KR20010005146A - A Method for Preparing Oxide Powder by Pressured Hydrothermal Method - Google Patents

A Method for Preparing Oxide Powder by Pressured Hydrothermal Method Download PDF

Info

Publication number
KR20010005146A
KR20010005146A KR1019990025944A KR19990025944A KR20010005146A KR 20010005146 A KR20010005146 A KR 20010005146A KR 1019990025944 A KR1019990025944 A KR 1019990025944A KR 19990025944 A KR19990025944 A KR 19990025944A KR 20010005146 A KR20010005146 A KR 20010005146A
Authority
KR
South Korea
Prior art keywords
oxide
powder
hydrothermal synthesis
inert gas
pressurized
Prior art date
Application number
KR1019990025944A
Other languages
Korean (ko)
Other versions
KR100340404B1 (en
Inventor
김성은
Original Assignee
이형도
삼성전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기 주식회사 filed Critical 이형도
Priority to KR1019990025944A priority Critical patent/KR100340404B1/en
Publication of KR20010005146A publication Critical patent/KR20010005146A/en
Application granted granted Critical
Publication of KR100340404B1 publication Critical patent/KR100340404B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0008Air heaters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • F24H9/0057Guiding means
    • F24H9/0063Guiding means in air channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A method for preparing oxide powder by high-pressure hydrothermal synthesis is provided, to obtain fine oxide powder during shorter reaction time and at lower temperature. CONSTITUTION: Oxide powder is prepared by high-pressure hydrothermal synthesis, wherein the inner pressure is raised by flowing inert gas for 10 min to 10 hours to 10-200 atm, and it is heated to the temperature above 90 deg.C. Preferably the inert gas is nitrogen, argon or helium. The oxide is a single oxide selected from alumina, zirconia, titania and perite, or a complex oxide. The complex oxide is preferably ABO3-type Perovskite, wherein A is selected from Ba, Sr, Ca, Mg and Pb, and B is selected from Ti, Zr, Hf and Sn.

Description

가압수열합성법에 의한 산화분말 제조방법{A Method for Preparing Oxide Powder by Pressured Hydrothermal Method}A method for preparing oxide powder by pressured hydrothermal method

본 발명은 산화분말을 가압수열합성법에 의해 제조하는 방법에 관한 것으로, 보다 상세하게는 산화분말 제조시 외부에서 압력을 가하여 보다 저온에서 또한 보다 빠른 시간내에 산화분말을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing an oxidized powder by a pressurized hydrothermal method, and more particularly to a method for producing an oxidized powder at a lower temperature and faster time by applying pressure from the outside during the production of the oxidized powder. .

일반적으로, 산화물 분말의 수열합성은 일성분계의 경우 산화물, 질화물 또는 염화물 등의 염을 염기와 함께 반응시키는 방법이 주로 행해지며, 복합산화물의 경우에는 각각의 성분을 결정질 또는 비정질 산화물 또는 질화물, 염화물, 수산화물 등을 강염기 상태에서 고온고압으로 반응시켜 결정질의 산화물 분말을 제조하는 방법이행해진다. 수열합성시에 반응조건과 시간등은 각각의 경우에 따라 다르나 지금까지는 반응물질의 장입량과 반응온도가 결정되면 그에 따른 증기압이 결정되어 수열합성이 이루어지는 방법이 주로 사용되고 있다.In general, hydrothermal synthesis of the oxide powder is a method of reacting a salt such as an oxide, nitride or chloride with a base in the case of a one-component system. And a hydroxide and the like are reacted at high temperature and high pressure in a strong base state to produce a crystalline oxide powder. In hydrothermal synthesis, the reaction conditions and time vary depending on the respective cases. Until now, however, when the loading amount and the reaction temperature of the reactants are determined, the vapor pressure is determined and hydrothermal synthesis is mainly used.

상기 단일산화분말의 수열합성은 주로 알루미늄이나 지르코니아 등의 산화분말 제조에 사용된다. 금속질화물, 염화물 등의 염과 수산화나트륨 수산화칼륨 등을 혼합하여 고온에서 수열반응시키거나 비정질의 순도가 낮은 수산화금속을 수열반응시켜 고순도의 결정질 분말을 얻는 등에 수열합성법이 이용되고 있다.Hydrothermal synthesis of the mono-oxidized powder is mainly used for the production of oxidized powder such as aluminum or zirconia. Hydrothermal synthesis has been used to obtain a high purity crystalline powder by mixing a metal nitride, a salt such as chloride with sodium potassium hydroxide, or the like to hydrothermally react at a high temperature, or to hydrothermally react an amorphous metal with low purity.

상기 복합산화물분말의 수열합성은 주로 페롭스타이트형인 ABO3분말 형태인 BT, BST, BTZ 등의 강유전체 분말과 PZT, PLZT 등의 압전체 분말 등의 제조에 이용된다. 일반적인 반응은 A와 B원소의 산화물 또는 수산화물을 혼합하여 고온에서 수열반응시키는 것으로 개념적으로 하기 반응식 1과 같다. 염화물, 질화물 등의 금속염과 수산화나트륨 또는 수산화칼륨 등을 사용하여 수열합성하는 방법도 사용된다.The hydrothermal synthesis of the composite oxide powder is mainly used for the production of ferroelectric powders such as BT, BST and BTZ in the form of perovskite-type ABO 3 powders, and piezoelectric powders such as PZT and PLZT. A general reaction is to perform a hydrothermal reaction at high temperature by mixing an oxide or hydroxide of the A and B elements conceptually shown in Scheme 1 below. Hydrothermal synthesis using metal salts such as chlorides and nitrides and sodium or potassium hydroxide is also used.

A(OH)x+ B(OH)y→ ABO3+ zH2O (pH≥13, 150-300℃)A (OH) x + B (OH) y → ABO 3 + zH 2 O (pH≥13, 150-300 ° C)

예를들어 티탄산바륨 분말의 경우에는 수화티타니아와 수산화바륨을 Ba:Ti비가 1∼3:1이 되도록 혼합하여 강염기성 슬러리로 만든 후, 고온고압용기(Autoclave)에서 150-300℃로 가열하여 입방정상의 티탄산바륨 파우더를 얻는 것이다. 일반적으로, 반응율이 0.99이상인 분말을 얻기 위해서는 170℃이상에서 수시간 반응시켜야 한다. 따라서, 가열에 따른 에너지 소비와 반응시간 등에 있어서 문제점이 많았다.For example, in the case of barium titanate powder, titania hydride and barium hydroxide are mixed so as to have a Ba: Ti ratio of 1 to 3: 1 to form a strong base slurry, and then heated to 150-300 ° C. in a high temperature autoclave to be cubic. It is to obtain a barium titanate powder. In general, in order to obtain a powder having a reaction rate of 0.99 or more, it must be reacted at 170 ° C. or more for several hours. Therefore, there are many problems in energy consumption and reaction time due to heating.

또한, 이같은 문제점은 티탄산바륨 분말의 제조에 있어서 뿐만이아니라, 대부분의 수열합성법에 의한 산화분말의 제조방법에서 보이는 것이다.This problem is also seen not only in the production of barium titanate powder, but also in the production of oxide powders by most hydrothermal synthesis methods.

이에 본 발명자는 상기 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 기존의 수열합성법에 의해 산화물분말의 제조시 얻어지는 증기압 이외에, 불활성기체를 이용하여 외부로 부터 보다 가압함으로써, 짧은 반응시간 및 낮은 온도에서도 미세한 산화물 분말을 얻을 수 있는 방법을 제안하고자 하는데, 그 목적이 있다.In order to solve the above problems, the present inventors have repeatedly conducted research and experiments and propose the present invention based on the results. The present invention provides an inert gas in addition to the vapor pressure obtained during the production of an oxide powder by a conventional hydrothermal synthesis method. By further pressurizing from the outside, to propose a method for obtaining a fine oxide powder even in a short reaction time and low temperature, the purpose is.

도 1은 증기압만으로 수열합성한 티탄산바륨 분말의 SEM사진(×50000)1 is a SEM photograph of barium titanate powder hydrothermally synthesized only by vapor pressure (× 50000).

도 2는 본 발명에 의한 가압수열합성한 티탄산바륨 분말의 SEM사진(×50000)2 is a SEM photograph of the pressurized hydrothermally synthesized barium titanate powder according to the present invention (× 50000)

도 3은 증기압만으로 수열합성한 티탄산바륨 분말을 열처리한 XRD결과를 보이는 그래프Figure 3 is a graph showing the XRD results of the heat treatment of hydrothermally synthesized barium titanate powder only by steam pressure

도 4는 본 발명에 의한 가압수열합성한 티탄산바륨 분말을 열처리한 XRD결과를 보이는 그래프Figure 4 is a graph showing the XRD results of heat treatment of the pressurized hydrothermally synthesized barium titanate powder according to the present invention

도 5는 증기압만으로 수열합성한 티탄산바륨 분말의 열처리후 SEM사진(×20000)5 is a SEM photograph after heat treatment of the barium titanate powder hydrothermally synthesized only by steam pressure (× 20000).

도 6은 본 발명에 의한 가압수열합성한 티탄산바륨 분말의 열처리후 SEM사진(×20000)6 is a SEM photograph after heat treatment of the pressurized hydrothermally synthesized barium titanate powder according to the present invention (× 20000)

상기 목적을 달성하기 위한 본 발명은 밀폐된 용기 내에 출발원료를 장입한 후 가열하여 산화물을 수열합성하는 방법에 있어서, 불활성가스를 이용하여 상기 용기내의 압력을 높이는 것을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법에 관한 것이다.The present invention for achieving the above object is a method of hydrothermally synthesizing an oxide by charging the starting material in a sealed container and then heating, wherein the pressure in the container is increased by using an inert gas. It relates to a method for producing an oxidized powder.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

기존의 수열합성법은 밀폐된 용기에서 고온으로 반응시키면 반응물의 장입량과 온도에 따라서 증기압이 결정되어 반응조건이 결정되었는데, 이에 반하여, 본 발명에서와 같이 불활성 가스를 사용하여 압력을 가하면 기존의 방법에 비하여 반응조건을 보다 자유롭게 조절할 수 있다. 또한, 증기압보다 높은 압력을 가하면 반응성이 높아져서 보다 낮은 온도에서도 높은 반응성을 얻을 수 있다.In the conventional hydrothermal synthesis method, when the reaction is carried out at a high temperature in a sealed container, the vapor pressure is determined according to the loading amount and the temperature of the reactants, and the reaction conditions are determined. On the contrary, when the pressure is applied using an inert gas as in the present invention, In comparison, the reaction conditions can be more freely controlled. In addition, when a pressure higher than the vapor pressure is applied, the reactivity is increased to obtain a high reactivity even at a lower temperature.

본 발명에서는 불활성가스를 이용하여 용내의 압력을 높이는데, 그 압력은 목적하는 산화물 분말의 종류에 따라 다를 수 있으나, 대체로 10-200기압으로 조절하는 것이 바람직하다. 조절된 압력이 10기압 미만이면 불활성가스를 이용하여 가압하는 효과가 미미하고, 200기압을 초과하면 가압하는데 어려움이 있고, 또한 용기의 내구성 측면에서도 바람직하지 않기 때문이다.In the present invention, using an inert gas to increase the pressure in the melt, the pressure may vary depending on the type of the oxide powder, but is preferably adjusted to 10-200 atm. If the adjusted pressure is less than 10 atm, the effect of pressurizing using an inert gas is insignificant, and if it exceeds 200 atm, it is difficult to pressurize, and it is not preferable also in terms of durability of the container.

또한, 본 발명에서의 불활성가스에 의한 가압은 10분-10시간 정도 행하면 가압의 효과를 얻을 수 있다.In addition, when pressurization by the inert gas in this invention is performed for about 10 minutes-10 hours, the effect of pressurization can be acquired.

본 발명은 가열에 의한 증기압 이외에 불활성가스를 이용하여 가압을 하기 때문에, 기존의 가열 온도 보다도 낮은 온도에서도 기존과 동일 이상의 효과를 얻을 수 있다. 즉, 본 발명에서의 가열은 90℃이상으로 행하면 되는데, 에너지 측면에서 보다 바람직한 온도는 90-150℃정도이다. 90℃미만이 되면 합성효율이 너무 떨어지고, 150℃를 초과하면 기존의 가열온도에 근접하여 가압을 하지 않아도 되는 상태가 되기 때문이다.In the present invention, since the pressurization is performed using an inert gas in addition to the vapor pressure due to heating, the same effect as the conventional one can be obtained even at a temperature lower than the existing heating temperature. That is, the heating in the present invention may be performed at 90 ° C or higher, but more preferable temperature is about 90-150 ° C in terms of energy. If it is less than 90 ℃ synthesis efficiency is too low, if it exceeds 150 ℃ it is in a state that does not need to pressurize close to the existing heating temperature.

본 발명에서 가압을 위해 사용하는 불활성가스는 일반적인 것을 사용할 수 있는데, 특히, 질소, 아르곤, 헬륨 등이 바람직하다.Inert gas used for pressurization in the present invention can be used a general one, in particular, nitrogen, argon, helium is preferred.

본 발명은 수열합성법에 의해 산화물 제조시, 불활성가스를 이용하여 용기를 가압하는 방법에 관한 것으로, 이같은 방법은 단일산화물 및 복합산화물의 제조에 모두 적용할 수 있다.The present invention relates to a method of pressurizing a vessel by using an inert gas when producing an oxide by a hydrothermal synthesis method, such a method can be applied to the production of both a single oxide and a composite oxide.

특히, 상기 단일 산화물은 예를 들면, 알루미나, 지르코니아, 타이타니아, 페라이트 등을 들 수 있으며, 상기 복합 산화물은 예를 들면, ABO3의 페롭스카이트형 산화물을 들 수 있다. 상기 페롭스카이트(ABO3)형 산화물은 BaTiO3등을 비롯하여 여러 가지를 들 수 있는데, 예를들면, A에 해당하는 원소는 Ba, Sr, Ca, Mg, Pb 중에서 선택된 것이나 이들의 혼합물이고, B에 해당하는 원소는 Ti, Zr, Hf, Sn 중에서 선택된 것이나 이들의 혼합물로 구성되는 형태를 들 수 있다.In particular, the single oxide may be, for example, alumina, zirconia, titania, ferrite, and the like, and the complex oxide may be, for example, a perovskite oxide of ABO 3 . The perovskite (ABO 3 ) -type oxide may include various kinds, including BaTiO 3. For example, an element corresponding to A is selected from Ba, Sr, Ca, Mg, and Pb, or a mixture thereof. The element corresponding to B may be a form selected from Ti, Zr, Hf, and Sn, or a mixture thereof.

한편, 본 발명에 있어 불활성가스에 의한 가압은, 수열합성시 원하는 온도로 가열한 후 행하여도 되고, 가압후에 원하는 온도로 가열하여도 되고, 가압과 동시에 가열하여도 무방하다.In addition, in this invention, pressurization by inert gas may be performed after heating to desired temperature at the time of hydrothermal synthesis, may be heated to desired temperature after pressurization, and may be heated simultaneously with pressurization.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

수화티타니아와 수산화바륨을 1:1∼3의 비율로 혼합하여 상온에서 불활성기체를 사용하여 10-100기압을 가하고 90-150℃로 반응시켜 티탄산바륨 분말을 얻고, 또한 동일 조건에서 불활성기체에 의한 가압을 생략하여 티탄산바륨 분말을 얻었다.Titania hydride and barium hydroxide were mixed at a ratio of 1: 1 to 3, and then, at room temperature, 10-100 atm was added using an inert gas, and reacted at 90-150 ° C. to obtain barium titanate powder. Pressurization was omitted and barium titanate powder was obtained.

불활성기체를 이용하여 가압한 경우 반응율이 0.99로 매우 우수한 결정질의 티탄산바륨 분말이 얻어졌는데, 이는 가압하지 않은 경우의 반응율인 0.95에 비하여 매우 우수한 것이었다.When pressurized using an inert gas, a very good crystalline barium titanate powder having a reaction rate of 0.99 was obtained, which was very excellent compared to 0.95, which was a reaction rate when it was not pressurized.

얻어진 분말들의 입자크기에 있어서도, 가압하지 않고 90-150℃에서 증기압만으로 수열반응시킨 분말에 비하여, 가압하여 수열합성한 경우의 입자가 훨씬 미세하였다. 이는 도 1 및 도 2를 비교함으로서 알 수 있는데, 도 1은 가압하지 않고 수열반응시킨 분말의 SEM사진이고, 도 2는 가압하여 수열합성시킨 분말의 SEM사진으로, 도 2의 경우가 훨씬 미세하였다.Also in the particle size of the obtained powders, the particles in the case of hydrothermal synthesis by pressurization were much finer than powders hydrothermally reacted at 90-150 ° C. without pressure and only by steam pressure. This can be seen by comparing FIG. 1 and FIG. 2, where FIG. 1 is a SEM photograph of a powder hydrothermally reacted without pressurization, and FIG. 2 is a SEM photograph of a powder hydrothermally synthesized by pressurization. .

상기 얻어진 분말들을 1000℃이상에서 열처리한 후 XRD를 행하여, 그 결과를 도 3 및 도 4에 나타내었다. 도 3은 가압하지 않고 수열반응시킨 경우이고, 도 4는 가압하여 수열합성시킨 경우이다.The obtained powders were heat-treated at 1000 ° C. or higher and then subjected to XRD, and the results are shown in FIGS. 3 and 4. 3 is a case where hydrothermal reaction is performed without pressurization, and FIG. 4 is a case where hydrothermal synthesis is performed by pressurization.

도 3과 도 4를 비교함으로서, 가압하지 않고 수열반응시킨 경우와, 가압하여 수열합성시킨 경우에 있어, 입자의 성장 및 상변화가 큰 차이를 보임을 알 수 있었다. 즉, 반응후의 분말을 1000℃이상의 온도에서 열처리하면 가압한 분말의 경우에는 입방정에서 정방정으로 상변이가 충분히 일어나나 가압하지 않은 분말은 반응율이 낮아서 정방정으로의 상변이가 거의 일어나지 않았다.Comparing FIG. 3 and FIG. 4, it was found that the growth and phase change of the particles showed a great difference in the case of hydrothermal reaction without pressurization and hydrothermal synthesis by pressurization. In other words, when the powder after the reaction was heat-treated at a temperature of 1000 ° C. or more, in the case of the pressurized powder, phase transition from cubic crystal to tetragonal crystal sufficiently occurred, but the powder which was not pressurized had low reaction rate, so that phase transition to tetragonal crystal hardly occurred.

또한, 상기 1000℃이상에서 열처리한 분말의 SEM사진을 도 5 및 도 6에 나타내었다. 도 5는 가압하지 않고 수열반응시킨 경우이고, 도 6은 가압하여 수열합성시킨 경우로서, 가압한 경우가 입자의 크기도 작고 Ba/Ti비가 높아서 하소 후의 분말의 크기가 큼을 알 수 있었다.In addition, SEM photographs of the powder heat-treated at 1000 ° C. or higher are shown in FIGS. 5 and 6. FIG. 5 shows the case of hydrothermal reaction without pressurization, and FIG. 6 shows the case of hydrothermal synthesis by pressurization. The size of the powder after calcining was large because the size of the particles was small and the Ba / Ti ratio was high.

그리고, 열처리후의 무게감소를 비교한 결과, 증기압만으로 수열반응시킨 경우가 4%정도임에 비하여 가압한 경우에는 2%로 가압한 경우의 무게 감소가 절반정도로 적으므로 그 만큼 본 발명이 우수함을 알 수 있었다.In addition, as a result of comparing the weight loss after heat treatment, the hydrothermal reaction only by steam pressure is about 4%, whereas when pressurized, the weight loss when pressurized to 2% is about half less, indicating that the present invention is excellent as much. Could.

하기 표1에는 상기 시험결과를 나타내어 종래예와 본 발명의 차이를 비교하였다.Table 1 shows the test results and compared the difference between the conventional example and the present invention.

수열합성방법Hydrothermal Synthesis Method 반응율Reaction rate 입자크기Particle size 열처리시 무게감소Weight loss during heat treatment 열처리후 입자크기Particle size after heat treatment 열처리후의 상전이Phase transition after heat treatment 종래예Conventional example 증기압수열합성Steam Compression Thermal Synthesis 0.950.95 ∼0.2μm0.2 μm 4%4% ∼0.2μm0.2 μm 거의없음Almost none 발명예Inventive Example 가압수열합성Pressurized Water Thermal Synthesis 0.990.99 ∼0.1μm0.1 μm 2%2% ∼0.5μm0.5 μm 있음has exist

상기 표1에서도 알 수 있는 바와같이, 불활성기체를 이용하여 가압한 경우는 가압하지 않은 경우에 비하여 우수한 산화물 분말이 얻어졌다.As can be seen from Table 1 above, when pressurized using an inert gas, excellent oxide powder was obtained as compared with the case where pressurized.

실시예 2Example 2

수화티타니아와 수산화바륨을 1:1∼3의 비율로 혼합하여 90-150℃의 반응온도로 가열한 다음, 불활성기체를 사용하여 10-100기압을 가하여 가압수열합성반응을 진행하였다.Titania and barium hydroxide were mixed at a ratio of 1: 1 to 3, heated to a reaction temperature of 90-150 ° C., and then pressurized hydrothermal reaction was performed by adding 10-100 atm using an inert gas.

이와같이, 가열후 가압을 행한 경우에도 반응율이 0.99이상인 티탄산바륨 분말을 얻을 수 있었으며, 열처리후의 입자에 있어서도 상기 실시예와 동일하게 우수한 특성을 보였다.Thus, even when the heating and pressurization were carried out, the barium titanate powder having a reaction rate of 0.99 or more was obtained, and the excellent characteristics were also obtained in the particles after the heat treatment similarly to the above examples.

실시예 3Example 3

질산납, 수화티타니아, 수화지르코늄 그리고 수산화칼륨을 혼합하여 20-150기압을 가하여 100-150℃에서 수열반응한 결과 결정성과 반응성이 우수한 PZT분말을 얻었다.Lead nitrate, hydrated titania, zirconium hydride, and potassium hydroxide were mixed to add 20-150 atm to hydrothermal reaction at 100-150 ° C. to obtain PZT powder with excellent crystallinity and reactivity.

기존 방법에 비하여 낮은 온도에서도 우수한 특성을 보이는 PZT분말이 얻어졌으며, 얻어진 PZT분말은 가압하지 않은 경우에 비하여 입자크기도 감소하였다.PZT powders were obtained which exhibited excellent properties even at low temperatures compared to the conventional methods, and the obtained PZT powders had a reduced particle size compared to the case where they were not pressurized.

상술한 바와같은 본 발명에 의하면, 수열합성시에 불활성기체를 사용하여 가압하므로서, 동일한 온도에서 보다 작은 입자의 분말을 얻을 수 있어 미립의 분말을 만들기에 유리하고, 또한 반응성이 높아져 동일한 온도에서 우수한 수열합성 결과물을 얻을 수 있고, 또한 수열합성 반응의 온도를 낮출 수 있어 반응온도가 높아서 생산하기 어려운 분말을 생산할 수 있으며 반응시간을 줄일 수 있고, 또한 100℃이하의 온도에서도 반응성이 우수한 분말을 얻을 수 있어 상업적으로 경쟁력이 있는 분말을 얻을 수 있는 효과가 있다.According to the present invention as described above, by pressurizing with an inert gas during hydrothermal synthesis, powder of smaller particles can be obtained at the same temperature, which is advantageous for making fine powder, and also has high reactivity and excellent at the same temperature. Hydrothermal synthesis results can be obtained, and the temperature of the hydrothermal reaction can be lowered to produce a powder that is difficult to produce due to the high reaction temperature, to reduce the reaction time, and to obtain a powder having excellent reactivity even at a temperature below 100 ° C. It can be effective to obtain a commercially competitive powder.

Claims (9)

밀폐된 용기 내에 출발원료를 장입한 후 가열하여 산화물을 수열합성하는 방법에 있어서,A method of hydrothermally synthesizing an oxide by charging a starting material in a sealed container and heating the same, 불활성가스를 이용하여 상기 용기내의 압력을 높이는 것을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법Method for producing an oxidized powder by the pressurized hydrothermal synthesis method characterized in that to increase the pressure in the vessel by using an inert gas 제 1 항에 있어서,The method of claim 1, 상기 불활성가스를 이용하여 조절된 압력은 10-200기압인 것을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The pressure adjusted by using the inert gas is 10-200 atm pressure oxidation powder production method by the hydrothermal synthesis method, characterized in that 제 1 항에 있어서,The method of claim 1, 상기 불활성가스에 의한 가압은 10분-10시간 행하는 것임을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법Pressurized by the inert gas is 10 minutes-10 hours, characterized in that the oxidation powder production method by the pressurized hydrothermal synthesis method 제 1 항에 있어서,The method of claim 1, 상기 가열은 90℃이상으로 행하는 것임을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The heating method for producing an oxidized powder by pressurized hydrothermal synthesis, characterized in that the heating is carried out at 90 ℃ or more. 제 1 항에 있어서,The method of claim 1, 상기 불활성가스는 질소, 아르곤, 헬륨 중에서 선택된 것임을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The inert gas is an oxide powder manufacturing method by pressurized hydrothermal synthesis, characterized in that selected from nitrogen, argon, helium 제 1 항에 있어서,The method of claim 1, 상기 산화물은 단일 산화물 또는 복합산화물인 것임을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법Method for producing an oxidized powder by the pressurized hydrothermal method, characterized in that the oxide is a single oxide or a composite oxide 제 6 항에 있어서,The method of claim 6, 상기 단일 산화물은 알루미나, 지르코니아, 타이타니아, 페라이트 중에서 선택된 것임을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The single oxide is an oxide powder manufacturing method by pressurized hydrothermal synthesis, characterized in that selected from alumina, zirconia, titania, ferrite 제 6 항에 있어서,The method of claim 6, 상기 복합 산화물은 ABO3의 페롭스카이트형 산화물인 것을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The complex oxide is a method for producing an oxidized powder by pressurized hydrothermal synthesis, characterized in that the perovskite oxide of ABO 3 제 8 항에 있어서,The method of claim 8, 상기 ABO3에 있어 A에 해당하는 원소는 Ba, Sr, Ca, Mg, Pb 중에서 선택된 1종 또는 2종이상의 혼합물이고, B에 해당하는 원소는 Ti, Zr, Hf, Sn 중에서 선택된 1종 또는 2종이상의 혼합물인 것을 특징으로 하는 가압수열합성법에 의한 산화분말 제조방법The element corresponding to A in ABO 3 is one or a mixture of two or more selected from Ba, Sr, Ca, Mg, and Pb, and the element corresponding to B is one or two selected from Ti, Zr, Hf, and Sn. Method for producing oxidized powder by pressurized hydrothermal synthesis, characterized in that the mixture is paper
KR1019990025944A 1999-06-30 1999-06-30 A Method for Preparing Oxide Powder by Pressured Hydrothermal Method KR100340404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025944A KR100340404B1 (en) 1999-06-30 1999-06-30 A Method for Preparing Oxide Powder by Pressured Hydrothermal Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025944A KR100340404B1 (en) 1999-06-30 1999-06-30 A Method for Preparing Oxide Powder by Pressured Hydrothermal Method

Publications (2)

Publication Number Publication Date
KR20010005146A true KR20010005146A (en) 2001-01-15
KR100340404B1 KR100340404B1 (en) 2002-06-12

Family

ID=19597991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025944A KR100340404B1 (en) 1999-06-30 1999-06-30 A Method for Preparing Oxide Powder by Pressured Hydrothermal Method

Country Status (1)

Country Link
KR (1) KR100340404B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620595B1 (en) * 2004-09-30 2006-09-19 (주)케미피아 Process for preparing perovskite-structured compounds
WO2017052333A1 (en) * 2015-09-24 2017-03-30 주식회사 단석산업 Hydrotalcite and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154324A (en) * 1979-05-22 1980-12-01 Central Glass Co Ltd Manufacture of magnetite
JPS593022A (en) * 1982-06-30 1984-01-09 Shigeyuki Somiya Manufacture of hyperfine powder of hafnium oxide
JPS61256920A (en) * 1985-05-07 1986-11-14 Ube Ind Ltd Sectorial magnesium oxysulfate and its production
JPS63134522A (en) * 1986-11-22 1988-06-07 Inax Corp Production of ferrite powder
JPS63290998A (en) * 1987-05-25 1988-11-28 Mitsubishi Heavy Ind Ltd Hydrothermal treatment of waste solvent
KR950003168A (en) * 1993-07-27 1995-02-16 조말수 Method of manufacturing ferric oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620595B1 (en) * 2004-09-30 2006-09-19 (주)케미피아 Process for preparing perovskite-structured compounds
WO2017052333A1 (en) * 2015-09-24 2017-03-30 주식회사 단석산업 Hydrotalcite and method for producing same
KR20180027602A (en) * 2015-09-24 2018-03-14 주식회사 단석산업 Hytorotalite and its preparation method

Also Published As

Publication number Publication date
KR100340404B1 (en) 2002-06-12

Similar Documents

Publication Publication Date Title
US5453262A (en) Continuous process for production of ceramic powders with controlled morphology
US7560089B2 (en) Anisotropically-shaped powder of an alkali metal oxide compound
US4880758A (en) Preparation of ABO3 compounds from mixed metal aromatic coordination complexes
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
Ravindranathan et al. Solid‐state epitaxial effects in structurally diphasic xerogel of Pb (Mg1/3Nb2/3) O3
US4946810A (en) Preparation of ABO3 compounds from mixed metal aromatic coordination complexes
CN110498680A (en) The perovskite ferroelectric ceramics and preparation method and application of twin crystal grain particle diameter distribution structure
JP4556398B2 (en) Method for producing the composition
EP1860069B1 (en) Method for producing composition
JP5353728B2 (en) Method for producing the composition
KR100340404B1 (en) A Method for Preparing Oxide Powder by Pressured Hydrothermal Method
JP3314944B2 (en) Sinterable barium titanate fine particle powder and method for producing the same
KR20120099979A (en) Method of manufacturing ceramic powder having perovskite structure and ceramic powder having perovskite structure manufactured using the same
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JPH062584B2 (en) Lead titanate microcrystal and method for producing the same
Ng et al. Processing and Characterization of Microemulsion‐Derived Lead Magnesium Niobate
JP3772354B2 (en) Manufacturing method of ceramic powder
JP2001089230A (en) Powdery composition for production of barium titanate- base sintered compact and sintered compact
JPH0769634A (en) Production of composition
KR100648862B1 (en) Method of producing amorphous Strontium titanate precursor
Kutty et al. A method for the preparation of high purity lead titanate zirconate solid solutions by carbonate–gel composite powder precipitation
Su et al. Hydrothermal formation of perovskite lead zirconate titanate (PZT) powders
KR100555399B1 (en) A method for preparation of barium titanate powder with sol-gel reaction
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
Villegas et al. Perovskite phase formation in the PbMg 1/3 Nb 2/3 O 3-PbZrO 3-PbTiO 3 system by the columbite route

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130403

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140325

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee