KR20010011308A - Method for forming capacitor having zirconiumdiboride layer as diffusion barrier - Google Patents

Method for forming capacitor having zirconiumdiboride layer as diffusion barrier Download PDF

Info

Publication number
KR20010011308A
KR20010011308A KR1019990030614A KR19990030614A KR20010011308A KR 20010011308 A KR20010011308 A KR 20010011308A KR 1019990030614 A KR1019990030614 A KR 1019990030614A KR 19990030614 A KR19990030614 A KR 19990030614A KR 20010011308 A KR20010011308 A KR 20010011308A
Authority
KR
South Korea
Prior art keywords
film
zrb
capacitor
forming
manufacturing
Prior art date
Application number
KR1019990030614A
Other languages
Korean (ko)
Other versions
KR100510064B1 (en
Inventor
박대규
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR10-1999-0030614A priority Critical patent/KR100510064B1/en
Priority to JP2000227452A priority patent/JP2001068638A/en
Publication of KR20010011308A publication Critical patent/KR20010011308A/en
Application granted granted Critical
Publication of KR100510064B1 publication Critical patent/KR100510064B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/57Capacitors with a dielectric comprising a perovskite structure material comprising a barrier layer to prevent diffusion of hydrogen or oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: A method for manufacturing a capacitor having a zirconiumdiboride(ZrB2) diffusion blocking layer is to provide a capacitor whose high permittivity characteristic and insulating characteristic are superior, by forming the ZrB2 layer in a storage node contact. CONSTITUTION: A ZrB2 layer(6) as a diffusion blocking layer is formed on a semiconductor substrate. A storage electrode(7) is formed on the ZrB2 layer. A dielectric layer(8) is formed on the storage electrode. A plate electrode(9) is formed on the dielectric layer. The ZrB2 layer is formed in a contact hole which passes through an interlayer dielectric(3) formed on the semiconductor substrate and connects the storage electrode with the semiconductor substrate.

Description

지르코늄다이보라이드 확산방지막을 구비하는 캐패시터 제조 방법{METHOD FOR FORMING CAPACITOR HAVING ZIRCONIUMDIBORIDE LAYER AS DIFFUSION BARRIER}Capacitor manufacturing method comprising a zirconium diboride diffusion barrier {METHOD FOR FORMING CAPACITOR HAVING ZIRCONIUMDIBORIDE LAYER AS DIFFUSION BARRIER}

본 발명은 반도체 소자 제조 분야에 관한 것으로, 특히 스토리지 노드 콘택 형성 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to the field of semiconductor device manufacturing, and more particularly, to a method of forming a storage node contact.

반도체 소자에서 고유전율 캐패시터의 전극으로는 Pt, Ir, Ru 계통의 원소나 금속산화물이 이용되고, 확산방지막으로는 TiN 등을 형성한다.In the semiconductor device, Pt, Ir, Ru-based elements or metal oxides are used as electrodes of the high-k dielectric capacitor, and TiN or the like is formed as a diffusion barrier.

TiN 확산방지막은, BST((Ba,Sr)TiO3)와 같은 고유전체의 증착 또는 후속 열공정 중 500 ℃ 정도에서 산화되는 문제점이 있다. 이는 Pt 전극의 경우 산소가 Pt의 결정립계(grain boundary) 등을 통하여 확산하기 때문이며, Ir과 Ru 전극의 경우는 전극 그 자체가 BST 증착시 400 ℃ 내지 500 ℃ 정도에서 산화되고 후속 열공정에서 하부의 확산방지막까지 산화시키기 때문이다.The TiN diffusion barrier has a problem of being oxidized at about 500 ° C. during deposition or subsequent thermal process of a high dielectric such as BST ((Ba, Sr) TiO 3 ). This is because oxygen in the Pt electrode diffuses through the grain boundary of Pt, and in the case of Ir and Ru electrodes, the electrode itself is oxidized at about 400 ° C to 500 ° C during BST deposition, This is because it oxidizes to the diffusion barrier.

이러한 문제점을 해결하기 위하여 내산화성을 갖는 확산방지막으로 TiAlN 또는 TiSiN 등과 같은 3상의 질화막이 연구되고 있다. Pt를 하부전극으로 사용하였을 때 TiN에 비하여 3상의 질화막은 산화특성이 개선되어 TiN 보다 100 ℃ 내지 150 ℃ 높은 온도에서 산화된다.In order to solve this problem, a three-phase nitride film such as TiAlN or TiSiN has been studied as a diffusion barrier having oxidation resistance. When Pt is used as the lower electrode, the three-phase nitride film has improved oxidation characteristics compared to TiN, and is oxidized at a temperature of 100 ° C. to 150 ° C. higher than TiN.

그러나, 막 표면에 얇은 산화막을 형성하여 오믹 콘택(ohmic contact)의 형성에 어려움이 제기되고 있으며, TiAlN/Pt 전극 사이의 큰 열팽창 계수의 차이로 인하여 고유전체의 후속 열처리(post-annealing)시 막의 들림이 발생되어 고유전체의 유전 특성 향상에 장애가 되고 있다.However, it is difficult to form ohmic contacts by forming a thin oxide film on the surface of the film, and due to the large difference in coefficient of thermal expansion between TiAlN / Pt electrodes, the film is subjected to post-annealing of the high dielectric material. Lifting occurs, which is an obstacle in improving the dielectric properties of the high dielectric material.

또한, 확산방지막은 주로 스퍼터링(sputtering)법으로 형성하는데 이에 따라 단차피복성(step coverage)이 양호하지 못한 문제점이 있다.In addition, the diffusion barrier is mainly formed by a sputtering method, there is a problem that the step coverage (good step coverage) is not good.

상기와 같은 문제점을 해결하기 위하여 안출된 본 발명은 내산화성, 오믹 콘택 특성이 양호하며 전극과 열팽창 계수의 차이가 크지 않아 후속 공정에서 막들림의 발생을 억제할 수 있는 지르코늄다이보라이드 확산방지막을 구비하는 캐패시터 제조 방법을 제공하는데 그 목적이 있다.The present invention devised to solve the above problems is a zirconium diboride diffusion barrier that can suppress the occurrence of blockage in the subsequent process because the oxidation resistance, ohmic contact characteristics are good and the difference between the electrode and the thermal expansion coefficient is not large It is an object of the present invention to provide a method for manufacturing a capacitor.

도1 내지 도3은 본 발명의 일실시예에 따른 반도체 소자의 캐패시터 제조 공정 단면도.1 to 3 are cross-sectional views of a capacitor manufacturing process of a semiconductor device according to an embodiment of the present invention.

*도면의 주요부분에 대한 도면 부호의 설명** Description of reference numerals for the main parts of the drawings *

6: ZrB2막 7: Pt 하부전극6: ZrB 2 film 7: Pt lower electrode

8: 고유전막 9: Pt 상부전극8: high dielectric film 9: Pt upper electrode

상기와 같은 목적을 달성하기 위한 본 발명은 반도체 기판 상부에 확산방지막으로서 ZrB2막을 형성하는 제1 단계; 상기 ZrB2막 상에 하부전극을 형성하는 제2 단계; 상기 하부전극 상에 유전막을 형성하는 제3 단계; 및 상기 유전막 상에 상부전극을 형성하는 제4 단계를 포함하는 반도체 소자의 캐패시터 제조 방법을 제공한다.The present invention for achieving the above object is a first step of forming a ZrB 2 film as a diffusion barrier on the semiconductor substrate; Forming a lower electrode on the ZrB 2 film; Forming a dielectric layer on the lower electrode; And a fourth step of forming an upper electrode on the dielectric layer.

본 발명은 캐패시터 하부전극 아래, 예를 들어 스토리지 노드 콘택 내에 고온에서 열적으로 안정한 ZrB2(zirconiumdiboride) 확산방지막을 형성하는데 특징이 있다. ZrB2막은 Zr(BH4)4의 프리커서(precusor)를 이용하여 저온에서 플라즈마 화학기상증착법으로 형성한다.The present invention is characterized by forming a thermally stable zirconiumdiboride (ZrB 2 ) diffusion barrier under a capacitor lower electrode, for example, in a storage node contact. The ZrB 2 film is formed by plasma chemical vapor deposition at low temperature using a precursor of Zr (BH 4 ) 4 .

이와 같이 반도체 소자의 스토리지 노드 콘택 내에 하부전극의 확산방지막으로서 ZrB2막을 화학기상증착법으로 형성할 경우 다음과 같은 장점을 얻을 수 있다.As described above, when the ZrB 2 film is formed by chemical vapor deposition as the diffusion barrier of the lower electrode in the storage node contact of the semiconductor device, the following advantages can be obtained.

첫째, ZrB2막은 비저항이 약 80 μΩ-㎝ 정도로 TiN 박막과 유사하다.First, the ZrB 2 film is similar to the TiN thin film with a specific resistance of about 80 μΩ-cm.

둘째, ZrB2막은 고온 내산화 특성이 보론-공핍(boron-deficient) 즉, B/Zr2일 때 650 ℃ 내지 700 ℃에서 안정한 물질로 알려져 있다.Second, ZrB 2 membranes have high temperature oxidation resistance, which is boron-deficient, that is, B / Zr. 2 is known to be a stable material at 650 ℃ to 700 ℃.

셋째, 화학기상증착법으로 증착 가능하여 단차 피복 특성이 양호하다.Third, it is possible to deposit by chemical vapor deposition method, the step coverage characteristics are good.

ZrB2막 형성은 Zr 프리커서 내에 B를 포함하고 있는 Zr(BH4)4을 열분해 또는 플라즈마 분해시켜 화학기상증착 장치의 반응기(reactor) 내에서 증착한다. 반응기 내에 수소(H2) 또는 중수소(D2) 그리고 헬륨(He) 또는 아르곤(Ar)을 이용한 가스를 주입하여 Zr(BH4)4를 분해시킨다. 이때, H2나 D2플라즈마는 진공 환경(back ground)에서 산소의 결합을 막아주는 중요한 역할을 하며 박막의 미세 구조를 변화시켜 준다. 이와 같이 증착된 ZrB2막에서 B의 양이 화학정량(stoichiometry)을 넘을 때, 즉 B/Zr 〉 2 일때 과잉 B는 주변의 산소와 결합하여 절연체인 B2O3를 형성한다. 따라서, 증착 용기 내의 잔여 산소 농도를 최소화하기 위하여 사용가스의 순도(purity)가 높아야 하고 고진공(ultra high vacuum)이 필요하다.ZrB 2 film formation deposits in a reactor of a chemical vapor deposition apparatus by pyrolysis or plasma decomposition of Zr (BH 4 ) 4 containing B in a Zr precursor. Zr (BH 4 ) 4 is decomposed by injecting gas using hydrogen (H 2 ) or deuterium (D 2 ) and helium (He) or argon (Ar) into the reactor. At this time, H 2 or D 2 plasma plays an important role to prevent the bonding of oxygen in the vacuum (back ground) and changes the microstructure of the thin film. When the amount of B in the thus deposited ZrB 2 film exceeds stoichiometry, that is, when B / Zr> 2, excess B combines with surrounding oxygen to form an insulator, B 2 O 3 . Therefore, in order to minimize the residual oxygen concentration in the deposition vessel, the purity of the used gas must be high and an ultra high vacuum is required.

이하, 첨부된 도면 도1 내지 도3을 참조하여 본 발명의 일실시예에 따른 반도체 소자의 캐패시터 제조 방법을 상세히 설명한다.Hereinafter, a method of manufacturing a capacitor of a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도1에 도시한 바와 같이 반도체 기판(1) 상에 BPSG(borophospho silicate glass) 또는 SiO2계통의 절연체를 500 Å 내지 7000 Å 두께 증착하여 층간절연막(3)을 형성하고, 층간절연막(3)을 선택적으로 식각하여 반도체 기판(1)의 활성영역(2)을 노출시키는 콘택홀을 형성한다. 이어서, 전체 구조 상에 500 Å 내지 7000 Å 두께의 도핑된 폴리실리콘막(4)을 형성하고 500 Å 내지 2000 Å 두께의 폴리실리콘막(4)을 에치백하여 콘택홀 내부에 폴리실리콘막(4)의 일부를 잔류시킨다. 이어서, 폴리실리콘막(4) 상에 실리사이드층(5)을 형성한다.First, as shown in FIG. 1, an insulator of BPSG (borophospho silicate glass) or SiO 2 type is deposited on the semiconductor substrate 1 to form a layer insulating film 3 by depositing a thickness of 500 kV to 7000 kW. ) Is selectively etched to form a contact hole exposing the active region 2 of the semiconductor substrate 1. Subsequently, the doped polysilicon film 4 having a thickness of 500 kPa to 7000 kPa is formed on the entire structure, and the polysilicon film 4 is etched back through the 500 to 2000 kPa thick polysilicon film 4. Part of the). Next, the silicide layer 5 is formed on the polysilicon film 4.

실리사이드층(5)은 TiSi2로 형성할 수도 있다. 이 경우 콜리메이티드(collimated) 또는 이온화된 금속 플라즈마(IMP, ionized metal plasma)를 사용하여 Ti막을 증착하고 열처리 공정을 실시하여 자기정렬 실리사이드(self-aligned silicide, salicide) 방법으로 TiSi2막을 형성한 다음, TiSi2막을 선택적으로 식각하여 콘택홀 내부에만 남도록 한다. 한편, TiSi2막은 TiSix(x는 1.8 내지 2.4) 타겟을 이용한 스퍼터링 방법으로 형성할 수도 있다.The silicide layer 5 may be formed of TiSi 2 . In this case, a Ti film is deposited using a collimated or ionized metal plasma (IMP) and a heat treatment is performed to form a TiSi 2 film by a self-aligned silicide (salicide) method. Next, the TiSi 2 film is selectively etched so that it remains only inside the contact hole. The TiSi 2 film may be formed by a sputtering method using a TiSi x (x is 1.8 to 2.4) target.

또한, 실리사이드층(5)은 ZrSi2로 형성할 수도 있다. 이 경우 Zr은 Zr 타겟을 이용한 DC 마그네트론 스퍼터링(magnetron sputtering) 방법으로 형성하며, Zr 스퍼터링시 콜리메이터(collimator)를 설치하여 형성할 수도 있다. 한편, Zr을 스퍼터링으로 증착할 경우 증착가스로 Ar, Kr 또는 Xe을 사용할 수 있으며, 사용되는 DC 플라즈마 파워는 0.5 W/㎠ 내지 20 W/㎠가 되도록하고, 가스 압력은 0.8 mTorr 내지 10 mTorr가 되도록 한다. 또한, Zr 증착시 이온화된 금속 플라즈마(IMP)를 사용할 수 있으며, 이때 사용되는 가스는 Ar, Kr 또는 Xe이며 IMP 인가시 0.2 ㎾ 내지 1 ㎾가 되도록 한다. 그리고, ZrSi2의 형성을 위하여 급속열처리(rapid thermal process, RTP)를 실시하며, 이때 열처리는 Ar, N2또는 He 가스 분위기에서 550 ℃ 내지 800 ℃ 온도로 10초 내지 60초 동안 실시한다.In addition, the silicide layer 5 may be formed of ZrSi 2 . In this case, Zr is formed by a DC magnetron sputtering method using a Zr target, and may be formed by installing a collimator during Zr sputtering. Meanwhile, when depositing Zr by sputtering, Ar, Kr or Xe may be used as the deposition gas, and the DC plasma power used is 0.5 W / cm 2 to 20 W / cm 2, and the gas pressure is 0.8 mTorr to 10 mTorr. Be sure to In addition, ionized metal plasma (IMP) may be used during Zr deposition, and the gas used may be Ar, Kr, or Xe, and may be 0.2 kPa to 1 kPa when IMP is applied. In addition, a rapid thermal process (RTP) is performed to form ZrSi 2 , wherein the heat treatment is performed at a temperature of 550 ° C. to 800 ° C. for 10 seconds to 60 seconds in an Ar, N 2 or He gas atmosphere.

이어서, 전체 구조 상에 확산방지막으로서 ZrB2막(6)을 형성한다.Subsequently, a ZrB 2 film 6 is formed as a diffusion barrier on the whole structure.

ZrB2막(6)은 Zr(BH4)4프리커서를 이용하여 화학기상증착법으로 형성하며, 13.56 ㎒의 RF 수소 플라즈마 방식으로 Zr(BH4)4프리커서를 분해한다. 이와 같이 RF 플라즈마를 사용할 때 전력은 500 W 내지 5 ㎾를 인가하며 증착온도는 - 20 ℃ 내지 550 ℃가 되도록 한다. 화학기상증착법의 프리커서로서 ZrH2(zrconium hibride)와 BH4(borohibride) 또는 B2H6(diboride)를 사용할 수도 있다.ZrB 2 film 6 is Zr (BH 4) 4, and pre-cursor to form a chemical vapor deposition method using, to decompose the Zr (BH 4) 4 precursors as RF hydrogen plasma method of 13.56 ㎒. As such, when the RF plasma is used, power is applied at 500 W to 5 mW and the deposition temperature is -20 ° C to 550 ° C. ZrH 2 (zrconium hibride) and BH 4 (borohibride) or B 2 H 6 (diboride) may be used as a precursor for chemical vapor deposition.

ZrB2막(6)의 조성은 B/Zr 값이 2를 넘지 않도록 하며, 적정하게는 B/Zr 값이 1.8 내지 2 또는 B/Zr=1이 되도록 한다. ZrB2막(6)을 증착하기 위한 챔버 압력은 1 × 10-7Torr가 되도록하고, 챔버내 사용되는 산소의 농도는 100 ppm 이하가 되도록 한다.The composition of the ZrB 2 film 6 is such that the B / Zr value does not exceed 2, and the B / Zr value is suitably 1.8 to 2 or B / Zr = 1. The chamber pressure for depositing the ZrB 2 film 6 is 1 × 10 −7 Torr and the concentration of oxygen used in the chamber is 100 ppm or less.

한편, ZrB2막(6) 형성시 자석(magnet)을 이용하여 2.45 ㎓ 조건에서 ECR(electron cyclotron resonance)으로 여기(exitation)시키는 원격 플라즈마(remote plasma) 방식을 이용할 수 있다. 이때 사용되는 가스로는 프리커서 이외에 수소, 중수소, 헬륨, 아르곤 등이 사용될 수 있으며 100 W 내지 3 ㎾의 전력, -20 ℃ 내지 450 ℃ 온도 조건에서 ZrB2막(6)을 형성한다.Meanwhile, when forming the ZrB 2 film 6, a remote plasma method may be used in which a magnet is excited by an electron cyclotron resonance (ECR) at 2.45 μs using a magnet. In this case, hydrogen, deuterium, helium, argon, etc. may be used in addition to the precursor, and the ZrB 2 film 6 is formed at a power of 100 W to 3 kW and a temperature of -20 ° C to 450 ° C.

그리고, ZrB2막(6) 형성을 위해 열분해 방식으로 프리커서를 분해할 수도 있으며, 이때 기판 온도는 150 ℃ 내지 650 ℃가 되도록 한다. 또한, ZrB2타겟을 이용한 DC 마그네트론 스퍼터링 방법으로 ZrB2막(6)을 형성할 수도 있다.In addition, the precursor may be decomposed by a pyrolysis method to form the ZrB 2 film 6, wherein the substrate temperature is 150 ° C. to 650 ° C. FIG. Further, the DC magnetron sputtering method using a target ZrB 2 ZrB may form a second film (6).

ZrB2막(6) 증착후 막의 치밀화(densification)을 위하여 550 ℃ 내지 700 ℃ 온도에서 N2분위기로 급속열처리(rapid thermal annealing)한다.After deposition of the ZrB 2 film 6, rapid thermal annealing is carried out in an N 2 atmosphere at a temperature of 550 ° C. to 700 ° C. for densification of the film.

다음으로, 도2에 도시한 바와 같이 ZrB2막(6)을 화학기계적 연마(chemical mechanical polishing) 또는 에치백(etch back)하여 콘택홀 내부에만 ZrB2막(6)이 남도록 한다.Next, as shown in FIG. 2, the ZrB 2 film 6 is chemically mechanically polished or etched back so that the ZrB 2 film 6 remains only inside the contact hole.

다음으로, 도3에 도시한 바와 같이 ZrB2막(6) 상에 Pt 하부전극(7), 고유전막(8) 및 Pt 상부전극(9)을 형성하여 MIM(metal-insulator-metal, MIM) 구조의 캐패시터를 완성한다. 상기 Pt 하부전극(7) 및 Pt 상부전극(9)은 각각 500 Å 내지 5000 Å 두께로 형성한다.Next, as shown in FIG. 3, a Pt lower electrode 7, a high dielectric film 8, and a Pt upper electrode 9 are formed on the ZrB 2 film 6 to form a metal-insulator-metal (MIM). Complete the capacitor in the structure. The Pt lower electrode 7 and the Pt upper electrode 9 are each formed to have a thickness of 500 mV to 5000 mV.

전술한 본 발명의 실시예에서는 스택구조의 캐패시터 형성 방법을 예로서 설명하였지만, 상기 캐패시터는 실린더 구조 등 여러 형상으로 형성할 수 있으며, 캐패시터의 상, 하부 전극은 Ru, RuO2, Ir, IrO2등으로 형성하며, 고유전막(8)은 50 Å 내지 500 Å 두께의 BST(((Ba,Sr)TiO3), 200 Å 내지 2000 Å 두께의 SBT(Y1)(SrBi2Ta2O9), 50 Å 내지 500 Å 두께의 Ta2O5막 또는 20 Å 내지 150 Å 두께의 Al2O3로 형성할 수도 있다.In the above-described embodiment of the present invention, a method of forming a capacitor having a stack structure has been described as an example, but the capacitor may be formed in various shapes such as a cylinder structure, and the upper and lower electrodes of the capacitor are Ru, RuO 2 , Ir, IrO 2. The high dielectric film 8 is formed of BST (((Ba, Sr) TiO 3 ) having a thickness of 50 kV to 500 kV, SBT (Y1) (SrBi 2 Ta 2 O 9 ) having a thickness of 200 kV to 2000 kV, It can also be formed from a Ta 2 O 5 film having a thickness of 50 kPa to 500 kPa or Al 2 O 3 of 20 kPa to 150 kPa.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

상기와 같이 이루어지는 본 발명은 반도체 소자의 확산방지막으로 단차피복성이 우수하고 고온 열안정성이 뛰어난 ZrB2막을 고유전율 캐패시터의 스토리지 노드 콘택 내에 형성하여 고유전율 특성과 절연 특성이 우수한 캐패시터를 형성할 수 있다.According to the present invention as described above, a ZrB 2 film having excellent step coverage and excellent high temperature thermal stability as a diffusion barrier of a semiconductor device can be formed in a storage node contact of a high dielectric constant capacitor to form a capacitor having high dielectric constant and insulation characteristics. have.

Claims (13)

반도체 소자의 캐패시터 제조 방법에 있어서,In the capacitor manufacturing method of a semiconductor element, 반도체 기판 상부에 확산방지막으로서 ZrB2막을 형성하는 제1 단계;Forming a ZrB 2 film as a diffusion barrier over the semiconductor substrate; 상기 ZrB2막 상에 하부전극을 형성하는 제2 단계;Forming a lower electrode on the ZrB 2 film; 상기 하부전극 상에 유전막을 형성하는 제3 단계; 및Forming a dielectric layer on the lower electrode; And 상기 유전막 상에 상부전극을 형성하는 제4 단계A fourth step of forming an upper electrode on the dielectric layer 를 포함하는 반도체 소자의 캐패시터 제조 방법.Capacitor manufacturing method of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 ZrB2막을The ZrB 2 membrane 상기 반도체 기판 상에 형성된 층간절연막 내부를 통과하여 상기 하부전극과 상기 반도체 기판을 연결하는 콘택홀 내에 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And forming a contact hole connecting the lower electrode and the semiconductor substrate through an interlayer insulating layer formed on the semiconductor substrate. 제 2 항에 있어서,The method of claim 2, 상기 ZrB2막은,The ZrB 2 film, 상기 콘택홀 내부의 실리사이드층 상에 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And forming a capacitor on the silicide layer in the contact hole. 제 3 항에 있어서,The method of claim 3, wherein 상기 실리사이드층은The silicide layer is TiSi2또는 ZrSi2인 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.A method for manufacturing a capacitor of a semiconductor device, characterized in that the TiSi 2 or ZrSi 2 . 제 1 항에 있어서,The method of claim 1, 상기 제1 단계에서,In the first step, Zr(BH4)4프리커서를 이용하여 화학기상증착장치에서 상기 ZrB2막을 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.A method of manufacturing a capacitor for a semiconductor device, comprising forming the ZrB 2 film in a chemical vapor deposition apparatus using a Zr (BH 4 ) 4 precursor. 제 5 항에 있어서,The method of claim 5, 상기 화학기상증착 장치의 반응기 내에 수소 또는 중수소와 헬륨 또는 아르곤 가스를 주입하여 상기 Zr(BH4)4프리커서를 분해시키거나,Hydrogen or deuterium and helium or argon gas are injected into the reactor of the chemical vapor deposition apparatus to decompose the Zr (BH 4 ) 4 precursor, 또는 열분해 방법으로 상기 Zr(BH4)4프리커서를 분해시키는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.Or decomposing the Zr (BH 4 ) 4 precursor by a thermal decomposition method. 제 1 항에 있어서,The method of claim 1, 프리커서로서 ZrH2와 BH4또는 B2H6를 사용하여 상기 ZrB2막을 화학기상증착법으로 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.A method for manufacturing a capacitor of a semiconductor device, wherein the ZrB 2 film is formed by chemical vapor deposition using ZrH 2 and BH 4 or B 2 H 6 as a precursor. 제 1 항에 있어서,The method of claim 1, ZrB2타겟을 이용한 DC 마그네트론 스퍼터링 방법으로 상기 ZrB2막을 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.A method for manufacturing a capacitor of a semiconductor device, comprising forming the ZrB 2 film by a DC magnetron sputtering method using a ZrB 2 target. 제 1 항에 있어서,The method of claim 1, ECR 장치에서 플라즈마를 발생시켜 상기 ZrB2막을 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.Plasma is generated in an ECR device to form the ZrB 2 film. 제 5 항 내지 제 9 항 중 어느 한 항에 있어서,The method according to any one of claims 5 to 9, 상기 제1 단계 후,After the first step, 550 ℃ 내지 700 ℃ 온도에서 N2분위기로 급속열처리하여 상기 ZrB2막을 치밀화시키는 제5 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And a fifth step of densifying the ZrB 2 film by rapid heat treatment at a temperature of 550 ° C. to 700 ° C. in an N 2 atmosphere. 제 10 항에 있어서,The method of claim 10, ZrB2막에서 B/Zr 값은 2를 넘지 않는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.A method for manufacturing a capacitor of a semiconductor device, characterized in that the B / Zr value in the ZrB 2 film does not exceed 2. 제 11 항에 있어서,The method of claim 11, 챔버내 산소의 농도가 100 ppm 이하인 조건에서 상기 ZrB2막을 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And forming the ZrB 2 film under a condition of 100 ppm or less of oxygen in the chamber. 제 12 항에 있어서,The method of claim 12, 상기 유전막을 ((Ba,Sr)TiO3), SrBi2Ta2O9, Ta2O5막 또는 Al2O3막으로 형성하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The dielectric film is formed of ((Ba, Sr) TiO 3 ), SrBi 2 Ta 2 O 9 , Ta 2 O 5 film or Al 2 O 3 film.
KR10-1999-0030614A 1999-07-27 1999-07-27 Method for forming capacitor having zirconiumdiboride layer as diffusion barrier KR100510064B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-1999-0030614A KR100510064B1 (en) 1999-07-27 1999-07-27 Method for forming capacitor having zirconiumdiboride layer as diffusion barrier
JP2000227452A JP2001068638A (en) 1999-07-27 2000-07-27 Semiconductor element provided with a pair of diffusion preventive films and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0030614A KR100510064B1 (en) 1999-07-27 1999-07-27 Method for forming capacitor having zirconiumdiboride layer as diffusion barrier

Publications (2)

Publication Number Publication Date
KR20010011308A true KR20010011308A (en) 2001-02-15
KR100510064B1 KR100510064B1 (en) 2005-08-26

Family

ID=19605004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0030614A KR100510064B1 (en) 1999-07-27 1999-07-27 Method for forming capacitor having zirconiumdiboride layer as diffusion barrier

Country Status (2)

Country Link
JP (1) JP2001068638A (en)
KR (1) KR100510064B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911352A (en) * 2019-12-04 2020-03-24 西安文理学院 Diffusion barrier layer for Cu interconnection and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911352A (en) * 2019-12-04 2020-03-24 西安文理学院 Diffusion barrier layer for Cu interconnection and preparation method and application thereof
CN110911352B (en) * 2019-12-04 2022-05-17 西安文理学院 Diffusion barrier layer for Cu interconnection and preparation method and application thereof

Also Published As

Publication number Publication date
KR100510064B1 (en) 2005-08-26
JP2001068638A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
KR100269306B1 (en) Integrate circuit device having buffer layer containing metal oxide stabilized by low temperature treatment and fabricating method thereof
US5686151A (en) Method of forming a metal oxide film
KR100420847B1 (en) Method of forming thin film capacitor
KR20010063475A (en) Method of manufacturing a capacitor in a semiconductor device
JP4486735B2 (en) Manufacturing method of capacitor of semiconductor memory device
US6607963B2 (en) Method for forming capacitor of semiconductor device
US6559000B2 (en) Method of manufacturing a capacitor in a semiconductor device
US6777740B2 (en) Capacitor for semiconductor memory device and method of manufacturing the same
KR100424710B1 (en) Fabricating method of semiconductor device
KR100510064B1 (en) Method for forming capacitor having zirconiumdiboride layer as diffusion barrier
KR100671604B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100614576B1 (en) Method for forming capacitor
KR20030043256A (en) Semiconductor device and the method of fabricating same
KR100827521B1 (en) Capacitor of semiconductor device and method for manufacturing the same
KR100604664B1 (en) Capacitor with double dielectric and method for manufacturing the same
KR100399073B1 (en) Capacitor in Semiconductor Device and method of fabricating the same
KR20000025706A (en) Method for fabricating capacitor for ferro electric ram
KR100646923B1 (en) A method of manufacturing a capacitor in a semiconductor device
KR20020002722A (en) Method of manufacturing a capacitor in a semiconductor device
KR100388465B1 (en) Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof
KR100685637B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100419027B1 (en) Method for fabricating capacitor of semiconductor device
KR100611386B1 (en) Method For Treating The High Temperature Of Tantalium Oxide Capacitor
KR100580747B1 (en) Method of manufacturing a high dielectric capacitor
KR100384848B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080728

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee