010016543 A KR20010016543 A KR 20010016543A KR 1020000078838 A KR1020000078838 A KR 1020000078838A KR 20000078838 A KR20000078838 A KR 20000078838A KR 20010016543 A KR20010016543 A KR 20010016543A
Authority
KR
South Korea
Prior art keywords
quality
factors
analysis
line
indirect control
Prior art date
Application number
KR1020000078838A
Other languages
Korean (ko)
Inventor
민병현
이종열
Original Assignee
민병현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 민병현 filed Critical 민병현
Priority to KR1020000078838A priority Critical patent/KR20010016543A/en
Publication of KR20010016543A publication Critical patent/KR20010016543A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7613Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/7621Injection unit nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • B29C2945/76257Mould cavity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: An on-line quality monitoring method using an indirect control factor is provided to decide the quality of an injected product in a short time by composing a process analyzing and quality deciding system. CONSTITUTION: In on-line quality monitoring, weight, a nozzle pressure, and a cavity pressure are used as quality deciding factors. Process analysis is performed by using an experimentation planning method and a statistical analysis as a reactive surface analysis. According to the correlation between weight and the measured pressures and the contraction percentage of a specific portion, high correlation is checked. After obtaining the ranges of the indirect control factors, the result is compared to the on-line measured values. Therefore, the quality of a product is on-line decided in a short time.

Description

간접제어인자를 이용한 사출성형품 품질의 온라인 모니터링{On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters}Online Monitoring of Injection Molded Parts Using Indirect Control Parameters

사출공정은 저렴한 비용으로 다양하고 복잡한 플라스틱 성형품을 생산하는 것으로 잘 알려져 있으며 높은 정도의 품질을 얻기 위해서는 많은 공정변수들을 조정할 필요가 있다. 사출성형품의 품질에 영향을 주는 인자는 도면 1에서 설명된 바와 같이 사출기 성능, 재료 특성, 금형 설계 및 공정 조건 등 크게 4부분으로 구성되며 각 부분별 인자들을 모두 포함하면 20내지 30가지로 나열된다. 이들의 영향을 모두 고려하는데는 현실적으로 무리가 있어 지금까지의 문헌들에서 주요인자로 고려되는 제어인자에 대해 보다 체계적으로 그 영향을 분석할 필요가 있다.The injection process is well known for producing a variety of complex plastic moldings at low cost and many process parameters need to be adjusted to achieve high quality. Factors affecting the quality of the injection molded product are largely divided into 4 parts such as injection machine performance, material properties, mold design and process conditions as described in FIG. . It is difficult to consider all of these effects, so it is necessary to analyze the effects more systematically on the control factors considered as the main factors in the literature.

성형품의 품질을 정의하는데는 외관, 치수, 강도 등 여러 가지가 있으나 조립시 주요인자인 치수관리와 관련하여서는 성형품의 수축률이 중요하다. 수축률은 측정결과 동일조건하에서도 성형품의 부위별로 값의 차이가 커, 어떻게 규정해야 하는가는 주요한 문제가 된다.There are many ways to define the quality of molded products, such as appearance, dimensions, and strength, but the shrinkage rate of molded products is important for dimension control, which is a major factor in assembly. The shrinkage rate is a big difference in values for each part of the molded part even under the same conditions as a result of measurement.

종래 사출성형품의 품질 판정은 성형된 부품이 조립단계를 직접 거치면서 오프라인 상태에서 불량이 확인되어 불량품 판정의 비효율화로 재료 손실 및 생산성이 낮았다. 이러한 단점을 보완하기 위하여 사출성형기에 의하여 조정되는 공정조건인 직접 제어인자와 구분하여 성형품의 중량, 노즐 및 캐비티 압력 등 성형 중 또는 성형 후 측정된 값을 품질에 대한 간접 제어인자로 선정하여 실제 on-line하의 양산과정에서 품질관리를 수행하기 위한 시스템을 고안하였다. 즉 중량 및 측정된 압력과 특정부위의 수축률간의 상관관계를 통하여 이들의 상관관계가 높다는 것을 검정하고, 최적조건하에서 수행된 확인 실험 시 간접 제어인자의 범위를 도출한 후 이들 결과를 on-line하에서 측정된 값들과 비교하여 성형품의 품질 양호 및 불량상태를 판단할 수 있다. 위의 개념들을 실현하기 위한 수행과정 및 적용개념도가 도면 2에 보여진다.In the conventional injection molding product quality determination, defects are confirmed in the off-line state while the molded parts go through the assembly step directly, resulting in low material loss and productivity due to inefficiency of the defective product determination. In order to make up for this drawback, it is distinguished from the direct control factor that is controlled by the injection molding machine, and the value measured during or after molding such as the weight of the molded part, nozzle and cavity pressure is selected as an indirect control factor for quality. We devised a system to perform quality control in the mass production process under -line. In other words, the correlation between weight, measured pressure, and shrinkage rate of specific parts was tested to verify that they were high, and the range of indirect control factors was derived in the confirmation experiment conducted under optimal conditions, and these results were obtained on-line. By comparing the measured values, it is possible to determine whether the molded product is in good or bad condition. The implementation process and the conceptual diagram for realizing the above concepts are shown in FIG.

제어인자들 중 성형품의 특성치에 영향을 주는 주요인자를 선정하기 위한 실험이 필요한데 성형품의 품질 특성은 제어인자인 공정조건 한가지만의 변화에 의존하지 않고 여러 제어인자들이 복합적으로 영향을 끼치므로, 이들 인자들에 몇 개의 수준을 정의하여 실험을 수행하면 (인자수)(수준수)만큼의 실험이 수행되어야한다. 하지만 시간이나 실험 비용 등이 문제가 되고 또한 인자들간의 교호작용이 있는 경우 이에 대한 고려가 불가하므로 이러한 단점을 보완하기 위해 다구찌의 실험계획법을 이용함이 유리하다. 이는 인자들 중 주 효과와 2인자간 주요 교호작용을 검출하고 기술적으로 영향이 없는 2인자 교호작용 및 고차의 교호작용을 희생시켜 실험회수를 적게 할 수 있는 직교배열표를 이용하는 것이다. 이러한 직교배열표는 실험회수를 줄이면서도 모든 인자를 포함한 일부실시법을 수행하여 하나의 인자효과를 볼때 다른 인자의 영향에 치우침이 없고 분산분석표의 작성이 쉽다는 장점들을 지니고 있다. 파라미터 설계나 허용차 설계에서는 실험계획법에 의해 실시된 조건들 중에서 최적조건을 유도하는 방법으로 최적화가 이루어지나, 각종 인자와 특성치 간의 관계에 대해 수학적 모형을 가정하고 이 모형을 측정 데이터로부터 추정하는 통계적 기법인 회귀분석을 이용하면 실험계획법에 의해 주어지지 않은 조건도 고려하여 최적조건이 도출될 수 있다.It is necessary to experiment to select the main factors that affect the characteristics of the molded parts among the control factors. Since the quality characteristics of the molded parts do not depend on the change of the process conditions, which are the control factors, several control factors have a complex effect. If you run some experiments with several levels of arguments, you need to perform as many experiments as the number of arguments. However, if time or experiment cost is a problem and there is an interaction between factors, it cannot be considered. Therefore, it is advantageous to use Taguchi's experimental design method to compensate for these disadvantages. This method uses an orthogonal array table to detect the main effect and the major interactions between the two factors, and to reduce the number of experiments at the expense of the two-factor interactions and the higher-order interactions that are not technically affected. The orthogonal array table has the advantages of reducing the number of experiments and performing some methods including all factors, so that the effect of one factor does not bias the influence of other factors and makes it easier to prepare a variance analysis table. In parameter design or tolerance design, optimization is performed by deriving the optimal condition from the experimental design method.However, it is a statistical technique that assumes a mathematical model and estimates the model from the measured data. By using regression analysis, optimal conditions can be derived by considering conditions not given by the design of experiments.

본 고안에서는 1차적으로 사출속도, 보압, 보압시간 및 냉각시간 등 네 인자에 대해 두 수준을 택해 다구찌 방법에 의한 실험계획법을 적용하고, 측정된 각 부위별 수축률 편차를 잡음인자로 고려하여 이를 줄이는데 기여하는 공정조건을 선별함이 중요하다고 판단하여, 특성치에 대한 제어인자의 영향을 신호 대 잡음비율인 SN비(Signal-to-Noise Ratio)에 대한 분산분석으로부터 특성치에 유의한 두 인자를 택한다. 특성치와 제어인자간 모델식은 반응표면분석을 이용 도출하기 위해 중심합성계획에 의한 2차 실험을 1차 실험에서 선정된 두 인자의 수준을 증가시켜 수행하고 특성치에 대한 회귀방정식을 구성하였다. 특성치인 회귀방정식의 정상점을 찾아서 최적화 목적인 사출성형품의 각 부위별 수축률 편차의 최소화에 부합되는지를 확인하여 최적조건이 얻어졌으며, 최적조건을 수축률에 대한 모델식에 적용하여 최적 수축률을 구하였다. 특성인자인 수축률에 대한 제어인자로 지정된 사출속도, 보압, 보압시간 및 냉각시간의 영향을 분산분석을 통해 실시하면 부위별 산포를 줄이는 목적에 부합되는 조건은 사출속도, 공정조건별 민감도 영향을 고려하는 두 인자로는 보압과 보압 시간이 지배적이고, 특정부위에서의 민감도 해석에서는 보압이 지배적이므로 사출 속도, 보압, 보압 시간등 세 인자 모두 택해 모델식 유도를 위한 실험에 사용될 수 있다. 그러나 보압 시간은 게이트 실링 시점과 연계하여 택할 수 있기 때문에 사출 속도 및 보압 두 인자만 2차 실험에서 사용하기로 한다.In this design, we first apply the experimental design method by Taguchi method by selecting two levels for four factors such as injection speed, packing pressure, packing time and cooling time, and reducing them by considering the variation of shrinkage rate of each part as noise factor. In determining that it is important to select contributing process conditions, select two factors that are significant for the characteristic value from the analysis of variance on the signal-to-noise ratio (SN ratio). . The model equation between the characteristic value and the control factor was performed by increasing the level of two factors selected in the first experiment and constructing a regression equation for the characteristic value. The optimal condition was obtained by finding the normal point of the regression equation, which is the characteristic value, and confirming that it meets the minimization of the variation of the shrinkage rate for each part of the injection molded part for optimization purposes. If the effect of injection speed, packing pressure, packing time and cooling time specified as control factor on the shrinkage rate, which is a characteristic factor, is carried out through analysis of variance, the condition that meets the purpose of reducing scattering by site is considered considering the effects of injection speed and sensitivity of process conditions. The two factors are the preservation pressure and the preservation time, and since the preservation pressure is dominant in the sensitivity analysis at a specific part, all three factors can be used in the experiment for model derivation. However, the packing time can be chosen in conjunction with the gate sealing time, so only the two factors, injection speed and packing pressure, will be used in the second experiment.

선정된 사출속도, 보압 등 2개 독립변수의 조합으르 구성된 중심합성법에 의한 실험에서 얻어진 샘플로부터 중량 및 치수가 측정되었다. 2개의 측정값 중 품질 특성치로 샘플의 각 부위에서 얻어진 수축률을 선택하기로 한다. 물론 중량의 산포를 줄이는 것도 제품 품질의 신뢰성을 높인다는 점에서 사용될 수 있지만, 본 고안에서는 조립과 관련한 치수의 정도와 안정성에 보다 더 비중을 두기 때문에 수축률을 이용하여 품질관리의 목적에 부합하는 최적조건을 도출하고자 한다. 치수관리의 방향은 수축률 값 자체의 최소화보다는 부위별 산포를 줄이는 측면에서 모델식을 유도하였다. 이는 성형품의 치수가 공정조건이나 수지, 외기 상태, 사출기 상태 등의 변화에 따라 한 부위에서만 변하는 것이 아니라 다른 부위의 수축률에도 서로 영향을 주기 때문에 산포를 줄이는 목적에 초점을 맞추어 모델식을 유도하고 최적조건을 도출한 뒤 이 조건을 조립 상 주요한 부위의 수축률이나 편차를 예측하는데 사용함이 타당하리라고 생각된다. 각 부위에서 측정된 수축률 평균값과 부위별 편차 값들 중 편차(STD)를 공정조건인 사출속도(Vi)와 보압(Hp)의 함수로 반응표면분석을 통해 모델식을 도출하면Weight and dimensions were measured from samples obtained from experiments by the central synthesis method, which consisted of a combination of two independent variables such as selected injection speed and packing pressure. The shrinkage obtained at each site of the sample is chosen as the quality characteristic of the two measurements. Of course, reducing the weight distribution can also be used in terms of increasing the reliability of the product quality. However, in the present design, since the weight is more focused on the degree of assembly and the stability of the assembly, the shrinkage ratio is used to meet the purpose of quality control. We want to derive the condition. The direction of dimension management led to the model expression in terms of reducing the scattering of each part rather than minimizing the shrinkage value itself. This is because the dimensions of the molded products do not change only in one part due to changes in process conditions, resins, outside conditions, injection machine conditions, etc., but also affect the shrinkage of other parts. After deriving the conditions, it would be reasonable to use them to predict the shrinkage or deviation of major sites in assembly. Derivation of the model equation through response surface analysis as a function of the injection speed (V i ) and the holding pressure (H p ), which are the process conditions, is the deviation (STD) of the average values of the shrinkage rate and the deviation of each site.

과 같으며, 수축률 편차를 최소로 하는 최적공정조건은 사출속도가 53.56mm/s, 보압이 41.89bar인 조건이 된다.The optimum process conditions for minimizing shrinkage variation are injection speed of 53.56mm / s and packing pressure of 41.89bar.

도 1은 사출성형품의 품질에 영향을 끼치는 원인 분석도1 is a cause analysis affecting the quality of the injection molded article

도 2는 공정 최적화 및 품질 모니터링을 위한 개념도2 is a conceptual diagram for process optimization and quality monitoring

도 3은 간접제어인자에 의한 품질모니터링 S/W 기능3 is a quality monitoring S / W function by the indirect control factor

도 4는 온라인 하의 품질모니터링 시스템4 is an online quality monitoring system

도 5는 품질 특성치의 허용한계를 만족하는 판정인자 범위 도출Fig. 5 derives the determination factor range that satisfies the tolerance of the quality characteristic value.

성형품의 품질은 그 목적에 따라 외관의 무결함이나 치수의 정도 등에 의해 양호 또는 불량 상태를 판단할 수 있는데 이를 위해서는 검사나 측정시간이 많이 걸린다는 점에서 실제 양산 중 on-line하에서 적용키가 현실적으르 어렵다. 물론 외관은 작업자에 의해 검사되고 치수는 성형품의 치수를 삽입하여 판단할 수 있는 지그나 픽스쳐를 사용할 수 있지만 짧은 시간 내에 정확하게 판단하는데는 한계가 있을듯하다. 이러한 관점에서 사출기에서 입력되어 성형품의 품질을 제어하는 공정조건인 직접 제어인자와 달리 중량, 노즐 및 캐비티 압력은 성형 중 또는 성형 후 측정된 값이므로 도면 3에서와 같이 품질에 대한 간접 제어인자로 구분하여 실제 양산과정에서 품질관리의 일환으로 위의 결과를 on-line하에서 이용하기 위한 활용 가능성을 모색하였다. 즉 on-line하에서도 측정하기 쉬운 중량이나 노즐 또는 캐비티 압력을 이용할 수 있다면 성형품의 품질관리에 많은 도움이 될 것이다. 이들이 품질의 모니터링을 위한 판단인자로 사용되기 위해서는 중량 및 측정된 압력과 특정부위의 수축률간의 상관관계를 통하여 이들의 상관관계가 높다는 것이 인정되어야하고, 검증 실험 시 최적조건하에서 간접 제어인자의 범위를 도출한 후 이들 결과가 on-line하에서 측정된값들과 비교되어 성형품 품질의 양호 및 불량상태를 판단할 수 있는 기준 값으로 사용되어야 한다.The quality of the molded product can be judged as good or bad by the defects of appearance or the degree of dimensions depending on its purpose, which requires a lot of inspection and measurement time. It's hard. Of course, the appearance can be inspected by the operator and the dimensions can be used to determine the jig or fixture that can be determined by inserting the dimensions of the molded product, but there seems to be a limit in accurately determining within a short time. In this respect, unlike the direct control factor, which is a process condition input from the injection molding machine to control the quality of the molded part, the weight, nozzle, and cavity pressure are measured during or after molding, and thus are divided into indirect control factors for quality as shown in FIG. As a part of quality control in actual production process, the possibility of using the above result on-line was explored. In other words, if it is possible to use weight or nozzle or cavity pressure that is easy to measure under on-line, it will be helpful to quality control of the molded part. In order to be used as a determinant for monitoring quality, they must be recognized that the correlation is high through the correlation between weight, measured pressure, and shrinkage of specific parts. After derivation, these results should be compared with the values measured on-line and used as a reference value to judge good and bad condition of the part quality.

실제 양산과정에서 사용된 품질 모니터링 시스템이 도면 4에 보여지며, 품질관리의 일환으로 위의 결과를 적용하기 위해 최적조건하에서 수행된 20개 샘플로부터 중량, 캐비티 최고압력 및 보압 후 캐비티 압력의 최대 및 최소 값 범위가 중량은 155.3255g에서 155.7215g의 범위를 가지며 그때 편차는 0.066g이고, 캐비티 최고압력은 123.89bar에서 131.18bar의 범위를 가지며 그때 편차는 1.975bar이고, 보압 후 캐비티 압력은 9.72bar에서 4.86bar의 범위를 가지고 그때 편차는 1.34bar로 이들을 판단기준으로 하여, 도면 5에서와 같이 on-line하에서 측정된 간접인자의 범위가 품질특성치의 허용한계 내로 유지되는 최적 범위에 들면 양호한 성형품, 최적 범위에 들지 못하면 불량한 성형품 임을 분간할 수 있다.The quality monitoring system used in the actual production process is shown in Figure 4, and the weight, cavity maximum pressure and postcavity maximum and The minimum value ranges from 155.3255g to 155.7215g in weight, with a deviation of 0.066g, cavity maximum pressure in the range of 123.89bar to 131.18bar, with a deviation of 1.975bar and cavity pressure after holding at 9.72bar If the range of 4.86 bar and then the deviation is 1.34 bar as the criterion, the range of indirect factors measured under the on-line as shown in Fig. 5 is within the optimum range where the range of the quality characteristics is maintained within the allowable limits of the quality characteristics. If it is not in the range, it can be recognized as a bad molded part.

생산공정의 최적화를 위한 통계적 분석방법이 제안되었으며, 이들은 제품의 특성치에 끼치는 각 인자들을 체계적으로 분석하고 그로부터 최적조건을 도출할 수 있어 생산현장에 적용 시 효과가 클 것으로 기대되며, 이의 검증을 위해 사출공정에 적용하여 보았다. 사출성형품의 품질에 영향을 끼치는 많은 요인들중 특히 공정변수와 관련된 제어인자들이 분산분석을 통해 해석된 결과, 특성인자인 부위별 수축률 편차 및 수축률에 끼치는 영향이 보압, 사출속도의 순서로 지배적임이 밝혀졌다. 반응표면분석을 통한 모델식 및 최적 공정조건 유도를 위해 이들 두 인자에 대한 중심합성계획 실험이 수행되었다. 유도된 모델식의 검증이 분산분석을 통해 실시되었으며 부위별 수축률 편차를 줄이려는 제어목적에 맞는 최적조건하에서 얻어진 최적 수축률은 금형설계 시 적용되고, 중량이나 캐비티 최고압력은 수축률과 상관관계가 높아 이들을 간접 제어인자로 규정하여 품질의 모니터링을 위해 on-line하에서 사용할 수 있는 기준을 제공하였다. 통계적 기법에 기초한 분석의 결과는 향후 사출공정 뿐 아니라 다른 생산공정의 최적화 및 온라인 하에서 품질판정을 위한 방법으로 사용 가능함.Statistical analysis methods for the optimization of production processes have been proposed, and they are expected to be effective when applied to production sites because they can systematically analyze each factor affecting product characteristics and derive optimal conditions from them. It was applied to the injection process. Among the many factors affecting the quality of injection molded products, in particular, the control factors related to process variables are analyzed through variance analysis. As a result, the influence of shrinkage variation and shrinkage rate on each site, which are characteristic factors, dominates in the order of packing pressure and injection speed. Turned out. In order to derive model equations and optimum process conditions through response surface analysis, central synthesis planning experiments were conducted for these two factors. Validation of the derived model equations was carried out through analysis of variance, and the optimum shrinkage obtained under the optimal conditions for the control objectives to reduce the variation of the shrinkage rate at each site is applied in the mold design, and the weight or cavity maximum pressure is highly correlated with the shrinkage rate. Indirect control factors have been defined to provide criteria that can be used on-line to monitor quality. The results of the analysis based on statistical techniques can be used as a method for quality judgment under the optimization of the injection process as well as other production processes and online.

Claims (1)

본 특허는 사출성형품의 품질상태를 온라인 하에서 짧은 시간 내에 판정할 수 있는 공정분석 및 품질판정 시스템을 구성하기 위한 아이디어 특허로, 성형품의 품질판정 인자로 중량, 노즐 압력 및 캐비티 압력을 사용하는 것과 품질판정을 위한 인자들의 적정 범위를 실험계획법과 반응표면분석법인 통계적 분석법을 이용하여 공정분석을 수행하는 것에 대하여 특허등록을 청구함.This patent is an idea patent for constructing a process analysis and quality determination system that can determine the quality status of an injection molded product online in a short time. The use of weight, nozzle pressure and cavity pressure as the quality determination factor of the molded product Claimed for patent registration for conducting process analysis using statistical analysis, which is experimental design method and response surface analysis method.
KR1020000078838A 2000-12-07 2000-12-07 On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters KR20010016543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000078838A KR20010016543A (en) 2000-12-07 2000-12-07 On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000078838A KR20010016543A (en) 2000-12-07 2000-12-07 On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters

Publications (1)

Publication Number Publication Date
KR20010016543A true KR20010016543A (en) 2001-03-05

Family

ID=19703294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000078838A KR20010016543A (en) 2000-12-07 2000-12-07 On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters

Country Status (1)

Country Link
KR (1) KR20010016543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170037733A (en) 2015-09-25 2017-04-05 목원대학교 산학협력단 Soundinsulation materials using recycled PVC from waste plastic and manufactuing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169738A (en) * 1984-02-14 1985-09-03 Orion Kasei Kk Defective product detecting method of injection molded product
JPH03101914A (en) * 1989-09-18 1991-04-26 Japan Steel Works Ltd:The Predicting method and device for abnormality in injection molding machine
JPH0462022A (en) * 1990-06-22 1992-02-27 Sekisui Chem Co Ltd Method of judging quality of injection molding
JPH04122619A (en) * 1990-09-13 1992-04-23 Toshiba Mach Co Ltd Decision on acceptability of molding or not
JPH04189524A (en) * 1990-11-26 1992-07-08 Sekisui Chem Co Ltd Device for judging injection-molded product to be defective in weight
JPH05329864A (en) * 1992-05-29 1993-12-14 Mitsubishi Heavy Ind Ltd On-line resin viscosity measuring method and quality discriminating method of molded product
JPH11105092A (en) * 1997-10-06 1999-04-20 Meiki Co Ltd Method for switching multistage control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169738A (en) * 1984-02-14 1985-09-03 Orion Kasei Kk Defective product detecting method of injection molded product
JPH03101914A (en) * 1989-09-18 1991-04-26 Japan Steel Works Ltd:The Predicting method and device for abnormality in injection molding machine
JPH0462022A (en) * 1990-06-22 1992-02-27 Sekisui Chem Co Ltd Method of judging quality of injection molding
JPH04122619A (en) * 1990-09-13 1992-04-23 Toshiba Mach Co Ltd Decision on acceptability of molding or not
JPH04189524A (en) * 1990-11-26 1992-07-08 Sekisui Chem Co Ltd Device for judging injection-molded product to be defective in weight
JPH05329864A (en) * 1992-05-29 1993-12-14 Mitsubishi Heavy Ind Ltd On-line resin viscosity measuring method and quality discriminating method of molded product
JPH11105092A (en) * 1997-10-06 1999-04-20 Meiki Co Ltd Method for switching multistage control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170037733A (en) 2015-09-25 2017-04-05 목원대학교 산학협력단 Soundinsulation materials using recycled PVC from waste plastic and manufactuing method thereof

Similar Documents

Publication Publication Date Title
JP5848340B2 (en) Method and apparatus for monitoring and optimizing an injection molding process
Kramschuster et al. Quantitative study of shrinkage and warpage behavior for microcellular and conventional injection molding
CN110978441A (en) Visual injection molding production process verification method
KR101741272B1 (en) Methods and arrangements for in-situ process monitoring and control for plasma processing tools
CN105458363B (en) The bloom chamfering reworking method of cell phone appearance part
JP6494113B2 (en) Measuring device, measuring method, program
Wiklund Bayesian and regression approaches to on‐line prediction of residual tool life
KR20010016543A (en) On-line Quality Monitoring of Injection Molded Parts using Indirect Control Parameters
CN111095143B (en) Method for modeling and quantitatively evaluating expected overall quality level of ophthalmic lens in real time
US20200086546A1 (en) Method for controlling film production
CN112906155A (en) Virtual measurement method for injection molding product information
KR102277276B1 (en) Measuring system and method of metal material property
CA2539503C (en) Method for calibrating rotation centres in veneer peeling
US6868371B1 (en) System and method to quantify appearance defects in molded plastic parts
KR20120108405A (en) Sorting apparatus and method for heat treatment using pulsed eddy current
Lin et al. Relative control philosophy–balance and continual change for forecasting abnormal quality characteristics in a silicon wafer slicing process
KR20120128251A (en) Fault detection method
Grasso et al. A four-parameters model for fatigue crack growth data analysis
US10882236B2 (en) Molding system, molding apparatus, inspection apparatus, inspection method, and program
US6539278B1 (en) Method and apparatus for resin formulations with improved streaking performance
CN112985318B (en) Method and system for on-line prediction of fastener size
JP6973277B2 (en) Core inspection device, core inspection system, and core inspection method
Li et al. Extracting minimal non-redundant association rules from QCIL
Chang Robust process control in injection molding--process capability comparison for five switchover modes
US20210390227A1 (en) Generation method, estimation method, generator, and estimator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E801 Decision on dismissal of amendment
E601 Decision to refuse application