KR20010010010A - Vacuum chamber for metal deposition - Google Patents

Vacuum chamber for metal deposition Download PDF

Info

Publication number
KR20010010010A
KR20010010010A KR19990028682A KR19990028682A KR20010010010A KR 20010010010 A KR20010010010 A KR 20010010010A KR 19990028682 A KR19990028682 A KR 19990028682A KR 19990028682 A KR19990028682 A KR 19990028682A KR 20010010010 A KR20010010010 A KR 20010010010A
Authority
KR
Grant status
Application
Patent type
Prior art keywords
valve
ion gauge
vacuum
metal deposition
body
Prior art date
Application number
KR19990028682A
Other languages
Korean (ko)
Inventor
김영선
변대일
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Abstract

PURPOSE: A vacuum chamber for metal deposition is provided to prevent reduction of a life cycle of an ion gauge and deterioration of accuracy of vacuum indication, and decrease defects in the metal deposition process, thereby increasing a process reliability by simultaneously opening or closing a valve for an ion gauge together with a high vacuum valve between a body and a pump. CONSTITUTION: A vacuum chamber for metal deposition comprises a body (10) for securing a sealed inner space for metal deposition; a pump (20) which is continuously connected with an inner space of the body (10) through a high vacuum valve (30), thereby pumping to make the inner space of the body (10) be in a vacuum state; an ion gauge (40) for checking the vacuum state of the inner space of the body (10); and a valve (50) for the ion gauge which is installed between other partial area of side surface of the body (10) and the ion gauge (40), thereby protecting the ion gauge (40). The valve (50) for the ion gauge is interlocked to the high vacuum valve (30) so as to be driven along with it. A controlling signal of the high vacuum valve (30) is commonly impressed so that the valve (50) for the ion gauge is opened or closed along with the high vacuum valve (30).

Description

금속증착용 진공챔버{vacuum chamber for metal deposition} Metal deposition vacuum chamber for metal deposition vacuum chamber {}

본 발명은 금속증착용 진공챔버에 관한 것으로, 더욱 상세하게는 이온게이지의 수명단축과 진공측정 정밀도 저하를 방지하여 금속증착공정의 신뢰성을 향상하도록 한 금속증착용 진공챔버에 관한 것이다. The present invention relates to a vacuum chamber wearing a metallization to improve that, more specifically, an ion gauge reduced life and reliability of the metal deposition process to prevent degradation of measurement accuracy vacuum on the vacuum chamber metallization.

일반적으로 집적회로의 금속 배선을 위한 금속층을 증착하는데 스퍼터링 공정이 주로 이용되는데, 상기 스퍼터링 공정은 RF 파워나 DC 파워에 의해 형성된 플라즈마 상태의 높은 에너지를 갖고 있는 불활성 가스 이온이 스퍼터링 장치의 캐소드 전극에 부착되어 있는 금속타겟(material target)의 표면과 충돌하여 증착하고자 하는 금속타겟의 금속입자들이 스퍼터링되어 웨이퍼에 증착되는 공정이다. In general, depositing a metal layer for the metal wiring of the integrated circuit by a sputtering process is mainly used, the cathode of the sputtering process is an ion inert gas which has a high energy of the plasma state is formed by the RF power and DC power sputtering apparatus It collides with the surface of metal particles of the metal target to deposit a (target material) that is attached to a metal target is sputtered to a process to be deposited on the wafer.

도 1은 종래 기술에 의한 금속증착용 진공챔버를 나타낸 구성도이다. 1 is a block diagram showing a metal deposition vacuum chamber according to the prior art. 도 1에 도시된 바와 같이, 진공챔버는 대략 원통 형상의 본체(10)의 내측 저면에 웨이퍼(도시 안됨)를 지지하기 위한 페데스털(pedestal)(11)이 배치되고, 본체(10)의 내측 상면에 증착하고자 하는 금속으로 이루어진 타겟(13)이 배치된다. 1, the vacuum chamber of the pedestal (pedestal) (11) are arranged, the main body 10 for supporting a wafer (not shown) on the inner bottom surface of the main body 10 of substantially cylindrical shape the target 13 is made of a metal to be deposited on the upper surface of the inside is disposed. 펌프(20)가 본체(10)의 내부공간의 진공을 낮추기 위해 고진공밸브(30)를 거쳐 본체(10)의 내부공간에 연통하여 연결된다. Pump 20 is via the high vacuum valve 30 to lower the vacuum in the internal space of the main body 10 is connected in communication to the inner space of the main body 10. 이온게이지(40)가 본체(10)의 내부공간의 진공을 확인하기 위해 본체(10)에 설치된다. Ion gauge 40 is provided in the main body 10 to make the vacuum of the inner space of the main body 10.

이와 같이 구성된 종래의 진공챔버에서는 본체(10)의 페데스털(11)에 웨이퍼(도시 안됨)가 장착된 후 본체(10) 내의 내부공간의 압력을 고진공으로 낮추기 위해 고진공밸브(20)의 개방을 위한 제어신호(OPEN)가 제어라인(31)을 거쳐 고진공밸브(20)에 인가되면, 고진공밸브(20)가 개방된다. To lower this way, in a conventional vacuum chamber consisting of the pressure in the space within After the pedestal wafer (not shown) to the 11 of the main body 10 mounted body 10 in a high vacuum opening of the vacuum valve 20 When the control signal (oPEN) is via a control line 31 for applying a high vacuum valve 20, the high vacuum valve 20 is opened. 이에 따라, 가동중인 펌프(20)가 본체(10) 내의 내부공간에 존재하는 공기는 물론 미세한 입자까지도 배출하기 시작한다. In this way, the air that is a powered pump 20 is present in the inner space in the main body 10 as well starts to discharge, even fine particles.

이후, 이온게이지(40)를 이용하여 본체(10) 내의 내부공간이 금속증착에 적합한 진공상태로 된 것이 확인되고 나면, 이러한 진공상태에서 실질적인 금속증착공정의 진행이 개시된다. Then, the ions once the interior space within the body 10 by using the gauge 40, and confirmed that the a vacuum suitable for the metal deposition, the progress of the actual metal deposition process is disclosed in this vacuum. 즉, 타겟(13)의 금속물질이 웨이퍼 상에 적층되기 시작하는 것이다. That is, the metal material of the target 13 is started to be deposited on the wafer.

상기 웨이퍼 상에 금속층이 원하는 두께로 적층되고 나면, 고진공밸브(20)의 차단을 위한 제어신호(CLOSE)가 제어라인(33)을 거쳐 고진공밸브(20)에 인가되고 고진공밸브(20)가 차단된다. After are stacked to a desired thickness metal layer on the wafer, and the control signal (CLOSE) for blocking the high vacuum valve 20 is applied to the high vacuum valve 20 via a control line 33, a high vacuum valve 20 is blocked, do.

이후, 본체(10) 내의 내부공간이 대기압으로 전환되고 나면, 금속증착 완료된 웨이퍼가 인출되고 금속증착할 또 다른 웨이퍼가 페데스털 상(11)에 장착된다. Then, the inner space is another wafer after being switched to the atmospheric pressure, and the take-off the metal deposition is complete the wafer to deposit metal in the main body 10 is mounted on the pedestal (11).

그런데, 종래에는 이온게이지(40)가 본체(10)에 직접 연결되어 있기 때문에 본체(10)의 내부공간이 진공상태일 경우, 이온게이지(40)가 별다른 영향을 받지 않는다. By the way, in the prior art, the ion gauge 40 is because it is directly connected to the main body 10 when the inner space of the main body 10, a vacuum, an ion gauge (40) is not subject to little impact. 그러나, 진공밸브(20)의 내부공간이 대기압상태일 경우, 이온게이지(40)의 필라멘트(41)가 직접 대기에 노출되므로 대기 속의 여러 가지 오염원에 의해 오염되기 쉽다. However, if the atmospheric pressure, the internal space of the vacuum valve 20, since the ion filament 41 of the gauge 40 is directly exposed to the air liable to be contaminated by a number of pollutants in the atmosphere.

이로 인하여, 이온게이지(40)가 강제 열화되어 수명단축이 유발되고 나아가 진공표시의 정밀도가 저하되어 최종적으로 금속증착공정이 제대로 진행될 수 없고 심한 경우, 공정불량 사고가 발생할 수도 있다. Due to this, the ion gauge (40) is forced degradation is a shortened life expectancy and cause further deterioration of the vacuum precision finally display may occur in severe cases, bad thinking process no metal deposition process to proceed properly.

따라서, 본 발명은 대기압에서의 대기 오염원으로 인한 이온게이지의 수명단축 및 정밀도 저하를 방지하여 금속증착공정의 신뢰성을 확보하도록 한 금속증착용 진공챔버를 제공하는데 있다. Accordingly, the present invention is to provide an ion gauge life shortening and prevent precision degradation by wearing a metallization so as to ensure the reliability of the metal deposition process, the vacuum chamber due to the air pollutants at atmospheric pressure.

도 1은 종래 기술에 의한 금속증착용 진공챔버를 나타낸 구성도. Figure 1 is a schematic view showing a wearing vacuum metal vapor deposition chamber according to the prior art.

도 2는 본 발명에 의한 금속증착용 진공챔버를 나타낸 구성도. Figure 2 is a schematic view showing a vacuum chamber increases wear of metal according to the present invention.

이와 같은 목적을 달성하기 위한 본 발명에 의한 금속증착용 진공챔버는 The metal deposition vacuum chamber according to the present invention for achieving the same purpose

금속증착에 필요한 밀폐된 내부공간을 확보하기 위한 본체; Body to secure a space for sealing inside required for metal deposition;

상기 본체의 내부공간에 고진공밸브를 거쳐 연통되어, 상기 본체의 내부공간을 진공상태로 만들기 위해 펌핑하는 펌프; Pump which communicates via a vacuum valve in the internal space of the main body, the pumping to create the internal space of the main body in a vacuum state;

상기 본체의 내부공간의 진공상태를 확인하기 위한 이온게이지; Ion gauge for checking the vacuum of the inner space of the main body; 그리고 And

상기 본체의 측면 다른 일부영역과 상기 이온게이지 사이에 설치되어, 상기 이온게이지를 보호하는 이온게이지용 밸브를 포함하는 것을 특징으로 한다. Is provided between the other side portion of the main body and the ion gauge, it characterized in that it comprises an ion gauge valve for protecting the ion gauge.

바람직하게는 상기 이온게이지용 밸브가 상기 고진공밸브와 연동하여 구동한다. Preferably, the driving by the ion gauge for the valve in conjunction with the high vacuum valves. 상기 이온게이지용 밸브가 상기 고진공밸브와 함께 동시에 차단된다. The ion gauge for the valve is cut off at the same time with the high vacuum valves. 또한, 상기 이온게이지용 밸브가 상기 고진공밸브가 개방될 때 함께 동시에 개방된다. Also, when the above-mentioned ion gauge valve is to be opened and the high vacuum valve is opened together at the same time.

따라서, 본 발명은 진공챔버의 본체의 내부공간이 고진공밸브가 차단되면서 대기압으로 전환되더라도 이온게이지용 밸브 또한 차단되므로 본체의 내부공간의 대기압 상태에서도 이온게이지의 오염을 방지한다. Accordingly, the invention is the inner space of the main body of the vacuum chamber to prevent contamination of the ion gauge, so even if the switching valve to the atmospheric pressure for ion gauge also blocked in the atmospheric pressure state in the internal space of the main body while the high vacuum valve is blocked. 그 결과, 본 발명은 이온게이지의 수명단축을 방지하고 진공표시의 정밀도를 유지하여 금속증착공정의 불량발생율을 줄임으로써 공정 신뢰성을 확보한다. As a result, the present invention is to prevent shortening the life of the ion gauge and securing process reliability as to maintain the precision of the vacuum displays reducing the defect rate of the metal deposition process.

이하, 본 발명에 의한 금속증착용 진공챔버를 첨부된 도면을 참조하여 상세히 설명하기로 한다. Reference to the drawings attached to the vacuum chamber metallization according to the present invention will be described in detail. 종래의 부분과 동일 구성 및 동일 작용을 갖는 부분에는 동일한 부호를 부여한다. Portion with a conventional section with the same configuration and the same function are given the same reference numerals.

도 2는 본 발명에 의한 금속증착용 진공챔버를 나타낸 구성도이다. 2 is a block diagram showing the vacuum chamber increases wear metal according to the present invention.

도 2에 도시된 바와 같이, 진공챔버는 대략 원통 형상의 본체(10)의 내측 저면에 웨이퍼(도시 안됨)를 지지하기 위한 페데스털(pedestal)(11)이 배치되고, 본체(10)의 내측 상면에 증착하고자 하는 금속으로 이루어진 타겟(13)이 배치된다. 2, the vacuum chamber of the pedestal (pedestal) (11) are arranged, the main body 10 for supporting a wafer (not shown) on the inner bottom surface of the main body 10 of substantially cylindrical shape the target 13 is made of a metal to be deposited on the upper surface of the inside is disposed. 펌프(20)가 본체(10)의 내부공간의 진공을 낮추기 위해 고진공밸브(30)를 거쳐 본체(10)의 내부공간에 연통하여 연결된다. Pump 20 is via the high vacuum valve 30 to lower the vacuum in the internal space of the main body 10 is connected in communication to the inner space of the main body 10. 이온게이지(40)가 본체(10)의 내부공간의 진공을 확인하기 위해 본체(10)에 설치된다. Ion gauge 40 is provided in the main body 10 to make the vacuum of the inner space of the main body 10. 이온게이지(40)의 보호를 위해 이온게이지(40)와 본체(10) 사이에 이온게이지용 밸브(50)가 추가로 설치된다. For the protection of the ion gauge 40, an ion gauge (40) and the main valve ion gauge (50) between (10) is added to the installation.

여기서, 이온게이지용 밸브(50)는 동시에 고진공밸브(30)의 차단과 함께 차단되고 고진공밸브(30)의 개방과 함께 개방되도록 고진공밸브(30)의 개방/차단을 위한 제어신호(OPEN),(CLOSE)가 이온게이지용 밸브(50)에도 공통 인가된다. Here, the ion gauge valve (50) is at the same time blocking with blocking of the vacuum valve 30 for opening / interruption of the high vacuum valve 30 to be opened with the opening of the vacuum valve 30, the control signal (OPEN), (CLOSE) it is applied to the common ion gauge valve (50).

이와 같이 구성된 본 발명에 의한 금속증착용 진공밸브에서는 본체(10)의 페데스털(11)에 웨이퍼(도시 안됨)가 장착된 후 본체(10) 내의 내부공간의 압력을 고진공으로 낮추기 위해 고진공밸브(20)의 개방을 위한 제어신호(OPEN)가 제어라인(31)을 거쳐 고진공밸브(20)에 인가되고 이와 아울러 제어라인(51)을 거쳐 이온게이지용 밸브(50)에도 인가되면, 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 동시에 개방된다. As described above, in the metal deposition vacuum valve according to the present invention configured body 10 of page des wafer to coat 11 a high vacuum valve to lower the pressure in the space in the after (not shown) is mounted body 10 in high vacuum control signal (oPEN) for opening (20) is applied to the high vacuum valve 20 via a control line 31. in addition, when applied in the through ion gauge valve 50 for the control line 51, a high vacuum valve valve with an ion gauge 20, 50 are opened at the same time. 이때, 이온게이지용 밸브(50)가 개방되므로 이온게이지(40)가 본체(10) 내의 진공을 표시한다. At this time, since the ion gauge valve 50 for opening and an ion gauge (40) displays the vacuum in the main body 10.

이에 따라, 가동중인 펌프(20)가 본체(10) 내의 내부공간에 존재하는 공기는 물론 미세한 입자까지도 배출하기 시작한다. In this way, the air that is a powered pump 20 is present in the inner space in the main body 10 as well starts to discharge, even fine particles.

이후, 이온게이지(40)를 이용하여 본체(10) 내의 내부공간이 금속증착에 적합한 진공상태로 된 것이 확인되고 나면, 이러한 진공상태에서 실질적인 금속증착공정의 진행이 개시된다. Then, the ions once the interior space within the body 10 by using the gauge 40, and confirmed that the a vacuum suitable for the metal deposition, the progress of the actual metal deposition process is disclosed in this vacuum. 즉, 타겟(13)의 금속물질이 웨이퍼 상에 적층되기 시작하는 것이다. That is, the metal material of the target 13 is started to be deposited on the wafer.

상기 웨이퍼 상에 금속층이 원하는 두께로 적층되고 나면, 고진공밸브(20)의 차단을 위한 제어신호(CLOSE)가 제어라인(33)을 거쳐 고진공밸브(20)에 인가되고 이와 아울러 제어라인(53)을 거쳐 이온게이지용 밸브(50)에 인가되고 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 동시에 차단된다. After the metal layer on the wafer is stacked to the desired thickness, the control signal (CLOSE) for blocking the high vacuum valve 20 is applied to the high vacuum valve 20 via a control line 33. In addition, the control line 53 through the ion gauge is applied to the valve 50, an ion gauge valve (50) with a high-vacuum valve 20 may be cut off at the same time.

따라서, 종래에는 고진공밸브(20)만이 차단되면서 본체(10) 내의 내부공간이 대기압으로 전환될 때, 이온게이지(40)의 필라멘트(41)가 내부공간에 직접 노출되므로 본체(10) 내의 대기 오염원이 이온게이지(40)의 필라멘트(41)를 오염시킨다. Thus, in the prior art, air pollutants in the high vacuum valve 20 only when the internal space in the body 10 switches to the atmospheric pressure as blocks, since the filament 41 of the ion gauge 40 is directly exposed to the internal space main body 10 pollute the filament 41 of the ion gauge 40.

그러나, 본 발명은 이와는 달리 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 차단되므로 본체(10) 내의 내부공간이 대기압으로 전환될 때일지라도 이온게이지(40)의 필라멘트(41)가 내부공간에 직접 노출되지 않는다. However, the filament 41 of the present invention is an ion gauge (40), even when the inner space in a contrast a high vacuum valve 20, so the ion gauge valve 50 is also blocked for with the main body 10 is switched to the atmospheric pressure is the internal It not directly exposed to space. 그 결과, 본체(10) 내의 대기 오염원이 이온게이지(40)의 필라멘트(41)를 오염시킬 가능성이 없어진다. As a result, eliminating the possibility of air pollutants in the body 10, and contaminate the filaments 41 of the ion gauge 40. 그 결과 이온게이지의 필라멘트의 오염으로 인해 이온게이지의 필라멘트가 강제 열화되어 이온게이지의 수명이 단축되고 정밀한 진공측정이 어려운 종래의 문제점이 해소된다. As a result, contamination due to ion filament force is deteriorated ion gauge the speed and precision vacuum measurement is difficult in the prior art problem of the life of the filament of the ion gauge gage is eliminated.

이후, 금속증착 완료된 웨이퍼가 인출되고 금속증착할 또 다른 웨이퍼가 페데스털(11) 상에 장착된다. Then, the wafer is drawn out is complete, the metallization is another wafer to deposit a metal is mounted on the pedestal (11).

이상에서 살펴본 바와 같이, 본 발명에 의하면, 진공챔버의 본체와 이온게이지 사이에 이온게이지용 밸브가 추가로 설치되고 이온게이지용 밸브가 본체와 펌프 사이의 고진공밸브와 동시에 개방/차단된다. As described above, according to the present invention, an ion gauge for the valve between the main unit and the ion gauge of the vacuum chamber is added to the installation, and the valve opening at the same time for an ion gauge and a vacuum valve between the body and the pump / shut-off with.

따라서, 본 발명은 고진공밸브가 차단될 때 이온게이지용 밸브도 차단되므로 본체 내의 내부공간이 대기압으로 전환되더라도 이온게이지의 필라멘트가 대기의 오염원으로부터 오염되는 것이 방지된다. Accordingly, the present invention since the ion gauge valve also blocks for even if the inner space in the main body switch to the atmospheric pressure to the filament of the ion gauge contamination from the source of air is prevented when the high-vacuum valve block. 그 결과, 이온게이지의 수명단축이 방지되고 나아가 진공표시의 정밀도 저하가 방지되고 나아가 금속증착공정의 불량사고발생율이 줄어 공정 신뢰성이 향상된다. As a result, the reduced life of the ion gauge and prevent further deterioration of the accuracy is prevented vacuum displayed and further improve the process reliability is reduced bad accident rate of the metal deposition process.

한편, 본 발명은 도시된 도면과 상세한 설명에 기술된 내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형도 가능함은 이 분야에 통상의 지식을 가진 자에게는 자명한 사실이다. On the other hand, the present invention is a self-evident of ordinary skill in the art various types of modifications within a range not departing from the spirit of the present not limited to the contents described in the depicted figures and the detailed description invention are possible is for the fact .

Claims (3)

  1. 금속증착에 필요한 밀폐된 내부공간을 확보하기 위한 본체; Body to secure a space for sealing inside required for metal deposition;
    상기 본체의 내부공간에 고진공밸브를 거쳐 연통되어, 상기 본체의 내부공간을 진공상태로 만들기 위해 펌핑하는 펌프; Pump which communicates via a vacuum valve in the internal space of the main body, the pumping to create the internal space of the main body in a vacuum state;
    상기 본체의 내부공간의 진공상태를 확인하기 위한 이온게이지; Ion gauge for checking the vacuum of the inner space of the main body; 그리고 And
    상기 본체의 측면 다른 일부영역과 상기 이온게이지 사이에 설치되어, 상기 이온게이지를 보호하는 이온게이지용 밸브를 포함하는 금속증착용 진공챔버. Ion gauge valve metal deposition vacuum chamber including a for which is provided between the other side portion of the main body and the ion gauge, protecting the ion gauge.
  2. 제 1 항에 있어서, 상기 이온게이지용 밸브가 상기 고진공밸브와 함께 연동하여 구동하는 것을 특징으로 하는 금속증착용 진공밸브. The method of claim 1, wherein the ion gauge valve metal deposition vacuum valve, characterized in that for driving in cooperation with the high vacuum valves.
  3. 제 2 항에 있어서, 상기 이온게이지용 밸브가 상기 고진공밸브와 함께 개방/차단하도록 상기 고진공밸브의 제어신호를 공통으로 인가받는 것을 특징으로 하는 금속증착용 진공밸브. The method of claim 2, wherein the ion gauge valve metal deposition vacuum valve, characterized in that receiving a control signal applied to the high vacuum valve in common so as to open / shut-off with the high vacuum valves.
KR19990028682A 1999-07-15 1999-07-15 Vacuum chamber for metal deposition KR20010010010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR19990028682A KR20010010010A (en) 1999-07-15 1999-07-15 Vacuum chamber for metal deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR19990028682A KR20010010010A (en) 1999-07-15 1999-07-15 Vacuum chamber for metal deposition

Publications (1)

Publication Number Publication Date
KR20010010010A true true KR20010010010A (en) 2001-02-05

Family

ID=19602033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR19990028682A KR20010010010A (en) 1999-07-15 1999-07-15 Vacuum chamber for metal deposition

Country Status (1)

Country Link
KR (1) KR20010010010A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9058653B1 (en) 2011-06-10 2015-06-16 Flir Systems, Inc. Alignment of visible light sources based on thermal images
US9143703B2 (en) 2011-06-10 2015-09-22 Flir Systems, Inc. Infrared camera calibration techniques
US9207708B2 (en) 2010-04-23 2015-12-08 Flir Systems, Inc. Abnormal clock rate detection in imaging sensor arrays
US9208542B2 (en) 2009-03-02 2015-12-08 Flir Systems, Inc. Pixel-wise noise reduction in thermal images
US9235023B2 (en) 2011-06-10 2016-01-12 Flir Systems, Inc. Variable lens sleeve spacer
US9235876B2 (en) 2009-03-02 2016-01-12 Flir Systems, Inc. Row and column noise reduction in thermal images
US9292909B2 (en) 2009-06-03 2016-03-22 Flir Systems, Inc. Selective image correction for infrared imaging devices
USD765081S1 (en) 2012-05-25 2016-08-30 Flir Systems, Inc. Mobile communications device attachment with camera
US9451183B2 (en) 2009-03-02 2016-09-20 Flir Systems, Inc. Time spaced infrared image enhancement
US9473681B2 (en) 2011-06-10 2016-10-18 Flir Systems, Inc. Infrared camera system housing with metalized surface
US9509924B2 (en) 2011-06-10 2016-11-29 Flir Systems, Inc. Wearable apparatus with integrated infrared imaging module
US9517679B2 (en) 2009-03-02 2016-12-13 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US9521289B2 (en) 2011-06-10 2016-12-13 Flir Systems, Inc. Line based image processing and flexible memory system
US9635285B2 (en) 2009-03-02 2017-04-25 Flir Systems, Inc. Infrared imaging enhancement with fusion
US9635220B2 (en) 2012-07-16 2017-04-25 Flir Systems, Inc. Methods and systems for suppressing noise in images
US9674458B2 (en) 2009-06-03 2017-06-06 Flir Systems, Inc. Smart surveillance camera systems and methods
US9706138B2 (en) 2010-04-23 2017-07-11 Flir Systems, Inc. Hybrid infrared sensor array having heterogeneous infrared sensors
US9706137B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US9706139B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Low power and small form factor infrared imaging
US9716843B2 (en) 2009-06-03 2017-07-25 Flir Systems, Inc. Measurement device for electrical installations and related methods
US9723227B2 (en) 2011-06-10 2017-08-01 Flir Systems, Inc. Non-uniformity correction techniques for infrared imaging devices
US9756262B2 (en) 2009-06-03 2017-09-05 Flir Systems, Inc. Systems and methods for monitoring power systems
US9756264B2 (en) 2009-03-02 2017-09-05 Flir Systems, Inc. Anomalous pixel detection
US9807319B2 (en) 2009-06-03 2017-10-31 Flir Systems, Inc. Wearable imaging devices, systems, and methods
US9811884B2 (en) 2012-07-16 2017-11-07 Flir Systems, Inc. Methods and systems for suppressing atmospheric turbulence in images
US9819880B2 (en) 2009-06-03 2017-11-14 Flir Systems, Inc. Systems and methods of suppressing sky regions in images
US9843742B2 (en) 2009-03-02 2017-12-12 Flir Systems, Inc. Thermal image frame capture using de-aligned sensor array
US9848134B2 (en) 2010-04-23 2017-12-19 Flir Systems, Inc. Infrared imager with integrated metal layers
US9900526B2 (en) 2011-06-10 2018-02-20 Flir Systems, Inc. Techniques to compensate for calibration drifts in infrared imaging devices
US9918023B2 (en) 2010-04-23 2018-03-13 Flir Systems, Inc. Segmented focal plane array architecture
US9948872B2 (en) 2009-03-02 2018-04-17 Flir Systems, Inc. Monitor and control systems and methods for occupant safety and energy efficiency of structures
US9961277B2 (en) 2011-06-10 2018-05-01 Flir Systems, Inc. Infrared focal plane array heat spreaders
US9973692B2 (en) 2013-10-03 2018-05-15 Flir Systems, Inc. Situational awareness by compressed display of panoramic views
US9986175B2 (en) 2009-03-02 2018-05-29 Flir Systems, Inc. Device attachment with infrared imaging sensor
US9998697B2 (en) 2009-03-02 2018-06-12 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US10051210B2 (en) 2011-06-10 2018-08-14 Flir Systems, Inc. Infrared detector array with selectable pixel binning systems and methods
US10079982B2 (en) 2011-06-10 2018-09-18 Flir Systems, Inc. Determination of an absolute radiometric value using blocked infrared sensors
US10091439B2 (en) 2009-06-03 2018-10-02 Flir Systems, Inc. Imager with array of multiple infrared imaging modules

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517679B2 (en) 2009-03-02 2016-12-13 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US10033944B2 (en) 2009-03-02 2018-07-24 Flir Systems, Inc. Time spaced infrared image enhancement
US9998697B2 (en) 2009-03-02 2018-06-12 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
US9208542B2 (en) 2009-03-02 2015-12-08 Flir Systems, Inc. Pixel-wise noise reduction in thermal images
US9986175B2 (en) 2009-03-02 2018-05-29 Flir Systems, Inc. Device attachment with infrared imaging sensor
US9235876B2 (en) 2009-03-02 2016-01-12 Flir Systems, Inc. Row and column noise reduction in thermal images
US9635285B2 (en) 2009-03-02 2017-04-25 Flir Systems, Inc. Infrared imaging enhancement with fusion
US9948872B2 (en) 2009-03-02 2018-04-17 Flir Systems, Inc. Monitor and control systems and methods for occupant safety and energy efficiency of structures
US9451183B2 (en) 2009-03-02 2016-09-20 Flir Systems, Inc. Time spaced infrared image enhancement
US9756264B2 (en) 2009-03-02 2017-09-05 Flir Systems, Inc. Anomalous pixel detection
US9843742B2 (en) 2009-03-02 2017-12-12 Flir Systems, Inc. Thermal image frame capture using de-aligned sensor array
US9716843B2 (en) 2009-06-03 2017-07-25 Flir Systems, Inc. Measurement device for electrical installations and related methods
US9819880B2 (en) 2009-06-03 2017-11-14 Flir Systems, Inc. Systems and methods of suppressing sky regions in images
US9843743B2 (en) 2009-06-03 2017-12-12 Flir Systems, Inc. Infant monitoring systems and methods using thermal imaging
US9292909B2 (en) 2009-06-03 2016-03-22 Flir Systems, Inc. Selective image correction for infrared imaging devices
US9756262B2 (en) 2009-06-03 2017-09-05 Flir Systems, Inc. Systems and methods for monitoring power systems
US9674458B2 (en) 2009-06-03 2017-06-06 Flir Systems, Inc. Smart surveillance camera systems and methods
US9807319B2 (en) 2009-06-03 2017-10-31 Flir Systems, Inc. Wearable imaging devices, systems, and methods
US10091439B2 (en) 2009-06-03 2018-10-02 Flir Systems, Inc. Imager with array of multiple infrared imaging modules
US9848134B2 (en) 2010-04-23 2017-12-19 Flir Systems, Inc. Infrared imager with integrated metal layers
US9207708B2 (en) 2010-04-23 2015-12-08 Flir Systems, Inc. Abnormal clock rate detection in imaging sensor arrays
US9706138B2 (en) 2010-04-23 2017-07-11 Flir Systems, Inc. Hybrid infrared sensor array having heterogeneous infrared sensors
US9918023B2 (en) 2010-04-23 2018-03-13 Flir Systems, Inc. Segmented focal plane array architecture
US9706139B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Low power and small form factor infrared imaging
US10079982B2 (en) 2011-06-10 2018-09-18 Flir Systems, Inc. Determination of an absolute radiometric value using blocked infrared sensors
US9538038B2 (en) 2011-06-10 2017-01-03 Flir Systems, Inc. Flexible memory systems and methods
US9716844B2 (en) 2011-06-10 2017-07-25 Flir Systems, Inc. Low power and small form factor infrared imaging
US10051210B2 (en) 2011-06-10 2018-08-14 Flir Systems, Inc. Infrared detector array with selectable pixel binning systems and methods
US9521289B2 (en) 2011-06-10 2016-12-13 Flir Systems, Inc. Line based image processing and flexible memory system
US9509924B2 (en) 2011-06-10 2016-11-29 Flir Systems, Inc. Wearable apparatus with integrated infrared imaging module
US9473681B2 (en) 2011-06-10 2016-10-18 Flir Systems, Inc. Infrared camera system housing with metalized surface
US9723228B2 (en) 2011-06-10 2017-08-01 Flir Systems, Inc. Infrared camera system architectures
US9900526B2 (en) 2011-06-10 2018-02-20 Flir Systems, Inc. Techniques to compensate for calibration drifts in infrared imaging devices
US9723227B2 (en) 2011-06-10 2017-08-01 Flir Systems, Inc. Non-uniformity correction techniques for infrared imaging devices
US9143703B2 (en) 2011-06-10 2015-09-22 Flir Systems, Inc. Infrared camera calibration techniques
US9961277B2 (en) 2011-06-10 2018-05-01 Flir Systems, Inc. Infrared focal plane array heat spreaders
US9706137B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US9235023B2 (en) 2011-06-10 2016-01-12 Flir Systems, Inc. Variable lens sleeve spacer
US9058653B1 (en) 2011-06-10 2015-06-16 Flir Systems, Inc. Alignment of visible light sources based on thermal images
USD765081S1 (en) 2012-05-25 2016-08-30 Flir Systems, Inc. Mobile communications device attachment with camera
US9811884B2 (en) 2012-07-16 2017-11-07 Flir Systems, Inc. Methods and systems for suppressing atmospheric turbulence in images
US9635220B2 (en) 2012-07-16 2017-04-25 Flir Systems, Inc. Methods and systems for suppressing noise in images
US9973692B2 (en) 2013-10-03 2018-05-15 Flir Systems, Inc. Situational awareness by compressed display of panoramic views

Similar Documents

Publication Publication Date Title
US5096536A (en) Method and apparatus useful in the plasma etching of semiconductor materials
US5707498A (en) Avoiding contamination from induction coil in ionized sputtering
US6602390B1 (en) Coating a workpiece and operating a cathodic arc discharge
US5725746A (en) Shielding for arc suppression in rotating magnetron sputtering systems
EP1010773A1 (en) Method and apparatus for producing plastic container having carbon film coating
US5126033A (en) Process and apparatus for reactively coating a substrate
US5855685A (en) Plasma enhanced CVD apparatus, plasma enhanced processing apparatus and plasma enhanced CVD method
US5549802A (en) Cleaning of a PVD chamber containing a collimator
US4525262A (en) Magnetron reactive bias sputtering method and apparatus
US7198699B2 (en) Sputter coating apparatus including ion beam source(s), and corresponding method
US5772858A (en) Method and apparatus for cleaning a target in a sputtering source
US20020046945A1 (en) High performance magnetron for DC sputtering systems
US5620577A (en) Spring-loaded mount for a rotatable sputtering cathode
US5380414A (en) Shield and collimator pasting deposition chamber with a wafer support periodically used as an acceptor
US6171453B1 (en) Alignment mark shielding ring and method of using
US4274936A (en) Vacuum deposition system and method
US5641375A (en) Plasma etching reactor with surface protection means against erosion of walls
US6440280B1 (en) Multi-anode device and methods for sputter deposition
US5382339A (en) Shield and collimator pasting deposition chamber with a side pocket for pasting the bottom of the collimator
US4547279A (en) Sputtering apparatus
US5514260A (en) Apparatus for simultaneous plating
US3641973A (en) Vacuum coating apparatus
US6113752A (en) Method and device for coating substrate
US5006219A (en) Microwave cathode sputtering arrangement
US6451184B1 (en) Thin film forming apparatus and process for forming thin film using same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination