JP2002069753A - Core-sheath type polyolefin conjugate fiber and nonwoven fabric composed of the same fiber - Google Patents

Core-sheath type polyolefin conjugate fiber and nonwoven fabric composed of the same fiber

Info

Publication number
JP2002069753A
JP2002069753A JP2000269525A JP2000269525A JP2002069753A JP 2002069753 A JP2002069753 A JP 2002069753A JP 2000269525 A JP2000269525 A JP 2000269525A JP 2000269525 A JP2000269525 A JP 2000269525A JP 2002069753 A JP2002069753 A JP 2002069753A
Authority
JP
Japan
Prior art keywords
component
core
sheath
nonwoven fabric
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000269525A
Other languages
Japanese (ja)
Other versions
JP4452388B2 (en
Inventor
Junichi Nishimura
淳一 西村
Kenji Kobayashi
賢治 小林
Toru Matsumura
徹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polychem Corp
Original Assignee
Japan Polychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polychem Corp filed Critical Japan Polychem Corp
Priority to JP2000269525A priority Critical patent/JP4452388B2/en
Publication of JP2002069753A publication Critical patent/JP2002069753A/en
Application granted granted Critical
Publication of JP4452388B2 publication Critical patent/JP4452388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a core-sheath type polyolefin conjugate fiber excellent in spinning stability and capable of providing a nonwoven fabric having soft touch feeling and high strength and free from fuzz and a hot-bonding type nonwoven fabric. SOLUTION: This (eccentric) core-sheath type polyolefin conjugate fiber is obtained by using a resin composition composed of 98-85 wt.% polypropylene having a specific fluidity and 2-15 wt.% one more kinds of polyethylenes selected from a specific high-density polyethylene, low-density polyethylene, straight-chain low-density polyethylene and polyethylene polymerized by using metallocene catalyst as a core component and using a specific high-density polyethylene or a polyethylene polymerized by using a specific metallocene catalyst as a sheath component. This nonwoven fabric is composed of the above fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリオレフィン複
合繊維およびそれからなる不織布に関し、さらに詳しく
は、紡糸性に優れ、かつ風合いおよび強力に優れ、毛羽
立ちのない不織布を与える芯鞘型または偏心芯鞘型ポリ
オレフィン複合繊維およびその繊維からなる不織布に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin composite fiber and a nonwoven fabric comprising the same, and more particularly, to a core-sheath type or an eccentric core-sheath type which gives a nonwoven fabric which is excellent in spinnability, excellent in texture and strength, and free of fluff. The present invention relates to a polyolefin composite fiber and a nonwoven fabric made of the fiber.

【0002】[0002]

【従来の技術】不織布は、紙おむつ、生理用ナプキン、
マスク、貼付材等の衛生材料用途や、天井材、シート等
の自動車内装材、農業用資材、建築用資材、土木用資材
の他、電池セパレーター、飲料水用フィルター、工業用
フィルター等広範囲な分野において使用されている。こ
れらの分野では、繊維自体の強度と繊維間の接着強度が
関係する不織布強力が要求される。また、紙おむつや生
理用ナプキン等の衛生材料分野では、不織布の風合い
が、すなわち、よりソフトで肌ざわりのよいものが要求
される。これらの要求を満たすために、不織布を構成す
る繊維の原料や、繊維間の接着方法が種々検討され提案
されている。繊維原料としては、ポリオレフィン、ポリ
エステル、ポリウレタン等が用いられているが汎用製品
には、価格が安く、衛生的なポリオレフィンが多く用い
られている。ポリオレフィンの中でもポリプロピレン
は、その良好な紡糸性、耐熱性、耐水性等により紙おむ
つや生理用ナプキン等のディスポーザブル不織布に多く
使用されている。
2. Description of the Related Art Non-woven fabrics include disposable diapers, sanitary napkins,
A wide range of fields including hygiene materials such as masks and patches, automotive interior materials such as ceiling materials and sheets, agricultural materials, construction materials, civil engineering materials, battery separators, filters for drinking water, and industrial filters. Used in In these fields, a strong nonwoven fabric is required, in which the strength of the fiber itself and the adhesive strength between the fibers are related. Further, in the field of sanitary materials such as disposable diapers and sanitary napkins, the texture of the nonwoven fabric, that is, a softer and softer texture is required. In order to satisfy these requirements, various materials for fibers constituting the nonwoven fabric and methods for bonding the fibers have been studied and proposed. Polyolefins, polyesters, polyurethanes, and the like are used as fiber raw materials, but inexpensive and hygienic polyolefins are often used for general-purpose products. Among the polyolefins, polypropylene is widely used in disposable nonwoven fabrics such as disposable diapers and sanitary napkins because of its good spinnability, heat resistance and water resistance.

【0003】不織布の製造工程において、繊維と繊維と
を交絡して融着する方法は、現在、加熱オーブン法や熱
ロールで圧着する方法が主流となっている。ポリプロピ
レン繊維等のポリオレフィン繊維を用いた不織布の製造
においては、熱圧着工程での作業を円滑に行うために、
芯鞘型の複合繊維を利用している。一般的には、鞘成分
に低融点樹脂を用い、芯成分には、融点の高いポリプロ
ピレンを用いることにより、芯と鞘の融点差を設けた複
合繊維とする。これにより、融着時の加熱(圧着)温度
をできるだけ低温で行うことが可能となり、不織布の風
合いをソフトに保ち、かつ繊維間の融着強度を向上させ
ることが可能となる。芯に融点の高いポリプロピレン樹
脂を使用し、鞘に融点の低いポリエチレン樹脂を用いた
繊維からなる不織布は、柔軟でかつ触感が良好であるこ
とが知られている(特開平10−219521号公報
等)。また、特定のMFRと融解熱とを有するオクテン
−1含有線状低密度ポリエチレンと、特定のMFRを有
する結晶性ポリプロピレンとを特定の割合で混合したブ
レンド構造体からなる繊維を用いると、紡糸ノズル面に
汚れが生ずることなく、高速引取りにて紡糸が可能とな
り、柔軟性と風合いに優れるスパンボンド不織布が得ら
れることも知られている(特開平6−322609号公
報)。しかしながら、これらの方法では、柔軟性と不織
布強度のバランスが未だ不充分であり、特に芯鞘型複合
繊維では、芯と鞘との界面剥離により熱融着後に不織布
表面に毛羽立ちが発生する問題を有している。
[0003] In a nonwoven fabric manufacturing process, a method of entanglement and fusion of fibers with each other is currently mainly performed by a heating oven method or a pressure bonding method using a hot roll. In the production of nonwoven fabric using polyolefin fiber such as polypropylene fiber, in order to perform the work in the thermocompression bonding process smoothly,
The core-sheath type composite fiber is used. Generally, a low-melting resin is used for the sheath component, and polypropylene having a high melting point is used for the core component, so that the composite fiber has a difference in melting point between the core and the sheath. Thereby, the heating (compression bonding) temperature at the time of fusion can be performed at as low a temperature as possible, and the texture of the nonwoven fabric can be kept soft and the fusion strength between fibers can be improved. It is known that a nonwoven fabric made of a fiber using a polypropylene resin having a high melting point for the core and a polyethylene resin having a low melting point for the sheath is flexible and has a good tactile sensation (JP-A-10-219521, etc.). ). Further, when a fiber composed of a blended structure in which octene-1 containing linear low density polyethylene having a specific MFR and heat of fusion and crystalline polypropylene having a specific MFR are mixed at a specific ratio, a spinning nozzle is used. It is also known that spun bonding can be performed by high-speed take-off without causing stains on the surface, and a spunbonded nonwoven fabric excellent in flexibility and texture can be obtained (Japanese Patent Laid-Open No. 6-322609). However, in these methods, the balance between the flexibility and the strength of the nonwoven fabric is still insufficient. Particularly, in the case of the core-sheath type composite fiber, there is a problem that fluffing occurs on the surface of the nonwoven fabric after thermal fusion due to interface separation between the core and the sheath. Have.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
欠点を解消し、紡糸安定性に優れ、触感が良好でソフト
な風合いと高い強力を有し、かつ毛羽立ちのない熱接着
性不織布を与えるポリオレフィン複合繊維およびそれか
らなる不織布を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat-bondable nonwoven fabric which solves the above-mentioned drawbacks, has excellent spinning stability, has a good tactile sensation, has a soft texture and high strength, and has no fluff. An object of the present invention is to provide a polyolefin composite fiber to be provided and a non-woven fabric comprising the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、特定の流動性
を有するポリプロピレンと特定のポリエチレンとを特定
の比率で配合した樹脂組成物を芯成分とし、かつ特定の
ポリエチレンを鞘成分とした芯鞘型または偏心芯鞘型ポ
リオレフィン複合繊維を用いることにより、紡糸安定性
に優れ、触感が良好でソフトな風合いと高い強力を有
し、かつ毛羽立ちのない熱接着性不織布が得られること
を見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a resin composition in which a polypropylene having a specific fluidity and a specific polyethylene are blended in a specific ratio. By using a core-sheath type or eccentric core-sheath type polyolefin composite fiber with a material as a core component and a specific polyethylene as a sheath component, it has excellent spinning stability, has a good tactile sensation, soft texture and high strength. It has been found that a heat-bondable nonwoven fabric having no fluff can be obtained, and the present invention has been completed.

【0006】すなわち、本発明の第1の発明によれば、
以下に示す芯成分(A)と鞘成分(B)とからなり、鞘
成分(B)が繊維表面の少なくとも一部を繊維の長さ方
向に連続して存在するように芯鞘型または偏心芯鞘型に
配したポリオレフィン複合繊維が提供される。 芯成分(A):下記成分(a)および成分(b)からなる樹脂組成物。 成分(a)メルトフローレート(230℃、2.16kg荷重)が4〜200 g/10分であるポリプロピレン: 98〜85重量% 成分(b)密度が0.942〜0.965g/cmの高密度ポリエチレン、 密度が0.911〜0.930g/cmの低密度ポリエチレン、密度が0.9 20〜0.941g/cmの直鎖状低密度ポリエチレンおよび密度が0.87 5〜0.910g/cmのメタロセン触媒を用いて重合されたポリエチレンか ら選ばれ、メルトフローレート(190℃、2.16kg荷重)が6〜50g/ 10分である少なくとも一種以上のポリエチレン: 2〜15重量% 鞘成分(B):密度が0.942〜0.965g/cm
で、メルトフローレート(190℃、2.16kg荷
重)が6〜50g/10分である高密度ポリエチレンお
よび/または密度が0.875〜0.910g/cm
で、メルトフローレート(190℃、2.16kg荷
重)が6〜50g/10分であるメタロセン触媒を用い
て重合されたポリエチレン。
That is, according to the first aspect of the present invention,
The core-sheath type or eccentric core is composed of a core component (A) and a sheath component (B) shown below, and the sheath component (B) is present at least partially on the fiber surface in the length direction of the fiber. A sheathed polyolefin composite fiber is provided. Core component (A): a resin composition comprising the following components (a) and (b). Component (a) polypropylene having a melt flow rate (230 ° C., 2.16 kg load) of 4 to 200 g / 10 min: 98 to 85% by weight Component (b) having a density of 0.942 to 0.965 g / cm 3 high density polyethylene, low density polyethylene, linear low density polyethylene and the density of the density of 0.9 20~0.941g / cm 3 0.87 a density of 0.911~0.930g / cm 3 5~0 At least one type of polyethylene selected from polyethylene polymerized using a metallocene catalyst of 0.910 g / cm 3 and having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 minutes: % By weight Sheath component (B): 0.942 to 0.965 g / cm in density
3 , a high-density polyethylene having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 min and / or a density of 0.875 to 0.910 g / cm 3
A polyethylene polymerized using a metallocene catalyst having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 min.

【0007】また、本発明の第2の発明によれば、上記
芯成分(A)と上記鞘成分(B)の、示差走査熱量計
(DSC)による10℃/分の昇温速度で測定される融
点の差が10℃以上であるポリオレフィン複合繊維が提
供される。
According to a second aspect of the present invention, the core component (A) and the sheath component (B) are measured at a heating rate of 10 ° C./min by a differential scanning calorimeter (DSC). A polyolefin composite fiber having a difference in melting point of 10 ° C. or more.

【0008】また、本発明の第3の発明によれば、上記
芯成分(A)において、成分(a)と成分(b)の示差
走査熱量計(DSC)による10℃/分の昇温速度で測
定される融点の差が10℃以上であるポリオレフィン複
合繊維が提供される。
According to a third aspect of the present invention, in the core component (A), the temperature rise rate of the component (a) and the component (b) by a differential scanning calorimeter (DSC) at 10 ° C./min. Provided is a polyolefin composite fiber having a difference in melting point of 10 ° C. or more as measured by the method.

【0009】さらに、本発明の第4の発明によれば、上
記のポリオレフィン複合繊維を熱圧着してなる不織布が
提供される。
Further, according to a fourth aspect of the present invention, there is provided a nonwoven fabric obtained by thermocompression bonding the above-mentioned polyolefin composite fiber.

【0010】[0010]

【発明の実施の形態】以下に、本発明の芯鞘型ポリオレ
フィン複合繊維およびそれからなる不織布について詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the core-sheath type polyolefin composite fiber of the present invention and a nonwoven fabric comprising the same will be described in detail.

【0011】〔I〕芯鞘型ポリオレフィン複合繊維 1.芯成分(A) 本発明の芯鞘型ポリオレフィン複合繊維において、複合
繊維の芯成分(A)は、下記成分(a)と成分(b)か
らなる樹脂組成物である。
[I] Core-sheath type polyolefin composite fiber Core Component (A) In the core-sheath type polyolefin composite fiber of the present invention, the core component (A) of the composite fiber is a resin composition comprising the following components (a) and (b).

【0012】(1)成分(a) 本発明の成分(a)に使用するポリプロピレンは、プロ
ピレンの単独重合体であっても、プロピレンとエチレン
および/またはα−オレフィンとの共重合体であっても
よい。α−オレフィンとしては、具体的に1−ブテン、
1−ヘキセン、1−オクテン、1−ノネン、1−デセ
ン、3−メチル−1−ブテン、4−メチル−1−ペンテ
ン等を挙げることができる。これらα−オレフィンの含
有量は、10重量%以下であることが複合繊維の強度と
風合いのバランスを保持するために好ましい。本発明の
成分(a)に使用する、好ましいポリプロピレンとして
は、例えば、ホモポリプロピレン、エチレン・プロピレ
ンランダムコポリマー等が例示できる。また、これらの
ポリプロピレンは、単独で用いても二種以上を混合して
用いてもよい。
(1) Component (a) The polypropylene used for the component (a) of the present invention may be a homopolymer of propylene or a copolymer of propylene with ethylene and / or an α-olefin. Is also good. As the α-olefin, specifically, 1-butene,
Examples thereof include 1-hexene, 1-octene, 1-nonene, 1-decene, 3-methyl-1-butene, and 4-methyl-1-pentene. The content of these α-olefins is preferably 10% by weight or less in order to maintain the balance between the strength and the feeling of the conjugate fiber. Preferred polypropylenes used for the component (a) of the present invention include, for example, homopolypropylene and ethylene-propylene random copolymer. These polypropylenes may be used alone or in combination of two or more.

【0013】本発明の成分(a)に使用するポリプロピ
レンは、230℃、2.16kg荷重で測定したメルト
フローレート(以下、MFRと略す。)が、4〜200
g/10分、好ましくは15〜100g/10分であ
る。MFRが4g/10分未満のものでは紡糸圧力が高
くなりすぎ、高倍率での延伸が困難となり、繊維径の不
均一、繊維強度のばらつき等の弊害が生じる。逆に、M
FRが200g/10分を超えるものは、溶融粘度が小
さすぎるため、紡糸時にフィラメント群の揺れ発生によ
る糸切れが顕著になる。
The polypropylene used for the component (a) of the present invention has a melt flow rate (hereinafter abbreviated as MFR) of from 4 to 200 measured at 230 ° C. under a load of 2.16 kg.
g / 10 minutes, preferably 15 to 100 g / 10 minutes. If the MFR is less than 4 g / 10 minutes, the spinning pressure becomes too high, making it difficult to draw at a high magnification, and causing adverse effects such as non-uniform fiber diameter and uneven fiber strength. Conversely, M
When the FR exceeds 200 g / 10 minutes, the melt viscosity is too small, and the yarn breakage due to the occurrence of the fluctuation of the filament group during spinning becomes remarkable.

【0014】(2)成分(b) 本発明の成分(b)に使用するポリエチレンは、高密度
ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリ
エチレンおよびメタロセン触媒を用いて重合したポリエ
チレンから選ばれる一種以上のポリエチレンである。 (i)高密度ポリエチレン 本発明の成分(b)に使用する高密度ポリエチレンは、
エチレンの単独重合体または、炭素数3〜12のα−オ
レフィンを共重合成分とする共重合体であって、密度が
0.942〜0.965g/cm、好ましくは0.9
49〜0.960g/cmであるポリエチレンであ
る。密度が、0.942g/cm未満の高密度ポリエ
チレンは、発煙量が多くなり、一方、密度が0.965
g/cmを超える高密度ポリエチレンは、風合いが硬
くなり、いずれも不適である。また、上記高密度ポリエ
チレンの、190℃、2.16kg荷重で測定したMF
Rは、6〜50g/10分、好ましくは10〜30g/
10分である。MFRが6g/10分未満であると、紡
糸成形時の粘度が高く紡糸延伸性が劣り、一方、50g
/10分を超えると紡糸性はよくなるが、白粉が発生し
たり発煙成分量が多くなったりする。
(2) Component (b) The polyethylene used in the component (b) of the present invention is a kind selected from high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and polyethylene polymerized using a metallocene catalyst. The above is polyethylene. (I) High-density polyethylene The high-density polyethylene used for the component (b) of the present invention includes:
A homopolymer of ethylene or a copolymer containing an α-olefin having 3 to 12 carbon atoms as a copolymer component, having a density of 0.942 to 0.965 g / cm 3 , preferably 0.9
Polyethylene having a density of 49 to 0.960 g / cm 3 . High-density polyethylene having a density of less than 0.942 g / cm 3 produces a larger amount of smoke, while having a density of 0.965
High-density polyethylene exceeding g / cm 3 has a hard texture, and all are unsuitable. The MF of the high-density polyethylene measured at 190 ° C. under a load of 2.16 kg.
R is 6 to 50 g / 10 minutes, preferably 10 to 30 g /
10 minutes. When the MFR is less than 6 g / 10 minutes, the viscosity at the time of spinning is high and the spinning drawability is poor.
If it exceeds / 10 minutes, the spinnability will be improved, but white powder will be generated and the amount of smoke emitting components will increase.

【0015】(ii)低密度ポリエチレン 本発明の成分(b)に使用する低密度ポリエチレンは、
エチレンの単独重合体または酢酸ビニルを共重合成分と
する共重合体であって、密度が0.911〜0.930
g/cm、好ましくは0.918〜0.928g/c
であるポリエチレンである。密度が、0.911g
/cm未満の低密度ポリエチレンは、発煙量が非常に
多く、一方、密度が0.930g/cmを超える低密
度ポリエチレンは、それ自体の生産上の問題があり実際
的でない。また、上記低密度ポリエチレンの、190
℃、2.16kg荷重で測定したMFRは、6〜50g
/10分、好ましくは10〜30g/10分である。M
FRが6g/10分未満であると、紡糸成形時の粘度が
高く紡糸延伸性が劣り、一方、50g/10分を超える
と紡糸性はよくなるが、白粉が発生したり発煙成分量が
多くなったりする。
(Ii) Low-density polyethylene The low-density polyethylene used for the component (b) of the present invention is:
A homopolymer of ethylene or a copolymer containing vinyl acetate as a copolymer component, having a density of 0.911 to 0.930.
g / cm 3 , preferably 0.918 to 0.928 g / c
m is a polyethylene is 3. The density is 0.911g
/ Cm 3 less than the low-density polyethylene, amount of smoke so many, while low density polyethylene having a density greater than 0.930 g / cm 3, itself production problems it has not practical. The low-density polyethylene of 190
The MFR measured at 2.degree.
/ 10 minutes, preferably 10 to 30 g / 10 minutes. M
When the FR is less than 6 g / 10 minutes, the viscosity at the time of spin molding is high, and the spinning drawability is poor. On the other hand, when the FR is more than 50 g / 10 minutes, the spinnability is improved, but white powder is generated and the amount of smoke component increases. Or

【0016】(iii)直鎖状低密度ポリエチレン 本発明の成分(b)に使用する直鎖状低密度ポリエチレ
ンは、エチレンの単独重合体または、炭素数4〜8のα
−オレフィンを共重合成分とする共重合体であって、密
度が0.920〜0.941g/cm、好ましくは
0.925〜0.940g/cmであるポリエチレン
である。密度が、0.920g/cm未満の直鎖状低
密度ポリエチレンは、発煙量が多く、一方、密度が0.
941g/cmを超える直鎖状低密度ポリエチレン
は、それ自体の生産上の問題があり実際的でない。ま
た、上記直鎖状低密度ポリエチレンの、190℃、2.
16kg荷重で測定したMFRは、6〜50g/10
分、好ましくは10〜30g/10分である。MFRが
6g/10分未満であると、紡糸成形時の粘度が高く紡
糸延伸性が劣り、一方、50g/10分を超えると紡糸
性はよくなるが、白粉が発生したり発煙成分量が多くな
ったりする。
(Iii) Linear low-density polyethylene The linear low-density polyethylene used for the component (b) of the present invention may be a homopolymer of ethylene or α having 4 to 8 carbon atoms.
- a copolymer of an olefin and a copolymerizable component, density 0.920~0.941g / cm 3, a polyethylene preferably 0.925~0.940g / cm 3. Linear low-density polyethylene having a density of less than 0.920 g / cm 3 produces a large amount of smoke, while a density of 0.
A linear low-density polyethylene exceeding 941 g / cm 3 has its own production problems and is not practical. In addition, the linear low-density polyethylene at 190 ° C., 2.
The MFR measured under a load of 16 kg is 6 to 50 g / 10
Min, preferably 10 to 30 g / 10 min. If the MFR is less than 6 g / 10 minutes, the viscosity during spinning is high and the spinning drawability is poor. On the other hand, if it exceeds 50 g / 10 minutes, the spinnability is good, but white powder is generated and the amount of smoke components increases. Or

【0017】(iv)メタロセン触媒を用いて重合した
ポリエチレン 本発明の成分(b)に使用するメタロセン触媒を用いて
重合したポリエチレンは、炭素数4〜12のα−オレフ
ィンを共重合成分とする共重合体であって、密度が0.
875〜0.910g/cm、好ましくは0.880
〜0.905g/cmであるポリエチレンである。密
度が、0.875g/cm未満のメタロセン触媒を用
いて重合したポリエチレンは、紡糸性が極端に劣り、一
方、密度が0.910g/cmを超えるメタロセン触
媒を用いて重合したポリエチレンは、それ自体の生産上
の問題が出てくるため実際的でない。また、上記メタロ
セン触媒を用いて重合したポリエチレンの、190℃、
2.16kg荷重で測定したMFRは、6〜50g/1
0分、好ましくは15〜30g/10分である。MFR
が6g/10分未満であると、紡糸性が劣り、一方、5
0g/10分を超えると不織布強力の低下を生ずる。
(Iv) Polyethylene polymerized using a metallocene catalyst Polyethylene polymerized using a metallocene catalyst used in the component (b) of the present invention is a copolymer containing an α-olefin having 4 to 12 carbon atoms as a copolymerization component. A polymer having a density of 0.
875~0.910g / cm 3, preferably 0.880
It is a polyethylene of 0.90.905 g / cm 3 . Polyethylene polymerized using a metallocene catalyst having a density of less than 0.875 g / cm 3 has extremely poor spinnability, while polyethylene polymerized using a metallocene catalyst having a density exceeding 0.910 g / cm 3 is It is not practical because of its own production problems. In addition, the polyethylene polymerized using the above metallocene catalyst, 190 ° C.,
2. The MFR measured under a load of 16 kg is 6 to 50 g / 1.
0 minutes, preferably 15 to 30 g / 10 minutes. MFR
Is less than 6 g / 10 minutes, the spinnability is poor.
If it exceeds 0 g / 10 minutes, the strength of the nonwoven fabric will decrease.

【0018】本発明の成分(b)に使用するメタロセン
触媒を用いて重合したポリエチレンは、示差走査熱量計
(DSC)による10℃/分の降温サーモグラムでの結
晶化ピーク温度(Tc)が、2つ以上観測されるもので
あることが好ましい。また、結晶化ピーク温度(Tc)
の高温側(Tc2:高温結晶化ピーク温度)と低温側
(Tc1:低温結晶化ピーク温度)の差は、好ましくは
5℃以上、さらに好ましくは8℃以上である。また、T
c2は、好ましくは110℃以下、さらに好ましくは1
00℃以下、望ましくは90℃以下であり、Tc1は、
好ましくは70℃以下、さらに好ましくは60℃以下、
望ましくは50℃以下である。
The polyethylene polymerized using the metallocene catalyst used in the component (b) of the present invention has a crystallization peak temperature (Tc) at a temperature-decreasing thermogram of 10 ° C./min measured by a differential scanning calorimeter (DSC). Preferably, two or more are observed. The crystallization peak temperature (Tc)
Is preferably 5 ° C. or more, more preferably 8 ° C. or more, between the high temperature side (Tc2: high temperature crystallization peak temperature) and the low temperature side (Tc1: low temperature crystallization peak temperature). Also, T
c2 is preferably 110 ° C. or less, more preferably 1
00 ° C. or lower, desirably 90 ° C. or lower, and Tc1 is:
Preferably 70 ° C or less, more preferably 60 ° C or less,
It is desirably 50 ° C. or less.

【0019】また、本発明の成分(b)に使用するメタ
ロセン触媒を用いて重合したポリエチレンのα−オレフ
ィンの炭素数(c)および密度(d)で表される温度T
1=−1097+c×2.3+d×1270に対し、温
度T2=(T1+30)以上の温度上昇溶融分離(TR
EF)による全溶出量は、全溶出分の5重量%以上であ
ることが好ましい。
The temperature T expressed by the carbon number (c) and the density (d) of the α-olefin of the polyethylene polymerized using the metallocene catalyst used for the component (b) of the present invention.
1 = −1097 + c × 2.3 + d × 1270, whereas temperature T2 = (T1 + 30) or more, temperature-rise melting separation (TR
The total elution amount by EF) is preferably 5% by weight or more of the total elution.

【0020】なお、温度上昇溶離分別(TREF:Te
mperature RisingElution F
raction)による測定は、「Journal o
fApplied Polymer Science、
第26巻、第4217〜4231頁(1981年)」お
よび「高分子論文集 2P1C09(1985年)」に
記載されている原理に基づき、以下のようにして行われ
る。まず、測定の対象とするポリマーを溶媒中で完全に
溶解させる。その後、冷却して不活性担体表面に薄いポ
リマー層を形成させる。かかるポリマー層は、結晶し易
いものが内側(不活性担体表面に近い側)に、結晶しに
くいものが外側に形成されてなるものである。次に温度
を連続または段階的に上昇させると、低温度段階では、
対象のポリマー組成中の非晶部分、すなわちポリマーの
持つ短鎖分岐の分岐度の多いものから溶出し、温度が上
昇するとともに徐々に分岐度の少ないものが溶出し、最
終的に分岐にない直鎖状の部分が溶出し測定は終了す
る。かかる温度での溶出成分の濃度を検出し、その溶出
量と溶出温度によって描かれるグラフによってポリマー
の組成分布を見ることができるものである。
The temperature rise elution fractionation (TREF: Te
mperture RisingElution F
measurement) is described in “Journal o
fApplied Polymer Science,
Vol. 26, Nos. 4217-4231 (1981) "and" Principles of Polymers, 2P1C09 (1985) ". First, a polymer to be measured is completely dissolved in a solvent. Thereafter, cooling is performed to form a thin polymer layer on the surface of the inert carrier. Such a polymer layer is formed such that an easily crystallizable material is formed on the inner side (closer to the surface of the inert carrier), and a hardly crystallizable material is formed on the outer side. Next, when the temperature is continuously or stepwise increased, in the low temperature stage,
The polymer is eluted from the amorphous portion in the target polymer composition, that is, the polymer having a short branching degree with a high degree of branching. The chain is eluted and the measurement is completed. The concentration of the eluted component at such a temperature is detected, and the composition distribution of the polymer can be seen from a graph drawn by the amount of the eluted and the elution temperature.

【0021】(3)成分(a)と成分(b)の配合比率 本発明の芯成分(A)に用いられる、成分(a)である
ポリプロピレンと、成分(b)である高密度ポリエチレ
ン、低密度ポリエチレン、直鎖状低密度ポリエチレンお
よびメタロセン触媒を用いて重合したポリエチレンから
選ばれる一種以上のポリエチレンとの配合比率は、成分
(a)98〜85重量%に対して、成分(b)が2〜1
5重量%、好ましくは成分(a)97〜90重量%に対
して、成分(b)が3〜10重量%である。成分(a)
が98重量%を超えると(成分(b)が2重量%未満で
あると)、不織布の毛羽立ちが生じ易くなり、一方、成
分(a)が85重量%未満であると(成分(b)が15
重量%を超えると)、紡糸性に劣り、かつ不織布強力も
低下する。
(3) Mixing ratio of component (a) and component (b) The polypropylene used as the component (a) and the high-density polyethylene used as the component (b) are used in the core component (A) of the present invention. The mixing ratio of one or more polyethylenes selected from high-density polyethylene, linear low-density polyethylene, and polyethylene polymerized using a metallocene catalyst is as follows: component (a) is 98 to 85% by weight; ~ 1
Component (b) is 3 to 10% by weight based on 5% by weight, preferably 97 to 90% by weight of component (a). Component (a)
When the content exceeds 98% by weight (when component (b) is less than 2% by weight), fluffing of the nonwoven fabric is liable to occur, while when the component (a) is less than 85% by weight (component (b) is less than 85% by weight). Fifteen
If it exceeds 10% by weight), the spinnability is inferior and the strength of the nonwoven fabric is also reduced.

【0022】さらに、上記芯成分(A)において、成分
(a)と成分(b)のDSCによる10℃/分の昇温速
度で測定される融点の差は、10℃以上であることが好
ましい。該融点差が、10℃未満であると芯鞘界面で剥
離し易くなり、好ましくない。
Further, in the core component (A), the difference between the melting points of the component (a) and the component (b) measured by a DSC at a rate of 10 ° C./min is preferably 10 ° C. or more. . If the melting point difference is less than 10 ° C., it is easy to peel off at the core-sheath interface, which is not preferable.

【0023】2.鞘成分(B) 本発明の芯鞘型ポリオレフィン複合繊維において、複合
繊維の鞘成分(B)としては、芯成分(A)の成分
(b)の中から、高密度ポリエチレンおよび/またはメ
タロセン触媒を用いて重合したポリエチレンが用いられ
る。芯成分(A)の成分(b)と鞘成分(B)とが、同
一の樹脂組成物であることが特に好ましい。さらに、上
記芯成分(A)と上記鞘成分(B)のDSCによる10
℃/分の昇温速度で測定される融点の差は、10℃以上
であることが好ましい。該融点差が、10℃未満である
と、芯成分(A)も一部溶解し過ぎるため、不織布の風
合いが硬くなるとともに、ペーパー様になり易く、性能
上好ましくない。
2. Sheath component (B) In the core-sheath type polyolefin conjugate fiber of the present invention, as the sheath component (B) of the conjugate fiber, a high-density polyethylene and / or metallocene catalyst is selected from the component (b) of the core component (A). Polyethylene that has been polymerized using the same is used. It is particularly preferable that the component (b) and the sheath component (B) of the core component (A) are the same resin composition. Further, the core component (A) and the sheath component (B) were measured by DSC.
The difference between the melting points measured at a heating rate of ° C / min is preferably 10 ° C or more. When the melting point difference is less than 10 ° C., the core component (A) is partially dissolved too much, so that the texture of the nonwoven fabric becomes hard, and the nonwoven fabric tends to be paper-like, which is not preferable in performance.

【0024】3.添加剤 本発明で用いる上記芯成分(A)または鞘成分(B)に
は、本発明の効果を著しく損なわない範囲において、他
の付加成分を任意に配合することができる。かかる付加
成分としては、通常のポリオレフィン樹脂に用いられる
樹脂添加剤、例えば、フェノール系酸化防止剤、リン系
酸化防止剤、硫黄系酸化防止剤、中和剤、光安定剤、紫
外線吸収剤、造核剤、滑剤、帯電防止剤、難燃剤、金属
不活性剤、充填剤等が挙げられる。これらの付加成分の
配合量は、一般に、0.001〜2重量%程度、好まし
くは0.01〜0.8重量%程度である。
3. Additives The core component (A) or the sheath component (B) used in the present invention may optionally contain other additional components as long as the effects of the present invention are not significantly impaired. Such additional components include resin additives used in ordinary polyolefin resins, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, Nucleating agents, lubricants, antistatic agents, flame retardants, metal deactivators, fillers, and the like. The amount of these additional components is generally about 0.001 to 2% by weight, preferably about 0.01 to 0.8% by weight.

【0025】〔II〕不織布 1.芯鞘型ポリオレフィン複合繊維および不織布の製造
方法 本発明の不織布は、好ましくは、上記のポリオレフィン
複合繊維を熱圧着することにより製造する。すなわち、
先ず、上記の芯成分(A)および上記の鞘成分(B)に
それぞれ必要に応じて添加剤等を添加し、(偏心)芯鞘
型複合紡糸口金を用いて溶融紡糸を行う。その後エアサ
ッカーにて延伸し、複合型長繊維を得、この複合型長繊
維をエアサッカー下方にあるコンベアーに集積した後、
110〜135℃に設定したエンボスロール等により鞘
成分を溶融固化させ繊維同士を結合させるスパンボンド
法により製造する。エンボスロール温度が110℃未満
であると、鞘成分の溶融が不十分であるため繊維同士の
溶融固化が不十分となり、不織布引張強度が低下する原
因となり好ましくない。一方、135℃を超えると、溶
融しすぎて得られる不織布が硬くなり風合いが悪くなり
好ましくない。
[II] Nonwoven fabric Method for producing core-sheath type polyolefin composite fiber and nonwoven fabric The nonwoven fabric of the present invention is preferably produced by thermocompression bonding the above-mentioned polyolefin composite fiber. That is,
First, additives and the like are added as necessary to the core component (A) and the sheath component (B), respectively, and melt spinning is performed using a (eccentric) core-sheath composite spinneret. After that, it is stretched by air soccer to obtain a composite filament, and after accumulating the composite filament on a conveyor below the air football,
It is manufactured by a spun bond method in which the sheath component is melted and solidified by an embossing roll or the like set at 110 to 135 ° C and the fibers are bonded to each other. When the embossing roll temperature is lower than 110 ° C., the sheath component is insufficiently melted, so that the fibers are insufficiently melt-solidified, and the tensile strength of the nonwoven fabric is lowered, which is not preferable. On the other hand, when the temperature exceeds 135 ° C., the nonwoven fabric obtained by melting excessively becomes hard and the texture deteriorates, which is not preferable.

【0026】[0026]

【実施例】本発明を以下に実施例を示して具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。なお、本発明で用いた測定方法および評価
方法は、以下の通りである。
EXAMPLES The present invention will be specifically described with reference to examples below, but the present invention is not limited to these examples. The measurement method and evaluation method used in the present invention are as follows.

【0027】(1)メルトフローレート(MFR):J
IS K6758ポリプロピレン試験法のメルトフロー
レート(条件:230℃、荷重2.16kgf)に従っ
て測定した。なお、ポリエチレンのメルトフローレート
は、JIS K6760に準拠し、190℃、荷重2.
16kgfにて測定した。
(1) Melt flow rate (MFR): J
It was measured according to the melt flow rate (condition: 230 ° C., load 2.16 kgf) of the IS K6758 polypropylene test method. The polyethylene has a melt flow rate of 190 ° C. under a load of 2.000 in accordance with JIS K6760.
It was measured at 16 kgf.

【0028】(2)融点:パーキン−エルマー社製の示
差走査熱量計(DSC)を用い、初期設定230℃まで
急速昇温して5分下保持した後、10℃/分の降温速度
にて40℃まで冷却し、再度昇温速度10℃/分にて昇
温し、その融解吸熱ピークを融点として測定した。
(2) Melting point: Using a differential scanning calorimeter (DSC) manufactured by Perkin-Elmer Co., Ltd., the temperature was rapidly raised to an initial setting of 230 ° C., maintained for 5 minutes, and then at a cooling rate of 10 ° C./min. After cooling to 40 ° C., the temperature was raised again at a rate of 10 ° C./min, and the melting endothermic peak was measured as the melting point.

【0029】(3)紡糸性:24個の紡糸孔を有する丸
型紡糸口より、樹脂温度230℃、吐出量0.8g/分
・孔にて紡糸を行い、さらに高速気流を用いて2800
m/分の引き取り速度にて延伸を行って、20分間の糸
切れ回数を測定することにより評価した。 ◎:断糸回数が0回 ○:断糸回数が1回 △:断糸回数が2回 ×:断糸回数が3回以上
(3) Spinnability: spinning is performed from a round spinneret having 24 spinning holes at a resin temperature of 230 ° C. and a discharge rate of 0.8 g / min.
The film was drawn at a take-up speed of m / min and evaluated by measuring the number of yarn breaks for 20 minutes. ◎: Number of times of thread break is 0 ○: Number of times of thread break is one △: Number of times of thread break is two times ×: Number of times of thread break is three or more

【0030】(4)不織布の風合い:5人パネラーによ
る官能試験を行い、以下の基準で評価を行った。 ◎:全員がソフトであると判定 ○:4人がソフトであると判定 △:3人がソフトであると判定 ×:上記以外の判定
(4) Hand of the nonwoven fabric: A sensory test was conducted by a panel of five persons, and the evaluation was made according to the following criteria. ◎: All the members are judged to be software ○: Four members are judged to be software △: Three members are judged to be software ×: Judgments other than the above

【0031】(5)不織布の毛羽立ち:不織布表面を指
でこすった後、肉眼で観察して、以下の基準で評価を行
った。 ◎:毛羽立ちが全くないもの ○:毛羽立ちが非常に僅かなもの △:毛羽立ちがかなり目立つもの ×:毛羽立ちが顕著に目立つもの
(5) Fluff of the nonwoven fabric: After rubbing the surface of the nonwoven fabric with a finger, the surface was visually observed and evaluated according to the following criteria. ◎: No fuzz at all ○: Very little fuzz Δ: Very fuzzy X: Very fuzzy

【0032】(6)不織布強力:JIS L1096に
準拠し、幅5cmの試験片をつかみ間隔10cm、伸長
速度1分あたり100%にて測定し、以下の基準にて評
価を行った。 S:不織布強力13kg/5cm幅以上のもの M:不織布強力13kg/5cm幅未満のもの
(6) Nonwoven fabric strength: A test piece having a width of 5 cm was measured at a spacing of 10 cm and an elongation speed of 100% per minute in accordance with JIS L1096, and evaluated according to the following criteria. S: Nonwoven fabric strong 13kg / 5cm width or more M: Nonwoven fabric strong 13kg / 5cm width or less

【0033】実施例1 (1)芯成分(A)および鞘成分(B) 芯成分(A)として、MFR26g/10分のホモポリ
プロピレンパウダー(以下PP−Aと略す。)97重量
%と密度が0.965g/cmで、MFRが20g/
10分である高密度ポリエチレンパウダー(以下HDP
E−Aと略す。)3重量%との混合物を用いた。また、
鞘成分(B)としては、HDPE−Aパウダーを用い
た。
Example 1 (1) Core Component (A) and Sheath Component (B) The core component (A) had a density of 97% by weight of homopolypropylene powder (hereinafter abbreviated as PP-A) of 26 g / 10 min. 0.965 g / cm 3 and MFR of 20 g / cm 3
10 minutes high density polyethylene powder (HDP)
Abbreviated as EA. ) 3% by weight. Also,
HDPE-A powder was used as the sheath component (B).

【0034】上記の芯成分(A)および鞘成分(B)パ
ウダーの各々100重量部に、酸化防止剤として、1,
3,5−トリス(4−t−ブチル−3−ヒドロキシ−
2,6−ジメチルベンジル)−イソシアヌレート(サイ
ヤノックス1790:サイテック・インダストリーズ社
製)およびトリス(2,4−ジ−t−ブチルフェニル)
フォスファイト(Ir168:チバ・スペシャルティ・
ケミカルズ社製)を各々0.05重量部、中和剤として
カルシウムステアレートを0.05重量部配合し、スー
パーミキサーを用いてブレンドした後、50mmφの押
出成形機にて230℃、75r.p.mのスクリュー回
転数で溶融混練し、ペレット状の芯成分(A)および鞘
成分(B)を得た。
[0034] 100 parts by weight of each of the above-mentioned core component (A) and sheath component (B) powder were added with
3,5-tris (4-t-butyl-3-hydroxy-
2,6-dimethylbenzyl) -isocyanurate (Cyanox 1790: manufactured by Cytec Industries) and tris (2,4-di-t-butylphenyl)
Phosphite (Ir168: Ciba Specialty
Chemicals Co., Ltd.) and 0.05 parts by weight of calcium stearate as a neutralizing agent were blended using a supermixer, and then blended using a 50 mmφ extruder at 230 ° C. and 75 r.p.m. p. The mixture was melt-kneaded at a screw rotation speed of m to obtain a pellet-shaped core component (A) and a sheath component (B).

【0035】(2)芯鞘複合繊維および不織布の製造 上記芯成分(A)および鞘成分(B)を用い、孔数24
個の芯鞘型複合紡糸口金を使用して溶融紡糸を行った。
溶融紡糸は、紡糸温度230℃、吐出量0.8g/分・
孔、芯鞘複合比率1/1で行い、その後、エアサッカー
にて延伸し、繊度2デニールの複合型長繊維を得た。こ
の複合型長繊維をエアサッカー下方にあるコンベアーに
集積させた後、125℃に設定したエンボスロールによ
り繊維同士を融着させ、目付量50g/mの不織布を
得た。表1に芯鞘複合繊維の紡糸性および得られた不織
布の評価結果を示す。
(2) Production of core-sheath conjugate fiber and non-woven fabric Using the core component (A) and the sheath component (B), the number of pores was 24.
Melt spinning was performed using a single core-sheath composite spinneret.
Melt spinning is performed at a spinning temperature of 230 ° C and a discharge rate of 0.8 g / min.
The blending was performed at a hole / core-sheath composite ratio of 1/1, followed by drawing with air soccer to obtain a composite long fiber having a fineness of 2 denier. After the composite type long fibers were accumulated on a conveyor below the air soccer, the fibers were fused with each other by an embossing roll set at 125 ° C. to obtain a nonwoven fabric having a basis weight of 50 g / m 2 . Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0036】実施例2〜3 芯成分(A)のPP−AとHDPE−Aの配合比率を変
えたこと以外は、実施例1と同様にして芯鞘複合繊維お
よび不織布の製造を行った。表1に芯鞘複合繊維の紡糸
性および得られた不織布の評価結果を示す。
Examples 2-3 A core-sheath composite fiber and a nonwoven fabric were produced in the same manner as in Example 1, except that the mixing ratio of PP-A and HDPE-A of the core component (A) was changed. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0037】実施例4〜5 芯成分(A)のHDPE−Aを、密度が0.957g/
cmで、MFRが20g/10分である高密度ポリエ
チレンパウダー(以下HDPE−Bと略す。)に代え、
かつPP−AとHDPE−Bの配合比率を表1に示すよ
うにしたこと以外は、実施例1と同様にして芯鞘複合繊
維および不織布の製造を行った。表1に芯鞘複合繊維の
紡糸性および得られた不織布の評価結果を示す。
Examples 4 and 5 The core component (A), HDPE-A, was prepared at a density of 0.957 g /
In cm 3, MFR is (hereinafter referred to as HDPE-B.) high density polyethylene powder is 20 g / 10 min instead of,
A core-sheath composite fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixing ratio of PP-A and HDPE-B was as shown in Table 1. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0038】実施例6〜7 芯成分(A)のPP−Aを、MFR50g/10分のホ
モポリプロピレンパウダー(以下PP−Bと略す。)に
代え、かつPP−BとHDPE−Aの配合比率を表1に
示すようにしたこと以外は、実施例1と同様にして芯鞘
複合繊維および不織布の製造を行った。表1に芯鞘複合
繊維の紡糸性および得られた不織布の評価結果を示す。
Examples 6 and 7 The PP-A of the core component (A) was replaced with a homopolypropylene powder (hereinafter abbreviated as PP-B) having an MFR of 50 g / 10 minutes, and the mixing ratio of PP-B and HDPE-A Were produced as shown in Table 1 in the same manner as in Example 1 to produce core-sheath composite fibers and nonwoven fabrics. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0039】実施例8〜9 芯成分(A)のPP−AをPP−Bに、HDPE−Aを
HDPE−Bに代え、かつPP−BとHDPE−Bの配
合比率を表1に示すようにしたこと以外は、実施例1と
同様にして芯鞘複合繊維および不織布の製造を行った。
表1に芯鞘複合繊維の紡糸性および得られた不織布の評
価結果を示す。
Examples 8-9 PP-A of the core component (A) was changed to PP-B, HDPE-A was changed to HDPE-B, and the mixing ratio of PP-B and HDPE-B was as shown in Table 1. Except for this, a core-sheath composite fiber and a nonwoven fabric were produced in the same manner as in Example 1.
Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0040】実施例10 芯成分(A)のHDPE−AをHDPE−Bおよび密度
が0.898g/cm で、MFRが16g/10分で
あるメタロセン触媒を用いて重合したポリエチレンパウ
ダー(以下MePEと略す。)50:50(重量比)の
混合物に代えたこと以外は、実施例3と同様にして芯鞘
複合繊維および不織布の製造を行った。表1に芯鞘複合
繊維の紡糸性および得られた不織布の評価結果を示す。
Example 10 The core component (A) HDPE-A was replaced with HDPE-B and density.
Is 0.898 g / cm 3And the MFR is 16g / 10min
Polyethylene pow polymerized using a metallocene catalyst
(Hereinafter abbreviated as MePE) 50:50 (weight ratio).
A core / sheath was prepared in the same manner as in Example 3 except that the mixture was replaced with a mixture.
Production of composite fibers and nonwoven fabrics was performed. Table 1 shows the core-sheath composite
The spinnability of the fiber and the evaluation results of the obtained nonwoven fabric are shown.

【0041】実施例11 芯成分(A)のHDPE−AをMePEに代えたこと以
外は、実施例3と同様にして芯鞘複合繊維および不織布
の製造を行った。表1に芯鞘複合繊維の紡糸性および得
られた不織布の評価結果を示す。
Example 11 A core / sheath composite fiber and a nonwoven fabric were produced in the same manner as in Example 3, except that HDPE-A of the core component (A) was changed to MePE. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0042】実施例12 鞘成分(B)のHDPE−AをHDPE−A(95重量
%)およびMePE(5重量%)の混合物に代えたこと
以外は、実施例2と同様にして芯鞘複合繊維および不織
布の製造を行った。表1に芯鞘複合繊維の紡糸性および
得られた不織布の評価結果を示す。
Example 12 A core / sheath composite was prepared in the same manner as in Example 2 except that HDPE-A of the sheath component (B) was replaced with a mixture of HDPE-A (95% by weight) and MePE (5% by weight). Fabrication of fibers and nonwovens. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0043】実施例13 鞘成分(B)のHDPE−AをHDPE−A(65重量
%)およびMePE(35重量%)の混合物に代えたこ
と以外は、実施例3と同様にして芯鞘複合繊維および不
織布の製造を行った。表1に芯鞘複合繊維の紡糸性およ
び得られた不織布の評価結果を示す。
Example 13 A core / sheath composite was prepared in the same manner as in Example 3, except that HDPE-A of the sheath component (B) was replaced with a mixture of HDPE-A (65% by weight) and MePE (35% by weight). Fabrication of fibers and nonwovens. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0044】実施例14 芯成分(A)のHDPE−Aを、密度が0.918g/
cmで、MFRが20g/10分である低密度ポリエ
チレンパウダー(日本ポリケム社製;LJ800、以下
LDPEと略す。)に代えたこと以外は、実施例2と同
様にして芯鞘複合繊維および不織布の製造を行った。表
1に芯鞘複合繊維の紡糸性および得られた不織布の評価
結果を示す。
Example 14 The core component (A), HDPE-A, was prepared at a density of 0.918 g /
core / sheath composite fiber and nonwoven fabric in the same manner as in Example 2 except that low density polyethylene powder having an MFR of 20 g / 10 min in cm 3 (manufactured by Nippon Polychem; LJ800, hereinafter abbreviated as LDPE) was used. Was manufactured. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0045】実施例15 芯成分(A)のHDPE−Aを、密度が0.937g/
cmで、MFRが35g/10分である直鎖状低密度
ポリエチレンパウダー(日本ポリケム社製;UJ99
0、以下LLDPEと略す。)に代えたこと以外は、実
施例2と同様にして芯鞘複合繊維および不織布の製造を
行った。表1に芯鞘複合繊維の紡糸性および得られた不
織布の評価結果を示す。
Example 15 The core component (A) HDPE-A was prepared with a density of 0.937 g /
linear low-density polyethylene powder having an MFR of 35 g / 10 min in cm 3 (manufactured by Nippon Polychem; UJ99)
0, hereinafter abbreviated as LLDPE. ), Except that core-sheath composite fibers and nonwoven fabrics were produced in the same manner as in Example 2. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0046】比較例1 芯成分(A)をPP−A(97重量%)およびHDPE
−A(3重量%)の混合物からPP−A(100重量
%)に代えたこと以外は、実施例1と同様にして芯鞘複
合繊維および不織布の製造を行った。表1に芯鞘複合繊
維の紡糸性および得られた不織布の評価結果を示す。
Comparative Example 1 The core component (A) was composed of PP-A (97% by weight) and HDPE.
Core-sheath composite fibers and nonwoven fabrics were produced in the same manner as in Example 1 except that the mixture of -A (3% by weight) was replaced with PP-A (100% by weight). Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0047】比較例2 芯成分(A)をPP−A(97重量%)およびHDPE
−A(3重量%)の混合物からPP−B(100重量
%)に代えたこと以外は、実施例1と同様にして芯鞘複
合繊維および不織布の製造を行った。表1に芯鞘複合繊
維の紡糸性および得られた不織布の評価結果を示す。
Comparative Example 2 The core component (A) was composed of PP-A (97% by weight) and HDPE.
A core-sheath composite fiber and a nonwoven fabric were produced in the same manner as in Example 1, except that the mixture of -A (3% by weight) was replaced with PP-B (100% by weight). Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0048】比較例3〜5 鞘成分(B)をHDPE−Aから表1に示す配合比率の
HDPE−AおよびMePEの混合物に代えたこと以外
は、比較例1と同様にして芯鞘複合繊維および不織布の
製造を行った。表1に芯鞘複合繊維の紡糸性および得ら
れた不織布の評価結果を示す。
Comparative Examples 3 to 5 Core / sheath composite fibers were prepared in the same manner as in Comparative Example 1 except that the sheath component (B) was changed from HDPE-A to a mixture of HDPE-A and MePE at the compounding ratio shown in Table 1. And production of non-woven fabric. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0049】比較例6 鞘成分(B)をHDPE−AからMePEに代えたこと
以外は、比較例1と同様にして芯鞘複合繊維および不織
布の製造を行った。表1に芯鞘複合繊維の紡糸性および
得られた不織布の評価結果を示す。
Comparative Example 6 A core / sheath composite fiber and a nonwoven fabric were produced in the same manner as in Comparative Example 1 except that the sheath component (B) was changed from HDPE-A to MePE. Table 1 shows the spinnability of the core-sheath composite fiber and the evaluation results of the obtained nonwoven fabric.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明の芯鞘型ポリオレフィン複合繊維
およびそれからなる不織布は、複合繊維の芯成分に特定
のポリプロピレンおよび特定のポリエチレンを特定比率
で配合した樹脂組成物を用い、かつ鞘成分に特定のポリ
エチレンを用いているので、該複合繊維の紡糸安定性に
優れ、また、それより得られる熱接着性不織布は、触感
が良好でソフトな風合いと、高い強力を有し、かつ毛羽
立ちのない不織布であり、衛生材料表面材等として好適
に使用できるものである。
The core-sheath type polyolefin composite fiber of the present invention and the nonwoven fabric comprising the same use a resin composition in which a specific polypropylene and a specific polyethylene are blended in a specific ratio in a core component of the composite fiber, and a specific sheath component is used. Because of the use of polyethylene, the conjugate fiber has excellent spinning stability, and the resulting heat-bondable nonwoven fabric has a good tactile sensation, a soft texture, a high strength, and a non-fuzzy nonwoven fabric. And can be suitably used as a surface material for sanitary materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 徹 神奈川県川崎市川崎区千鳥町3番1号 日 本ポリケム株式会社材料開発センター内 Fターム(参考) 4L041 AA07 BA21 BA22 BA49 BC04 BD11 CA37 CA41 DD01 4L047 AA14 AA27 AB03 BA09 BB01 BB02 BB09 CB10 CC03 EA05 EA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Matsumura 3-1 Chidori-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Japan F-term in Material Development Center, Polychem Co., Ltd. 4L041 AA07 BA21 BA22 BA49 BC04 BD11 CA37 CA41 DD01 4L047 AA14 AA27 AB03 BA09 BB01 BB02 BB09 CB10 CC03 EA05 EA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 以下に示す芯成分(A)と鞘成分(B)
とからなり、鞘成分(B)が繊維表面の少なくとも一部
を繊維の長さ方向に連続して存在するように芯鞘型また
は偏心芯鞘型に配したポリオレフィン複合繊維。 芯成分(A):下記成分(a)および成分(b)からなる樹脂組成物。 成分(a)メルトフローレート(230℃、2.16kg荷重)が4〜200 g/10分であるポリプロピレン: 98〜85重量% 成分(b)密度が0.942〜0.965g/cmの高密度ポリエチレン、 密度が0.911〜0.930g/cmの低密度ポリエチレン、密度が0.9 20〜0.941g/cmの直鎖状低密度ポリエチレンおよび密度が0.87 5〜0.910g/cmのメタロセン触媒を用いて重合されたポリエチレンか ら選ばれ、メルトフローレート(190℃、2.16kg荷重)が6〜50g/ 10分である少なくとも一種以上のポリエチレン: 2〜15重量% 鞘成分(B):密度が0.942〜0.965g/cm
で、メルトフローレート(190℃、2.16kg荷
重)が6〜50g/10分である高密度ポリエチレンお
よび/または密度が0.875〜0.910g/cm
で、メルトフローレート(190℃、2.16kg荷
重)が6〜50g/10分であるメタロセン触媒を用い
て重合されたポリエチレン。
1. A core component (A) and a sheath component (B) shown below.
Wherein the sheath component (B) is arranged in a core-sheath type or an eccentric core-sheath type so that at least a part of the fiber surface is continuously present in the fiber length direction. Core component (A): a resin composition comprising the following components (a) and (b). Component (a) polypropylene having a melt flow rate (230 ° C., 2.16 kg load) of 4 to 200 g / 10 min: 98 to 85% by weight Component (b) having a density of 0.942 to 0.965 g / cm 3 high density polyethylene, low density polyethylene, linear low density polyethylene and the density of the density of 0.9 20~0.941g / cm 3 0.87 a density of 0.911~0.930g / cm 3 5~0 At least one type of polyethylene selected from polyethylene polymerized using a metallocene catalyst of 0.910 g / cm 3 and having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 minutes: % By weight Sheath component (B): 0.942 to 0.965 g / cm in density
3 , a high-density polyethylene having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 min and / or a density of 0.875 to 0.910 g / cm 3
A polyethylene polymerized using a metallocene catalyst having a melt flow rate (190 ° C., 2.16 kg load) of 6 to 50 g / 10 min.
【請求項2】 芯成分(A)と鞘成分(B)の、示差走
査熱量計(DSC)による10℃/分の昇温速度で測定
される融点の差が10℃以上である請求項1に記載のポ
リオレフィン複合繊維。
2. The difference between the melting points of the core component (A) and the sheath component (B) measured at a heating rate of 10 ° C./min by a differential scanning calorimeter (DSC) is 10 ° C. or more. The polyolefin conjugate fiber according to the above.
【請求項3】 芯成分(A)において、成分(a)と成
分(b)の示差走査熱量計(DSC)による10℃/分
の昇温速度で測定される融点の差が10℃以上である請
求項1または2に記載のポリオレフィン複合繊維。
3. In the core component (A), the difference between the melting point of the component (a) and that of the component (b) measured by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min is 10 ° C. or more. The polyolefin composite fiber according to claim 1 or 2.
【請求項4】 請求項1ないし3に記載のポリオレフィ
ン複合繊維を熱圧着してなる不織布。
4. A nonwoven fabric obtained by thermocompression bonding the polyolefin composite fiber according to claim 1.
JP2000269525A 2000-09-06 2000-09-06 Core-sheath type polyolefin composite fiber and non-woven fabric comprising the same Expired - Fee Related JP4452388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269525A JP4452388B2 (en) 2000-09-06 2000-09-06 Core-sheath type polyolefin composite fiber and non-woven fabric comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269525A JP4452388B2 (en) 2000-09-06 2000-09-06 Core-sheath type polyolefin composite fiber and non-woven fabric comprising the same

Publications (2)

Publication Number Publication Date
JP2002069753A true JP2002069753A (en) 2002-03-08
JP4452388B2 JP4452388B2 (en) 2010-04-21

Family

ID=18756114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269525A Expired - Fee Related JP4452388B2 (en) 2000-09-06 2000-09-06 Core-sheath type polyolefin composite fiber and non-woven fabric comprising the same

Country Status (1)

Country Link
JP (1) JP4452388B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042130A1 (en) * 2002-11-08 2004-05-21 Mitsui Chemicals, Inc. Spun bonded nonwoven fabric, laminates made by using the same, and processes for production of both
JP2012087450A (en) * 2010-10-20 2012-05-10 Toray Advanced Mat Korea Inc Filament elastic nonwoven fabric having both fitting property and soft touch feeling, and method for producing the same
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
CN111684007A (en) * 2018-11-05 2020-09-18 Lg化学株式会社 Resin composition for bicomponent fibers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041848A1 (en) * 2022-08-22 2024-02-29 Sabic Global Technologies B.V. Bicomponent fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042130A1 (en) * 2002-11-08 2004-05-21 Mitsui Chemicals, Inc. Spun bonded nonwoven fabric, laminates made by using the same, and processes for production of both
JP4694204B2 (en) * 2002-11-08 2011-06-08 三井化学株式会社 Spunbond nonwoven fabric, laminate using the same, and production method thereof
JP2012087450A (en) * 2010-10-20 2012-05-10 Toray Advanced Mat Korea Inc Filament elastic nonwoven fabric having both fitting property and soft touch feeling, and method for producing the same
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
CN111684007A (en) * 2018-11-05 2020-09-18 Lg化学株式会社 Resin composition for bicomponent fibers
US11414537B2 (en) 2018-11-05 2022-08-16 Lg Chem, Ltd. Resin composition for bi-component fiber
CN111684007B (en) * 2018-11-05 2022-12-23 Lg化学株式会社 Resin composition for bicomponent fibers

Also Published As

Publication number Publication date
JP4452388B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US7927698B2 (en) Fibers and nonwovens comprising polyethylene blends and mixtures
CA2554103C (en) Fibers and nonwovens comprising polypropylene blends and mixtures
KR100372575B1 (en) Polyethylene nonwoven fabric and nonwoven fabric laminate containing the same
US6759357B1 (en) Spunbonded non-woven fabric and laminate
KR20070006932A (en) Improved fibers for polyethylene nonwoven fabric
JP2009538394A (en) Flexible and extensible polypropylene-based spunbond nonwovens
EP1730335A1 (en) Propylene-based copolymers, a method of making the fibers and articles made from the fibers
JP2001226865A (en) Nonwoven fabric, method for producing the same and sanitary material
TW201416504A (en) Spunbonded nonwoven fabric, nonwoven fabric laminate and absorption item
KR100662827B1 (en) Composite-fiber nonwoven fabric
JPWO2019022004A1 (en) Polypropylene resin composition, and fiber and non-woven fabric using the same
KR101302804B1 (en) Spunbond nonwoven fabric having improved mechanical property and preparing method thereof
JP2002069820A (en) Spun-bonded nonwoven fabric and absorbing article
JPH1088459A (en) Nonwoven fabric of filament
JP4452388B2 (en) Core-sheath type polyolefin composite fiber and non-woven fabric comprising the same
JP2002038364A (en) Spun-bonded nonwoven fabric and absorbable article
CA2399424A1 (en) Fibers and fabrics prepared with propylene impact copolymers
Patel et al. Advances in polyolefin-based spunbond and binder fibres
JP4694204B2 (en) Spunbond nonwoven fabric, laminate using the same, and production method thereof
WO2021140906A1 (en) Spunbonded nonwoven fabric
KR101008358B1 (en) Polyolefin composition and article and preparing using thereof
WO2024128229A1 (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice
JPH05163648A (en) Melt blown nonwoven fabric and laminated nonwoven fabric material obtained from the same
KR20070016109A (en) Fibers and nonwovens comprising polypropylene blends and mixtures
Patel et al. Advances in polyolefin-based fibers for hygienic and medical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4452388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees