KR20010008468A - Manufacturing method of linear low density polyethylene spun-bonded fabric - Google Patents

Manufacturing method of linear low density polyethylene spun-bonded fabric Download PDF

Info

Publication number
KR20010008468A
KR20010008468A KR1019990026327A KR19990026327A KR20010008468A KR 20010008468 A KR20010008468 A KR 20010008468A KR 1019990026327 A KR1019990026327 A KR 1019990026327A KR 19990026327 A KR19990026327 A KR 19990026327A KR 20010008468 A KR20010008468 A KR 20010008468A
Authority
KR
South Korea
Prior art keywords
low density
linear low
density polyethylene
polyethylene
nonwoven fabric
Prior art date
Application number
KR1019990026327A
Other languages
Korean (ko)
Inventor
임대우
황우창
김명호
김동욱
Original Assignee
이영관
도레이새한 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영관, 도레이새한 주식회사 filed Critical 이영관
Priority to KR1019990026327A priority Critical patent/KR20010008468A/en
Publication of KR20010008468A publication Critical patent/KR20010008468A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Abstract

PURPOSE: A method for preparing linear low density polyethylene(LLDPE) spunbond non-woven is provided, to improve the melting strength and the smoothness. CONSTITUTION: The method comprises the steps of blending 90-95 wt% of LLDPE, 2-7 wt% of crystalline polypropylene, 2-3 wt% of white master bath chip by dosing; melt spinning the blend by using an extruder at 190-240deg.C; and hot pressing it with the condition of the line pressure of a hot press roller being 35 kg/cm, the hot press bonding rate being 10-14.2 %, and the temperature being 130-170deg.C. Preferably the LLDPE is such that the density is 0.931-0.936 g/cm¬2, the melting index is 23.9-30.4 g/10 min, the melting point is 110-130deg.C, the crystallinity is 30-45 wt%, and the molecular weight distribution is 3-4.

Description

선상저밀도 폴리에틸렌 스판본드 부직포의 제조방법{Manufacturing method of linear low density polyethylene spun-bonded fabric}Manufacturing method of linear low density polyethylene spun-bonded fabric

본 발명은 선상 저밀도 폴리에틸렌의 특성을 유지하는 스판본드 부직포의 제조방법에 관한 것으로, 보다 상세하게는 선상 저밀도 폴리에틸렌과 결정성 폴리프로필렌의 블랜드 구조물을 사용하여 용융강도가 뛰어나고 유연한 촉감을 가지는 스판본드 부직포의 제조방법에 관한 것이다.The present invention relates to a method for producing a spunbond nonwoven fabric that maintains the properties of linear low density polyethylene, and more particularly, to a spanbond nonwoven fabric having excellent melt strength and a flexible touch by using a blend structure of linear low density polyethylene and crystalline polypropylene. It relates to a manufacturing method of.

종래에 올레핀 수지계 스판본드 부직포의 생산방법으로 폴리프로필렌 스판본드 부직포의 제조방법은 상업적으로 널리 알려지고 있으며, 미국 특허 3,692,618에 의해서 위생용 특히 유아용 기저귀에 우수한 방수성과 소프트한 특성을 갖는 폴리프로필렌 부직포가 널리 사용되어 왔으나, 일회용 기저귀의 천연소재와 같은 감촉화 경향에 따라 합성섬유로 구성된 백시트 부분의 우수한 소프트한 특성을 부여하기 위해 저밀도 폴리에틸렌(LDPE) 또는 선상저밀도 폴리에틸렌 수지(LLDPE)를 사용한 스판본드 부직포의 개발이 요구되어 왔으나, 용융강도가 떨어져 연신시 필라멘트가 자주 절단되므로 상업화 하기에 상당한 어려움이 있었다.Conventionally, a method for producing a polypropylene spanbond nonwoven fabric as a method for producing an olefin resin based spanbond nonwoven fabric is widely known commercially. According to US Pat. No. 3,692,618, a polypropylene nonwoven fabric having excellent waterproof and soft properties for hygiene, especially a baby diaper, Spunbond using low density polyethylene (LDPE) or linear low density polyethylene resin (LLDPE) to give excellent soft properties of the backsheet portion made of synthetic fibers according to the tendency to feel like natural materials of disposable diapers. The development of nonwovens has been required, but the filaments are frequently cut when drawn due to low melt strength, which has made it difficult to commercialize.

본 발명에서는 선상 저밀도 폴리에틸렌(이하"LLDPE"라 칭함)의 특성을 유지하면서 고속방사시 필라멘트의 사절을 방지하기 위해 폴리프로필렌을 브랜드하여 폴리에틸렌 부직포를 제조하는 것으로, 본 발명의 목적은 선상 저밀도 폴리에틸렌과 결정성 폴리프로필렌의 블랜드 구조물을 사용하므로써 고속방사가 가능하고 이로부터 유연한 촉감을 가지는 부직포를 제조하는 것을 목적으로 한다.In the present invention, while maintaining the properties of the linear low-density polyethylene (hereinafter referred to as "LLDPE") to produce a polyethylene nonwoven fabric by branding polypropylene in order to prevent the breakage of the filament during high-speed spinning, the object of the present invention is to By using a blend structure of crystalline polypropylene, an object of the present invention is to produce a nonwoven fabric having high-speed spinning and having a soft touch therefrom.

본 발명은 촉감이 유연한 폴리에틸렌 부직포 제조방법에 관한 것으로, 블랜드되는 선상 저밀도 폴리에틸렌은 알파-올레핀의 종류에 따라 LLDPE를 분류할 수 있으며 대표적인 알파-올레판 종류는 프로필렌 부텐-1, 헥센-1, 옥텐-1등이 있으며, 일반적으로 분지(branch)의 길이가 길수록 기계적 물성은 향상된다, 따라서 본 발명에서 사용한 LLDPE는 분지의 탄소수가 4∼8인 옥텐-1 1∼10 중량%를 함유하며 밀도는 0.931∼0.936g/㎤이고, 용융지수는 23.9∼30.4(10g/분), 융해열은 25cal/g인 폴리머를 사용한다.The present invention relates to a method of manufacturing a flexible polyethylene nonwoven fabric, wherein the linear low-density polyethylene blended can classify LLDPE according to the type of alpha-olefin, and typical alpha-olepan types are propylene butene-1, hexene-1, and octene. In general, the longer the branch length, the higher the mechanical properties. Therefore, the LLDPE used in the present invention contains 1 to 10% by weight of octene-1 having 4 to 8 carbon atoms in the branch, and the density is A polymer having 0.931 to 0.936 g / cm 3, a melt index of 23.9 to 30.4 (10 g / min), and a heat of fusion of 25 cal / g is used.

본 발명에 있어 사용되는 원료 및 블랜딩 비율은 LLDPE 및 폴리프로필렌 수지를 90/7∼95/2 wt%로 하고, 색상 및 방사 흐름성을 높이기 위하여 마스터 배치 칩을 2∼3 wt% 함유하도록 하여 소프트성이 우수한 폴리에틸렌 장섬유 스판본드 부직포를 얻는다.The raw material and blending ratio used in the present invention is 90/7 to 95/2 wt% of LLDPE and polypropylene resin, and it is soft to contain 2 to 3 wt% of master batch chip to improve color and radiation flowability. Polyethylene long fiber spanbonded nonwoven fabric having excellent properties is obtained.

종래에 열가소성 고분자 특히 폴리올레핀 수지를 이용한 스판본드 부직포 제조방법은 널리 알려져 있다. 용융온도가 서로 다른 이종의 폴리머를 복합방사하여 부직포 제조시 상대적으로 낮은 용융온도를 갖는 폴리머는 결합제 작용을 하게되어 부직포의 강도를 증가시키며 저융점 폴리머의 함유량에 따라 촉감특성이 크게 변화한다. 저융점 복합체로서 중밀도(medium density), 폴리에틸렌과 저밀도 (low density)폴리에틸렌의 복합섬유(bicomponent)를 이용한 스판본드 부직포는 감촉이 우수하지 못한 결점을 가지고 있다. 또한, 상업용으로 이용되는 4∼8정도의 탄소수를 가지는 알파-올레핀의 공중합체에 의해 얻어진 LLDPE를 저융점 부분으로 이용할 경우, 감촉이 소프트한 특성을 나타내나 고속방사기 사절에 의해 부직포를 제조하기에 많은 문제점을 가지게 된다.Background Art Conventionally, a method of manufacturing a spunbond nonwoven fabric using a thermoplastic polymer, in particular a polyolefin resin, is widely known. When the non-woven fabric is produced by complex spinning of different polymers with different melting temperatures, the polymer having a relatively low melting temperature acts as a binder to increase the strength of the nonwoven fabric, and the tactile property changes significantly according to the content of the low melting polymer. Spunbonded nonwoven fabrics using a bicomponent of medium density, polyethylene and low density polyethylene as low melting point composites have disadvantages of poor texture. In addition, when LLDPE obtained from a commercially available alpha-olefin copolymer having 4 to 8 carbon atoms is used as the low melting point portion, it exhibits a soft texture but is not suitable for manufacturing nonwoven fabric by high speed spinning yarn trimming. There are many problems.

미국특허 4,644,045에는 선상저밀도 올레핀 고분자를 이용한 소프트한 스판본드 부직포 제조방법이 개시되고 있으나, 선상 저밀도 올레핀의 결정화도, 용융지수에 대한 다이스웰의 자연대수의 비율등이 제시되어 있고 선상저밀도 올레핀 고분자는 용융압출기 온도가 185∼215℃로 나타나 있다. 그러나, 이러한 방법은 용융압출 온도가 낮고 방사하는 동안 부여되는 연신장력이 높아 방사속도 증가시 필라멘트 절단이 발생하게 된다. 따라서, 부직포에 결점이 생기는 수가 많아져 결국 웹의 균제도가 균일하지 못해 저급품의 부직포가 되는 문제점이 있다.U.S. Patent No. 4,644,045 discloses a method for producing a soft spanbonded nonwoven fabric using a linear low density olefin polymer, but the crystallinity of the linear low density olefin, the ratio of the natural number of dieswell to the melt index, etc. are presented and the linear low density olefin polymer is melted. The extruder temperature is shown at 185-215 ° C. However, this method has a low melt extrusion temperature and a high stretching force applied during spinning, resulting in filament cutting at an increase in spinning speed. Therefore, there are many defects in the nonwoven fabric, so that the uniformity of the web is not uniform, resulting in a nonwoven fabric of a low quality product.

미국특허 5,068,141에는 선상 저밀도 폴리에틸렌 수지를 이용하여 역학적 강도가 우수하고 소프트한 특성을 가지는 연속 필라멘트 제조방법이 소개되고 있으나, 상기 제시된 폴리에틸렌 부직포는 구성섬유가 선상 저밀도 폴리에틸렌으로 고속의 에어건(air gun)으로 연신시켜 이송되는 컨베어 밸트에 적층시키고 구성섬유의 용융 온도보다 15∼30℃ 낮은 열처리 칼렌더로 열접착시켜 제조하는 방법이 공지되고 있으나, 구성섬유의 단면이 중공이거나 평편사를 이용하는 것으로 나타나 있으며 복합 필라멘트(Bicomponent filament)일 경우 표피부분(sheath component)의 구성은 선상 저밀도 폴리에틸렌이 사용되고 내부부분(core component)은 폴리에틸렌 테레프탈레이트를 사용하는 것으로 제시되어 있다. 그러나 상기 발명에서 제시한 선상저밀도 폴리에틸렌을 단독으로 고속방사할 경우 용융장력이 낮아 필라멘트의 사절현상이 일어나고 중공사나 평편사의 경우, 고속의 에어건에 의해 필라멘트 연신시 형태 유지성이 좋지 않으며 편평사로 구성된 부직포는 원형단면보다 결합면적이 크므로 역학적 강도는 우수하나 소프트한 특성은 우수하지 못한 단점이 있다.U.S. Patent No. 5,068,141 introduces a continuous filament manufacturing method having excellent mechanical strength and soft properties using a linear low density polyethylene resin, but the polyethylene nonwoven fabric described above is composed of a linear low density polyethylene with a high speed air gun. It is known to manufacture by laminating onto a conveying belt drawn by stretching and thermally bonding with a heat treatment calender 15 to 30 ° C. lower than the melting temperature of the constituent fibers, but it is shown that the cross section of the constituent fibers is hollow or using a flat knitting yarn. In the case of the bicomponent filament, the composition of the sheath component is suggested to be a linear low density polyethylene and the core component is polyethylene terephthalate. However, when high-speed spinning of the linear low-density polyethylene proposed in the present invention alone, the melt tension is low and the filament is cut off. In the case of the hollow fiber or the flat yarn, the nonwoven fabric composed of the flat yarn has a poor form retention when the filament is stretched by the high speed air gun. Since the bonding area is larger than that of the circular section, the mechanical strength is excellent, but the soft characteristics are not good.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 에틸렌과 적어도 일종의 탄소수가 4∼8인 알파-올레핀(α-olefin)의 선상 저밀도 공중합체이며, 밀도가 0.931∼0.936g/㎤이고, 용융지수가 ASTM D-1238의 방법에 의해 측정시 23.9∼30.0g/10분이며 융해열이 25cal/g이상인 LLDPE를 90∼95wt%함유하고, 결정성 폴리프로필렌 2∼7wt%을 원료로 공급하는 도싱시스템을 이용하여 블랜드하고 익스트루더를 통하여 용융시키고 구금을 통하여 필라멘트로 방사함으로서 폴리에틸렌 스판본드 부직포를 제조하게 된다.The present invention is to solve the above problems, and is a linear low density copolymer of ethylene and at least one kind of alpha-olefin having 4 to 8 carbon atoms, the density is 0.931 ~ 0.936g / ㎠, the melt index A dosing system containing 90 to 95 wt% of LLDPE having a heat of fusion of 25 cal / g or more and measuring 23.9 to 30.0 g / 10 minutes as measured by the method of ASTM D-1238, and supplying 2 to 7 wt% of crystalline polypropylene as a raw material. Polyethylene spunbond nonwoven fabric by blending, melting through an extruder and spinning into filaments through a mold.

본 발명에 있어 융해열은 DSC(PORKIN-ELMER사 제품)을 이용하여 분석하였으며, 시료 5mg을 채취하여 주사속도(scan rate)을 20℃/분으로 하고 상온으로부터 승온시켜 얻은 DSC곡선으로 구한다.In the present invention, the heat of fusion was analyzed using DSC (PORKIN-ELMER Co., Ltd.), and 5 mg of the sample was taken to obtain a DSC curve obtained by raising the scan rate to 20 ° C / min and raising the temperature from room temperature.

LLDPE수지 100wt%로 방사하는 것은 고속방사시 부여되는 연신장력이 높아 방사 속도증가시 필라멘트의 절단이 일어나게 되어 부직포 웹 형성이 어렵게 된다. 따라서 본 발명에서는 방사 속도증가시 사절방지를 위하여 폴리프로필렌 2∼7wt%를 익스트루더에서 용융혼합브랜드시켜 방사시키거나 또는 폴리에틸렌 칩 자체에 폴리프로필렌 수지를 2∼10wt%해도형으로 분산시켜 용융방사시키도록 한다.Spinning at 100 wt% of LLDPE resin is difficult to form the nonwoven web because the filament is cut when the spinning speed is high due to the high stretching tension given at high speed spinning. Therefore, in the present invention, in order to prevent trimming when the spinning speed is increased, melt spinning the polypropylene 2 to 7 wt% in an extruder or dispersing the polypropylene resin in the polyethylene chip itself in a 2 to 10 wt% sea island shape to melt spinning Let's do it.

LLDPE를 이용한 폴리에틸렌 스판본드 부직포의 생산은 일반적으로 알려진 것과 같이 폴리머를 용융 방사시켜 이동되는 컨베어 밸트상에 웹을 형성시키고 열적 또는 기계적인 방법으로 결합시켜 부직포를 형성한다. 스판본드 부직포 생산에 사용된 LLDPE의 용융 지수는 23.9∼30.4/10min이고, 밀도는 0.931∼0.936g/㎤인 것이 특징이다.The production of polyethylene spanbonded nonwovens using LLDPE, as is generally known, melt-spun polymers to form webs on a moving conveyor belt and bond them in a thermal or mechanical manner to form nonwovens. The melt index of LLDPE used to produce spanbonded nonwovens is 23.9 to 30.4 / 10 min, and the density is 0.931 to 0.936 g / cm 3.

도 1은 본 발명 선상저밀도 폴리에틸렌 스판본드 부직포의 제조공정도.1 is a manufacturing process of the linear low density polyethylene spanbond nonwoven fabric of the present invention.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1: 스판본드 방사노즐 2: 스판본드 필라멘트1: Spunbond Spinning Nozzle 2: Spunbond Filament

3: 부직포 웹 4: 상부엠보스 로울러3: nonwoven web 4: upper embossed roller

5: 하부엠보스 로울러 6: 스판본드 부직포5: lower embossed roller 6: spunbond nonwoven fabric

7: 컨베어 밸트7: Conveyor Belt

폴리에틸렌 부직포 제조는 제1도에 도시된 바와 같이 스판본드 방사 구성체에서 생산되며 자세히 설명하면 폴리에틸렌은 익스트루더로 공급될 때 일정 양의 폴리프로필렌이 공급되어 균일하게 블랜드된다. 용융된 블랜드체는 무수한 홀(hole)로 구성된 구금을 통해서 방사되며 자중 및 벤츄리관의 공기 역학에 의해서 연신되어 대략 20∼25마이크론의 필라멘트를 형성한다. 연신된 폴리에틸렌 필라멘트는 연속적으로 이동되는 컨베어 밸트상에 하부에서 흡인되는 공기압에 의해서 웹이 형성되고 이송되어 130∼170℃로 유지되고 조각무늬가 있는 상부 엠보스 로울러와 10℃ 차이를 갖는 표면이 매끄러운 하부 엠보스 로울러에 의해서 열적으로 결합하여 본 발명 폴리에틸렌 스판본드 부직포를 제조하게 된다.Polyethylene nonwoven fabrication is produced in a spanbond spinning assembly as shown in FIG. 1 and, in detail, polyethylene is uniformly blended with a certain amount of polypropylene when fed to the extruder. The molten blend body is spun through a confinement of countless holes and stretched by its own weight and the aerodynamics of the venturi tube to form a filament of approximately 20-25 microns. The stretched polyethylene filament is formed and transported by air pressure drawn from below on a continuously moving conveyor belt to be maintained at 130 to 170 ° C, and the surface of the embossed roller with a flake pattern having a difference of 10 ° C is smooth. Thermally bonded by the lower embossed roller to produce the polyethylene spanbond nonwoven fabric of the present invention.

이하 실시예에 의하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 중 각종 물성 측정 및 평가값은 다음에 나타낸 방법에 의하여 분석한다.Various physical property measurement and evaluation values in an Example are analyzed by the method shown next.

(1) 인장강도:(1) Tensile strength:

미국의 유나이티드사의 인장강도를 이용하여 ASTM D1682-64의 스트리트법에 따라 시료폭 5㎝, 시료장 10㎝의 시료편 10개를 인장속도 100㎝/분의 조건에서 최대 인장강력을 개별적으로 측정하여 평균값을 채택함.Ten tensile specimens of 5cm in width and 10cm in length were measured individually at the tensile speed of 100cm / min according to the street method of ASTM D1682-64 using United's tensile strength. Adopt average value.

(2) 인장신도: (1)의 방법에 의해 측정한 최대 인장강력사의 신도를 구한다.(2) Tensile elongation: The elongation of maximum tensile strength yarn measured by the method of (1) is to be obtained.

(3) 용융지수(Ml): ASTM D1238(E)에 기재 내용에 의해 측정한다.(3) Melt index (Ml): Measured according to the description in ASTM D1238 (E).

(4) 인열강도 : ASTM D2253의 트레페조이드법에 의해 측정한다.(4) Tear strength is measured by the trepezoid method of ASTM D2253.

(5) 분자량 분포: GPC에 의해 측정한다.(5) Molecular weight distribution: Measured by GPC.

(6) 용융온도: DSC에 의해 측정한다.(6) Melting temperature: measured by DSC.

이하 본 발명을 실시예와 비교실시예에 대한 설명을 기술하고자 한다.Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.

실시예1Example 1

밀도가 0.931∼0.936g/㎤이고 Ml가 25g/10분인 LLDPE(일본 出光석유화학 제품) 95 wt%를 밀도가 0.90g/㎤이고 Ml가 36g/10분인 폴리프로필렌 2wt% 및 용융체의 흐름을 향상시키기 위해 white master batch 3wt%를 용융 방사온도가 220℃인 익스트루더에서 용융브랜드 시켜 다수의 오리피스로 구성된 구금을 통하여 연속적으로 필라멘트로 방사시킨 다음, 방사된 필라멘트를 결정화시키기 위해 벌집모양의 챔버를 통하여 냉각공기를 방출시켜 섬유를 고화시키며 연속적으로 이동되는 컨베어 밸트 하부에 설치된 공기흡인 장치에 의해 필라멘트는 벤츄리관(공기이동 통로가 좁아짐)을 지나면서 속도가 증가되어 하향연신이 되어 섬유로서 요구되는 강도 및 신도 특성을 가진다. 공기역학에 의해 연신된 폴리에틸렌 필라멘트는 연속적으로 이동되는 컨베어 밸트상에 적층되어 웹이 형성되고 형성된 웹은 역학적 특성 및 형태안정성을 부하여가 위하여 열적으로 결합시킨다. 형성되는 웹은 중량은 토출량과 생산속도에 의해 결정되며 본 실시예1에서는 기초중량을 18∼30g/㎡로 하여 생산하였으며 열융착 롤의 라인압력은 35kg/㎝, 열융착 본딩율은 14.2%, 열융착온도는 120℃로 하여 생산하였다. 생산 조건 및 물성은 표1 및 표2에 나타내었다.95 wt% of LLDPE (Japan petrochemical products) with a density of 0.931 to 0.936 g / cm 3 and Ml of 25 g / 10 min. Improves the flow of melt and 2 wt% of polypropylene having a density of 0.90 g / cm 3 and 36 g / 10 min of Ml. To make a white master batch 3wt% melt brand in an extruder with a melt spinning temperature of 220 ℃ to spin continuously into a filament through a plurality of orifices, a honeycomb chamber to crystallize the filament Through the air suction device installed at the lower part of the conveyor belt, which releases the cooling air through and continuously moves the filament, the filament is increased in speed as it passes through the venturi tube (the air movement passage is narrowed), and is stretched downward to be required as the fiber. It has strength and elongation characteristics. Polyethylene filaments drawn by aerodynamics are laminated onto continuously moving conveyor belts to form webs and the webs are thermally bonded to impart mechanical properties and morphological stability. The weight of the web to be formed is determined by the discharge amount and the production speed. In Example 1, the basis weight was produced at 18 to 30 g / m 2, and the line pressure of the heat welding roll was 35 kg / cm, the heat bonding bonding rate was 14.2%, The thermal fusion temperature was produced at 120 ℃. Production conditions and physical properties are shown in Table 1 and Table 2.

실시예2Example 2

실시예2에서 사용되는 LLDPE는 실시예1에서 실시한 폴리에틸렌과 폴리프로필렌의 칩을 각기 공급하여 익스트루더에서 블랜드하는 방식과는 달리 칩제조시 폴리프로필렌을 폴리에틸렌(대림산업 제품)에 분산시켜 제조한 것을 사용하였으며 선상 저밀도 에틸렌과 폴리프로필렌의 분산비율은 90/7wt%로 하였다. 방사 온도 및 열융착은 실시예1과 동일한 조건으로 생산하였다. 생산조건 및 물성은 표1 및 표2에 나타내었다.The LLDPE used in Example 2 is manufactured by dispersing polypropylene in polyethylene (Daelim Industry) during chip manufacturing, unlike the method in which extruders are blended by supplying chips of polyethylene and polypropylene, respectively. The dispersion ratio of linear low density ethylene and polypropylene was set to 90 / 7wt%. Spinning temperature and heat fusion were produced under the same conditions as in Example 1. Production conditions and physical properties are shown in Table 1 and Table 2.

비교실시예1Comparative Example 1

폴리에틸렌과 폴리프로필렌 비율을 폴리에틸렌88%, 폴리프로필렌10%, WHITE M/B 2%로 하였으며 용융방사온도는 220℃, 방사속도는 7000m/min로 하였으며 필라멘트 냉각조건, 생산속도 및 열융착조건을 실시예1과 동일하게 하였다. 표1 및 표2에 생산조건 및 물성을 나타내었다.Polyethylene and polypropylene ratios were 88% polyethylene, 10% polypropylene, and 2% white M / B. The melt spinning temperature was 220 ° C, the spinning speed was 7000m / min, and the filament cooling conditions, production speeds, and heat-sealing conditions were performed. It carried out similarly to Example 1. Table 1 and Table 2 show the production conditions and the physical properties.

비교실시예2Comparative Example 2

실시예2에서 사용된 칩의 폴리에틸렌과 폴리프로필렌의 랜덤분산혼합비를 90/7wt%로 제조한 칩을 사용하였으며 용융방사온도는 250℃, 방사속도 7000m/min로 하였으며 필라멘트 냉각조건, 생산속도 및 열융착조건을 실시예1과 동일하게 하였다. 표1과 표2에 생산조건 및 물성을 나타내었다.Chips prepared in the random dispersion mixing ratio of polyethylene and polypropylene of the chip used in Example 2 were 90 / 7wt%, and the melt spinning temperature was 250 ° C, the spinning speed was 7000m / min, and the filament cooling conditions, production speed and heat Fusion conditions were the same as in Example 1. Table 1 and Table 2 show the production conditions and the physical properties.

표1. 제조 조건Table 1. Manufacture conditions

항 목Item 실시예1Example 1 실시예2Example 2 비교실시예1Comparative Example 1 비교실시예2Comparative Example 2 PE/PP혼합율(wt%)PE / PP Mixing Ratio (wt%) 95/295/2 90/790/7 88/1088/10 90/790/7 방사온도(℃)Spinning temperature (℃) 220220 220220 220220 250250 방사속도(m/min)Spinning speed (m / min) 60006000 60006000 70007000 70007000 토출량(kg/hr)Discharge amount (kg / hr) 585585 585585 585585 585585

표2. 실시예에 따른 물성결과Table 2. Physical property results according to the examples

항목Item 실시예1Example 1 실시예2Example 2 비교실시예1Comparative Example 1 비교실시예2Comparative Example 2 기초중량(g/㎡)Basis weight (g / ㎡) 1818 2525 1818 2525 인장강도(kg/5㎝)Tensile Strength (kg / 5㎝) MDMD 1.81.8 2.12.1 1.201.20 1.551.55 CDCD 1.21.2 1.51.5 0.320.32 0.820.82 인장신도 (%)Tensile Elongation (%) MDMD 6060 6161 200200 210210 CDCD 7070 7373 170170 180180 두께(㎜)Thickness (mm) 0.140.14 0.180.18 0.140.14 0.190.19 섬도(데니아)Island (Denia) 3.013.01 3.043.04 4.014.01 4.084.08 인열강도(kg)Tear strength (kg) MDMD 0.20.2 0.390.39 0.180.18 0.400.40 CDCD 0.270.27 0.450.45 0.200.20 0..470..47 강연도 (㎜)Lecture degree (mm) 40.240.2 45.545.5 42.342.3 46.546.5 사절발생여부Emission of trimming 없음none 없음none 다량발생Large quantities 다량발생Large quantities

본 발명은 소프트성이 우수한 선상 저밀도 폴리에틸렌을 주원료로 하는 폴리올레핀계 수지의 스판본드 부직포로서 용용강도가 뛰어나 고속방사가 가능하고 유연한 촉감을 가지게 되므로 우수한 스판본드 부직포를 얻을 수 있게된다The present invention is a spunbond nonwoven fabric of polyolefin resin mainly composed of linear low density polyethylene having excellent softness, and has excellent melt strength, enables high-speed spinning and has a soft touch, thereby obtaining an excellent spunbond nonwoven fabric.

Claims (3)

선상 저밀도 폴리에틸렌(LLDPE) 90∼95중량%, 결정성 폴리프로필렌 2∼7중량%와 white master bath chip 2∼3중량%를 도싱(Dosing)을 통하여 블랜드하고, 익스트루더의 온도를 190∼240℃로 하여 용융방사하고 열접착시키는 것을 특징으로 하는 선상저밀도 폴리에틸렌 스판본드 부직포의 제조방법.90 to 95% by weight of linear low density polyethylene (LLDPE), 2 to 7% by weight of crystalline polypropylene and 2 to 3% by weight of white master bath chip are blended through dosing, and the temperature of the extruder is 190 to 240 A method for producing a linear low density polyethylene spanbond nonwoven fabric, characterized in that it is melt spun and heat bonded at a temperature of 0C. 청구항 1에 있어서,The method according to claim 1, 선상저밀도 폴리에틸렌의 밀도가 0.931∼0.936g/㎤이고, 용융지수(Ml) 23.9∼30.4g/10분, 융점 110∼130℃, 결정화도 30∼45중량%, 분자량 분포(MWD)가 3∼4인 것을 특징으로 하는 선상 저밀도 폴리에틸렌 스판본드 부직포의 제조방법.The low density polyethylene on the shipboard has a density of 0.931 to 0.936 g / cm 3, a melt index (Ml) of 23.9 to 30.4 g / 10 min, a melting point of 110 to 130 ° C., a crystallinity of 30 to 45% by weight, and a molecular weight distribution (MWD) of 3 to 4 A process for producing a linear low density polyethylene spanbond nonwoven fabric, characterized by the above-mentioned. 청구항 1에 있어서,The method according to claim 1, 폴리에틸렌 스판본드 부직포의 열접착강도 및 형태 안정성을 부여하기 위하여 열융착 로울러의 라인압력을 35kg/㎝, 열융착 본딩율 10∼14.2%, 열융착 온도 130∼170℃로 하는 것을 특징으로 하는 선상저밀도 폴리에틸렌 스판본드 부직포의 제조방법.In order to give the thermal bond strength and form stability of the polyethylene spanbonded nonwoven fabric, the line pressure of the heat-sealing roller is 35 kg / cm, the heat-bonding bonding rate is 10 to 14.2%, and the heat-sealing temperature is 130 to 170 ° C. Process for producing polyethylene spanbond nonwovens.
KR1019990026327A 1999-07-01 1999-07-01 Manufacturing method of linear low density polyethylene spun-bonded fabric KR20010008468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990026327A KR20010008468A (en) 1999-07-01 1999-07-01 Manufacturing method of linear low density polyethylene spun-bonded fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990026327A KR20010008468A (en) 1999-07-01 1999-07-01 Manufacturing method of linear low density polyethylene spun-bonded fabric

Publications (1)

Publication Number Publication Date
KR20010008468A true KR20010008468A (en) 2001-02-05

Family

ID=19598557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990026327A KR20010008468A (en) 1999-07-01 1999-07-01 Manufacturing method of linear low density polyethylene spun-bonded fabric

Country Status (1)

Country Link
KR (1) KR20010008468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668790A (en) * 2013-11-30 2014-03-26 江苏奥森新材料有限公司 Method for producing non-woven fabric by waste PET (polyethylene terephthalate)
CN104389111A (en) * 2014-10-23 2015-03-04 平湖展鹏热熔胶膜有限公司 Preparation method for low-melting-point polyurethane hot-melt adhesive net film and crystallization and solidification device
KR20160069747A (en) * 2014-12-09 2016-06-17 도레이첨단소재 주식회사 Nonwoven web having an excellent soft property and the preparing process thereof
CN106222885A (en) * 2016-07-23 2016-12-14 大连天马可溶制品有限公司 A kind of based on polyvinyl alcohol with the preparation method of the water-soluble non-weaving cloth of polyethylene glycol oxide
KR20210036683A (en) * 2019-09-26 2021-04-05 주식회사 휴비스 Spunlace Nonwoven Fabric Sheet For Mask Pack With A Layered Structure And Method For Manufacturing The Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874666A (en) * 1987-01-12 1989-10-17 Unitika Ltd. Polyolefinic biconstituent fiber and nonwove fabric produced therefrom
JPH02127520A (en) * 1988-10-31 1990-05-16 Unitika Ltd Heat bonding fiber and nonwoven fabric thereof
KR920003147A (en) * 1990-07-31 1992-02-29 한태희 Method and device for implementing font light of characters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874666A (en) * 1987-01-12 1989-10-17 Unitika Ltd. Polyolefinic biconstituent fiber and nonwove fabric produced therefrom
JPH02127520A (en) * 1988-10-31 1990-05-16 Unitika Ltd Heat bonding fiber and nonwoven fabric thereof
KR920003147A (en) * 1990-07-31 1992-02-29 한태희 Method and device for implementing font light of characters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668790A (en) * 2013-11-30 2014-03-26 江苏奥森新材料有限公司 Method for producing non-woven fabric by waste PET (polyethylene terephthalate)
CN104389111A (en) * 2014-10-23 2015-03-04 平湖展鹏热熔胶膜有限公司 Preparation method for low-melting-point polyurethane hot-melt adhesive net film and crystallization and solidification device
KR20160069747A (en) * 2014-12-09 2016-06-17 도레이첨단소재 주식회사 Nonwoven web having an excellent soft property and the preparing process thereof
CN106222885A (en) * 2016-07-23 2016-12-14 大连天马可溶制品有限公司 A kind of based on polyvinyl alcohol with the preparation method of the water-soluble non-weaving cloth of polyethylene glycol oxide
KR20210036683A (en) * 2019-09-26 2021-04-05 주식회사 휴비스 Spunlace Nonwoven Fabric Sheet For Mask Pack With A Layered Structure And Method For Manufacturing The Same

Similar Documents

Publication Publication Date Title
EP0868554B1 (en) Meltblown polyethylene fabrics and processes of making same
KR920007992B1 (en) Soft nonwoven fabric of filaments
KR100453609B1 (en) Heat-fusible conjugate fiber and a nonwoven fabric made therefrom
KR0138657B1 (en) Spunbonded unshaped polyethylene blend
KR100295922B1 (en) Polyolefin Polymer Fiber
US6509092B1 (en) Heat bondable biodegradable fibers with enhanced adhesion
KR100798966B1 (en) Soft Polypropylene Melt Spun Nonwoven Fabric
US6441267B1 (en) Heat bondable biodegradable fiber
US9074303B2 (en) Fibers, nonwoven fabric and uses thereof
US5272023A (en) Hotmelt-adhesive fiber sheet and process for producing the same
US20010004574A1 (en) Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers
US6090730A (en) Filament non-woven fabric and an absorbent article using the same
CN102021751A (en) Spun-bonded nonwoven cloth and manufacturing method thereof
FI72350C (en) Polyolefin fibers with improved thermal bonding properties and processes for making them.
AU693536B2 (en) Highly crimpable conjugate fibers and nonwoven webs made therefrom
US5985776A (en) Nonwoven based on polymers derived from lactic acid, process for manufacture and use of such a nonwoven
EP1169500B1 (en) Polypropylene fibres
KR101302804B1 (en) Spunbond nonwoven fabric having improved mechanical property and preparing method thereof
KR100510952B1 (en) A polypropylene fibre and a product made therefrom
KR100746819B1 (en) Radial nonweaven fiber having improved hydrophile property and the manufacturing method thereof
JP2022132044A (en) Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber
KR20010008468A (en) Manufacturing method of linear low density polyethylene spun-bonded fabric
EP1090171A1 (en) Polyolefin staple fiber for the production of thermally bonded nonwoven web
JPH02139469A (en) Nonwoven fabric consisting of thermally bonded filament
JP2002069753A (en) Core-sheath type polyolefin conjugate fiber and nonwoven fabric composed of the same fiber

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application