KR20010010010A - Vacuum chamber for metal deposition - Google Patents
Vacuum chamber for metal deposition Download PDFInfo
- Publication number
- KR20010010010A KR20010010010A KR1019990028682A KR19990028682A KR20010010010A KR 20010010010 A KR20010010010 A KR 20010010010A KR 1019990028682 A KR1019990028682 A KR 1019990028682A KR 19990028682 A KR19990028682 A KR 19990028682A KR 20010010010 A KR20010010010 A KR 20010010010A
- Authority
- KR
- South Korea
- Prior art keywords
- valve
- ion gauge
- metal deposition
- high vacuum
- main body
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
본 발명은 금속증착용 진공챔버에 관한 것으로, 더욱 상세하게는 이온게이지의 수명단축과 진공측정 정밀도 저하를 방지하여 금속증착공정의 신뢰성을 향상하도록 한 금속증착용 진공챔버에 관한 것이다.The present invention relates to a vacuum chamber for metal deposition, and more particularly to a vacuum chamber for metal deposition to improve the reliability of the metal deposition process by preventing the reduction of the life of the ion gauge and the accuracy of vacuum measurement.
일반적으로 집적회로의 금속 배선을 위한 금속층을 증착하는데 스퍼터링 공정이 주로 이용되는데, 상기 스퍼터링 공정은 RF 파워나 DC 파워에 의해 형성된 플라즈마 상태의 높은 에너지를 갖고 있는 불활성 가스 이온이 스퍼터링 장치의 캐소드 전극에 부착되어 있는 금속타겟(material target)의 표면과 충돌하여 증착하고자 하는 금속타겟의 금속입자들이 스퍼터링되어 웨이퍼에 증착되는 공정이다.In general, a sputtering process is mainly used for depositing a metal layer for metal wiring of an integrated circuit. In the sputtering process, inert gas ions having high energy in a plasma state formed by RF power or DC power are applied to the cathode electrode of the sputtering device. The metal particles of the metal target to be deposited by colliding with the surface of the attached metal target are sputtered and deposited on the wafer.
도 1은 종래 기술에 의한 금속증착용 진공챔버를 나타낸 구성도이다. 도 1에 도시된 바와 같이, 진공챔버는 대략 원통 형상의 본체(10)의 내측 저면에 웨이퍼(도시 안됨)를 지지하기 위한 페데스털(pedestal)(11)이 배치되고, 본체(10)의 내측 상면에 증착하고자 하는 금속으로 이루어진 타겟(13)이 배치된다. 펌프(20)가 본체(10)의 내부공간의 진공을 낮추기 위해 고진공밸브(30)를 거쳐 본체(10)의 내부공간에 연통하여 연결된다. 이온게이지(40)가 본체(10)의 내부공간의 진공을 확인하기 위해 본체(10)에 설치된다.1 is a block diagram showing a vacuum chamber for metal deposition according to the prior art. As shown in FIG. 1, the vacuum chamber is provided with a pedestal 11 for supporting a wafer (not shown) on an inner bottom surface of a substantially cylindrical main body 10. A target 13 made of a metal to be deposited is disposed on the inner upper surface. The pump 20 is connected to the internal space of the main body 10 via the high vacuum valve 30 to lower the vacuum of the internal space of the main body 10. The ion gauge 40 is installed in the main body 10 to check the vacuum of the internal space of the main body 10.
이와 같이 구성된 종래의 진공챔버에서는 본체(10)의 페데스털(11)에 웨이퍼(도시 안됨)가 장착된 후 본체(10) 내의 내부공간의 압력을 고진공으로 낮추기 위해 고진공밸브(20)의 개방을 위한 제어신호(OPEN)가 제어라인(31)을 거쳐 고진공밸브(20)에 인가되면, 고진공밸브(20)가 개방된다. 이에 따라, 가동중인 펌프(20)가 본체(10) 내의 내부공간에 존재하는 공기는 물론 미세한 입자까지도 배출하기 시작한다.In the conventional vacuum chamber configured as described above, after the wafer (not shown) is mounted on the pedestal 11 of the main body 10, the high vacuum valve 20 is opened to lower the pressure of the internal space in the main body 10 to high vacuum. When the control signal OPEN is applied to the high vacuum valve 20 via the control line 31, the high vacuum valve 20 is opened. Accordingly, the operating pump 20 starts to discharge not only the air present in the internal space of the main body 10 but also the fine particles.
이후, 이온게이지(40)를 이용하여 본체(10) 내의 내부공간이 금속증착에 적합한 진공상태로 된 것이 확인되고 나면, 이러한 진공상태에서 실질적인 금속증착공정의 진행이 개시된다. 즉, 타겟(13)의 금속물질이 웨이퍼 상에 적층되기 시작하는 것이다.Subsequently, after it is confirmed that the inner space in the main body 10 is in a vacuum state suitable for metal deposition using the ion gauge 40, the progress of the substantial metal deposition process is started in such a vacuum state. That is, the metal material of the target 13 begins to be stacked on the wafer.
상기 웨이퍼 상에 금속층이 원하는 두께로 적층되고 나면, 고진공밸브(20)의 차단을 위한 제어신호(CLOSE)가 제어라인(33)을 거쳐 고진공밸브(20)에 인가되고 고진공밸브(20)가 차단된다.After the metal layer is deposited on the wafer to a desired thickness, a control signal CLOSE for blocking the high vacuum valve 20 is applied to the high vacuum valve 20 via the control line 33 and the high vacuum valve 20 is blocked. do.
이후, 본체(10) 내의 내부공간이 대기압으로 전환되고 나면, 금속증착 완료된 웨이퍼가 인출되고 금속증착할 또 다른 웨이퍼가 페데스털 상(11)에 장착된다.Thereafter, after the internal space in the main body 10 is converted to atmospheric pressure, the wafer on which the metal deposition is completed is taken out and another wafer to be deposited on the pedestal is mounted on the pedestal phase 11.
그런데, 종래에는 이온게이지(40)가 본체(10)에 직접 연결되어 있기 때문에 본체(10)의 내부공간이 진공상태일 경우, 이온게이지(40)가 별다른 영향을 받지 않는다. 그러나, 진공밸브(20)의 내부공간이 대기압상태일 경우, 이온게이지(40)의 필라멘트(41)가 직접 대기에 노출되므로 대기 속의 여러 가지 오염원에 의해 오염되기 쉽다.However, in the related art, since the ion gauge 40 is directly connected to the main body 10, when the inner space of the main body 10 is in a vacuum state, the ion gauge 40 is not significantly affected. However, when the internal space of the vacuum valve 20 is at atmospheric pressure, the filament 41 of the ion gauge 40 is directly exposed to the atmosphere, and thus is easily contaminated by various pollutants in the atmosphere.
이로 인하여, 이온게이지(40)가 강제 열화되어 수명단축이 유발되고 나아가 진공표시의 정밀도가 저하되어 최종적으로 금속증착공정이 제대로 진행될 수 없고 심한 경우, 공정불량 사고가 발생할 수도 있다.As a result, the ion gauge 40 is forcibly deteriorated to cause a shortening of life, and furthermore, the precision of the vacuum display is deteriorated, and finally, the metal deposition process cannot be properly performed, and in severe cases, a process failure accident may occur.
따라서, 본 발명은 대기압에서의 대기 오염원으로 인한 이온게이지의 수명단축 및 정밀도 저하를 방지하여 금속증착공정의 신뢰성을 확보하도록 한 금속증착용 진공챔버를 제공하는데 있다.Accordingly, the present invention is to provide a vacuum chamber for metal deposition to prevent the shortening of the life of the ion gauge due to the air pollution source at atmospheric pressure and to reduce the accuracy of the metal deposition process.
도 1은 종래 기술에 의한 금속증착용 진공챔버를 나타낸 구성도.1 is a block diagram showing a vacuum chamber for metal deposition according to the prior art.
도 2는 본 발명에 의한 금속증착용 진공챔버를 나타낸 구성도.Figure 2 is a block diagram showing a vacuum chamber for metal deposition according to the present invention.
이와 같은 목적을 달성하기 위한 본 발명에 의한 금속증착용 진공챔버는Metal chamber vacuum chamber according to the present invention for achieving the above object is
금속증착에 필요한 밀폐된 내부공간을 확보하기 위한 본체;A main body for securing an enclosed internal space required for metal deposition;
상기 본체의 내부공간에 고진공밸브를 거쳐 연통되어, 상기 본체의 내부공간을 진공상태로 만들기 위해 펌핑하는 펌프;A pump communicating with an internal space of the main body through a high vacuum valve to pump the internal space of the main body into a vacuum state;
상기 본체의 내부공간의 진공상태를 확인하기 위한 이온게이지; 그리고An ion gauge for checking a vacuum state of the inner space of the main body; And
상기 본체의 측면 다른 일부영역과 상기 이온게이지 사이에 설치되어, 상기 이온게이지를 보호하는 이온게이지용 밸브를 포함하는 것을 특징으로 한다.It is characterized in that it is provided between the other portion of the side of the main body and the ion gauge, the ion gauge valve for protecting the ion gauge.
바람직하게는 상기 이온게이지용 밸브가 상기 고진공밸브와 연동하여 구동한다. 상기 이온게이지용 밸브가 상기 고진공밸브와 함께 동시에 차단된다. 또한, 상기 이온게이지용 밸브가 상기 고진공밸브가 개방될 때 함께 동시에 개방된다.Preferably, the ion gauge valve is driven in conjunction with the high vacuum valve. The ion gauge valve is simultaneously shut off together with the high vacuum valve. Further, the ion gauge valve is simultaneously opened when the high vacuum valve is opened.
따라서, 본 발명은 진공챔버의 본체의 내부공간이 고진공밸브가 차단되면서 대기압으로 전환되더라도 이온게이지용 밸브 또한 차단되므로 본체의 내부공간의 대기압 상태에서도 이온게이지의 오염을 방지한다. 그 결과, 본 발명은 이온게이지의 수명단축을 방지하고 진공표시의 정밀도를 유지하여 금속증착공정의 불량발생율을 줄임으로써 공정 신뢰성을 확보한다.Therefore, the present invention prevents the contamination of the ion gauge even in the atmospheric pressure of the inner space of the main body because the valve for the ion gauge is also blocked even if the internal space of the main body of the vacuum chamber is switched to atmospheric pressure while the high vacuum valve is blocked. As a result, the present invention ensures process reliability by reducing the lifetime of the ion gauge and maintaining the accuracy of the vacuum display, thereby reducing the failure rate of the metal deposition process.
이하, 본 발명에 의한 금속증착용 진공챔버를 첨부된 도면을 참조하여 상세히 설명하기로 한다. 종래의 부분과 동일 구성 및 동일 작용을 갖는 부분에는 동일한 부호를 부여한다.Hereinafter, a vacuum chamber for metal deposition according to the present invention will be described in detail with reference to the accompanying drawings. The same code | symbol is attached | subjected to the part which has the same structure and the same action as the conventional part.
도 2는 본 발명에 의한 금속증착용 진공챔버를 나타낸 구성도이다.Figure 2 is a block diagram showing a vacuum chamber for metal deposition according to the present invention.
도 2에 도시된 바와 같이, 진공챔버는 대략 원통 형상의 본체(10)의 내측 저면에 웨이퍼(도시 안됨)를 지지하기 위한 페데스털(pedestal)(11)이 배치되고, 본체(10)의 내측 상면에 증착하고자 하는 금속으로 이루어진 타겟(13)이 배치된다. 펌프(20)가 본체(10)의 내부공간의 진공을 낮추기 위해 고진공밸브(30)를 거쳐 본체(10)의 내부공간에 연통하여 연결된다. 이온게이지(40)가 본체(10)의 내부공간의 진공을 확인하기 위해 본체(10)에 설치된다. 이온게이지(40)의 보호를 위해 이온게이지(40)와 본체(10) 사이에 이온게이지용 밸브(50)가 추가로 설치된다.As shown in FIG. 2, the vacuum chamber is provided with a pedestal 11 for supporting a wafer (not shown) on the inner bottom of the substantially cylindrical body 10, and the A target 13 made of a metal to be deposited is disposed on the inner upper surface. The pump 20 is connected to the internal space of the main body 10 via the high vacuum valve 30 to lower the vacuum of the internal space of the main body 10. The ion gauge 40 is installed in the main body 10 to check the vacuum of the internal space of the main body 10. An ion gauge valve 50 is further installed between the ion gauge 40 and the main body 10 to protect the ion gauge 40.
여기서, 이온게이지용 밸브(50)는 동시에 고진공밸브(30)의 차단과 함께 차단되고 고진공밸브(30)의 개방과 함께 개방되도록 고진공밸브(30)의 개방/차단을 위한 제어신호(OPEN),(CLOSE)가 이온게이지용 밸브(50)에도 공통 인가된다.Here, the ion gauge valve 50 is simultaneously blocked with the blocking of the high vacuum valve 30 and the control signal OPEN for opening / closing the high vacuum valve 30 to be opened with the opening of the high vacuum valve 30, CLOSE is also commonly applied to the ion gauge valve 50.
이와 같이 구성된 본 발명에 의한 금속증착용 진공밸브에서는 본체(10)의 페데스털(11)에 웨이퍼(도시 안됨)가 장착된 후 본체(10) 내의 내부공간의 압력을 고진공으로 낮추기 위해 고진공밸브(20)의 개방을 위한 제어신호(OPEN)가 제어라인(31)을 거쳐 고진공밸브(20)에 인가되고 이와 아울러 제어라인(51)을 거쳐 이온게이지용 밸브(50)에도 인가되면, 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 동시에 개방된다. 이때, 이온게이지용 밸브(50)가 개방되므로 이온게이지(40)가 본체(10) 내의 진공을 표시한다.In the vacuum deposition valve for metal deposition according to the present invention configured as described above, after the wafer (not shown) is mounted on the pedestal 11 of the main body 10, the high vacuum valve to lower the pressure of the internal space in the main body 10 to a high vacuum. When the control signal OPEN for opening the 20 is applied to the high vacuum valve 20 via the control line 31 and also to the ion gauge valve 50 via the control line 51, the high vacuum valve Together with 20, the ion gauge valve 50 is also opened at the same time. At this time, since the ion gauge valve 50 is opened, the ion gauge 40 displays the vacuum in the main body 10.
이에 따라, 가동중인 펌프(20)가 본체(10) 내의 내부공간에 존재하는 공기는 물론 미세한 입자까지도 배출하기 시작한다.Accordingly, the operating pump 20 starts to discharge not only the air present in the internal space of the main body 10 but also the fine particles.
이후, 이온게이지(40)를 이용하여 본체(10) 내의 내부공간이 금속증착에 적합한 진공상태로 된 것이 확인되고 나면, 이러한 진공상태에서 실질적인 금속증착공정의 진행이 개시된다. 즉, 타겟(13)의 금속물질이 웨이퍼 상에 적층되기 시작하는 것이다.Subsequently, after it is confirmed that the inner space in the main body 10 is in a vacuum state suitable for metal deposition using the ion gauge 40, the progress of the substantial metal deposition process is started in such a vacuum state. That is, the metal material of the target 13 begins to be stacked on the wafer.
상기 웨이퍼 상에 금속층이 원하는 두께로 적층되고 나면, 고진공밸브(20)의 차단을 위한 제어신호(CLOSE)가 제어라인(33)을 거쳐 고진공밸브(20)에 인가되고 이와 아울러 제어라인(53)을 거쳐 이온게이지용 밸브(50)에 인가되고 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 동시에 차단된다.After the metal layer is laminated on the wafer to a desired thickness, a control signal CLOSE for blocking the high vacuum valve 20 is applied to the high vacuum valve 20 via the control line 33 and the control line 53. The ion gauge valve 50 is applied to the ion gauge valve 50, and the ion gauge valve 50 is also blocked together with the high vacuum valve 20.
따라서, 종래에는 고진공밸브(20)만이 차단되면서 본체(10) 내의 내부공간이 대기압으로 전환될 때, 이온게이지(40)의 필라멘트(41)가 내부공간에 직접 노출되므로 본체(10) 내의 대기 오염원이 이온게이지(40)의 필라멘트(41)를 오염시킨다.Therefore, in the related art, when only the high vacuum valve 20 is blocked and the internal space in the main body 10 is converted to atmospheric pressure, the filament 41 of the ion gauge 40 is directly exposed to the internal space, thereby causing an air pollution source in the main body 10. The filament 41 of the ion gauge 40 is contaminated.
그러나, 본 발명은 이와는 달리 고진공밸브(20)와 함께 이온게이지용 밸브(50)도 차단되므로 본체(10) 내의 내부공간이 대기압으로 전환될 때일지라도 이온게이지(40)의 필라멘트(41)가 내부공간에 직접 노출되지 않는다. 그 결과, 본체(10) 내의 대기 오염원이 이온게이지(40)의 필라멘트(41)를 오염시킬 가능성이 없어진다. 그 결과 이온게이지의 필라멘트의 오염으로 인해 이온게이지의 필라멘트가 강제 열화되어 이온게이지의 수명이 단축되고 정밀한 진공측정이 어려운 종래의 문제점이 해소된다.However, according to the present invention, since the ion gauge valve 50 is also blocked together with the high vacuum valve 20, the filament 41 of the ion gauge 40 is internal even when the internal space in the main body 10 is switched to atmospheric pressure. It is not directly exposed to space. As a result, there is no possibility that the air pollution source in the main body 10 contaminates the filament 41 of the ion gauge 40. As a result, the filament of the ion gauge is forcibly deteriorated due to the contamination of the filament of the ion gauge, which shortens the life of the ion gauge and solves the conventional problem of difficult precision vacuum measurement.
이후, 금속증착 완료된 웨이퍼가 인출되고 금속증착할 또 다른 웨이퍼가 페데스털(11) 상에 장착된다.Thereafter, the metal-deposited wafer is taken out and another wafer to be metal-deposited is mounted on the pedestal 11.
이상에서 살펴본 바와 같이, 본 발명에 의하면, 진공챔버의 본체와 이온게이지 사이에 이온게이지용 밸브가 추가로 설치되고 이온게이지용 밸브가 본체와 펌프 사이의 고진공밸브와 동시에 개방/차단된다.As described above, according to the present invention, an ion gauge valve is additionally installed between the body and the ion gauge of the vacuum chamber, and the valve for the ion gauge is simultaneously opened / blocked with the high vacuum valve between the body and the pump.
따라서, 본 발명은 고진공밸브가 차단될 때 이온게이지용 밸브도 차단되므로 본체 내의 내부공간이 대기압으로 전환되더라도 이온게이지의 필라멘트가 대기의 오염원으로부터 오염되는 것이 방지된다. 그 결과, 이온게이지의 수명단축이 방지되고 나아가 진공표시의 정밀도 저하가 방지되고 나아가 금속증착공정의 불량사고발생율이 줄어 공정 신뢰성이 향상된다.Therefore, in the present invention, when the high vacuum valve is shut off, the ion gauge valve is also blocked, so that the filament of the ion gauge is prevented from being contaminated from the air pollution source even when the internal space in the main body is switched to atmospheric pressure. As a result, shortening of the lifetime of the ion gauge is prevented, and furthermore, the accuracy of vacuum display is prevented from being reduced, and further, the incidence of defects in the metal deposition process is reduced, thereby improving process reliability.
한편, 본 발명은 도시된 도면과 상세한 설명에 기술된 내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형도 가능함은 이 분야에 통상의 지식을 가진 자에게는 자명한 사실이다.On the other hand, the present invention is not limited to the contents described in the drawings and detailed description, it is obvious to those skilled in the art that various modifications can be made without departing from the spirit of the invention. .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990028682A KR20010010010A (en) | 1999-07-15 | 1999-07-15 | Vacuum chamber for metal deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990028682A KR20010010010A (en) | 1999-07-15 | 1999-07-15 | Vacuum chamber for metal deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010010010A true KR20010010010A (en) | 2001-02-05 |
Family
ID=19602033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990028682A KR20010010010A (en) | 1999-07-15 | 1999-07-15 | Vacuum chamber for metal deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20010010010A (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
-
1999
- 1999-07-15 KR KR1019990028682A patent/KR20010010010A/en not_active Application Discontinuation
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US10033944B2 (en) | 2009-03-02 | 2018-07-24 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US9843743B2 (en) | 2009-06-03 | 2017-12-12 | Flir Systems, Inc. | Infant monitoring systems and methods using thermal imaging |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9716844B2 (en) | 2011-06-10 | 2017-07-25 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
US9538038B2 (en) | 2011-06-10 | 2017-01-03 | Flir Systems, Inc. | Flexible memory systems and methods |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9723228B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Infrared camera system architectures |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US10250822B2 (en) | 2011-06-10 | 2019-04-02 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10230910B2 (en) | 2011-06-10 | 2019-03-12 | Flir Systems, Inc. | Infrared camera system architectures |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010010010A (en) | Vacuum chamber for metal deposition | |
US9322092B2 (en) | Sputtering apparatus and method of manufacturing electronic device | |
US20030155234A1 (en) | Shutter disk and blade alignment sensor | |
EP0859070A1 (en) | Coating of inside of vacuum chambers | |
EP0622823A1 (en) | Sputtering targets having life alarm function | |
US6241477B1 (en) | In-situ getter in process cavity of processing chamber | |
US8992743B2 (en) | Sputtering method and sputtering apparatus | |
KR102648457B1 (en) | Method for adjusting contact position of lift pins, method for detecting contact position of lift pins, and substrate placement mechanism | |
KR20220103038A (en) | Film formation apparatus and film formation method | |
JP2000169961A (en) | Sputtering apparatus | |
JP4582711B2 (en) | Vacuum processing apparatus and vacuum processing method | |
US6325901B1 (en) | Method of producing a cathode-ray tube and apparatus therefor | |
US20060283702A1 (en) | Random pulsed DC power supply | |
JPH0874041A (en) | Vacuum film forming method, method thereof and method for exchanging pressure sensor in same device | |
US20040084146A1 (en) | Plasma treatment apparatus, upper electrode cover, and upper electrode cover window member | |
JPH04352326A (en) | Fine processing device | |
JP2003160854A (en) | Method for preventing development of particles in sputtering apparatus, sputtering method, sputtering apparatus and member for coating | |
US6463806B1 (en) | Installation for measuring pressure inside vacuum pipeline | |
KR200324096Y1 (en) | The structure of subsided-type port adhered to the high-voltage electrical feedthrough for ion pump | |
KR101343113B1 (en) | Vacuum processing apparatus | |
WO2023276703A1 (en) | Film-forming apparatus, and method for cleaning film-forming apparatus | |
JP4521607B2 (en) | External cathode electrode type sputtering system | |
KR0122306Y1 (en) | Metal sputtering system | |
JPH06338493A (en) | Spattering device | |
KR20210045340A (en) | Sputtering apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |