KR20010004465A - Fabrication method of gain coupled single-mode semiconductor laser - Google Patents
Fabrication method of gain coupled single-mode semiconductor laser Download PDFInfo
- Publication number
- KR20010004465A KR20010004465A KR1019990025142A KR19990025142A KR20010004465A KR 20010004465 A KR20010004465 A KR 20010004465A KR 1019990025142 A KR1019990025142 A KR 1019990025142A KR 19990025142 A KR19990025142 A KR 19990025142A KR 20010004465 A KR20010004465 A KR 20010004465A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- active layer
- substrate
- quantum
- semiconductor laser
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 10
- 238000005253 cladding Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 10
- 230000031700 light absorption Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34326—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
본 발명은 정보사회의 광대역화에 따른 핵심 광원 개발에 관한 것으로서, 특히 경제성 있는 단일 모드 광원을 제작할 수 있는 이득 결합형 단일모드 반도체 레이저의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the development of a core light source according to the widening of the information society, and more particularly, to a method of manufacturing a gain-coupled single mode semiconductor laser capable of manufacturing economical single mode light sources.
종래의 단일 모드 광원은 굴절률이 일정한 주기로 변하는 회절격자층을 활성층 주위에 인접시키고, 레이저의 양쪽 거울면 사이를 빛이 진행하는 동안 회절격자의 주기에 해당하는 광 모드가 발진하도록 하는 원리를 이용하여 반도체 광원 제작을 하였으나, 거울면 위치 및 반사에 따른 위상차이의 발생 등으로 단일 모드 수율이 30%에도 못 미치는 단점이 있다. 이에 대한 보완책으로서, 이득 결합의 기능을 위주로 하는 새로운 단일 모드 반도체 레이저가 제안되고 있으나, 별도의 이득 변화를 주기적으로 발생시키기 위한 회절 격자 혹은 전도형태의 반전을 위해 별도의 공정을 수행하여야 한다.Conventional single mode light sources utilize the principle of adjoining a diffraction grating layer whose refractive index changes at regular intervals around the active layer and causing the light mode corresponding to the period of the diffraction grating to oscillate while light travels between both mirror surfaces of the laser. Although the semiconductor light source is manufactured, the single mode yield is less than 30% due to the occurrence of phase difference due to the mirror position and reflection. As a countermeasure, a new single mode semiconductor laser focused on the function of gain coupling has been proposed, but a separate process must be performed to invert the diffraction grating or conduction form to periodically generate a separate gain change.
도 1은 종래의 전형적인 광흡수 회절격자층을 이용한 이득 결합형 단일모드 반도체 레이저 구조의 단면도이다.1 is a cross-sectional view of a gain-coupled single mode semiconductor laser structure using a conventional light absorption diffraction grating layer.
종래의 반도체 레이저는 광 흡수형 회절격자(4)가 선택적으로 형성된 n형 기판(5)상에 활성층(3), p형 클래드층(2) 및 저항성 p 전극 접촉층(1)이 순차적으로 형성된 구조이다. 여기서, 상기 기판(5)은 n+-InP, 상기 광 흡수형 회절격자(4)는 (In)GaAs, 상기 활성층(3)은 InGaAs(P)/InGaAsP 다중양자우물, 상기 클래드층(2)은 p-InP, 상기 접촉층은 p+-InGaAs으로 형성된다.In the conventional semiconductor laser, the active layer 3, the p-type cladding layer 2 and the resistive p-electrode contact layer 1 are sequentially formed on the n-type substrate 5 on which the light absorption type diffraction grating 4 is selectively formed. Structure. Here, the substrate 5 is n + -InP, the light absorption diffraction grating 4 is (In) GaAs, the active layer 3 is InGaAs (P) / InGaAsP multi-quantum well, the clad layer (2) Is p-InP, and the contact layer is formed of p + -InGaAs.
광 흡수형 회절격자(4)를 형성하기 위해서는 활성층(3)을 형성하기 전에 결정성장 장치에서 인출하여 유전체 증착, 홀로그래피(holography), 건식 식각, 습식 식각등 여러 공정을 거쳐야 하며, 다시 그위에 필요한 에피층들을 재결정성장 하여야 한다. 이러한 단일 모드 반도체 레이저에서의 공정의 복잡성은 기술적 측면 뿐만 아니라 경제성 측면에서도 상업화의 걸림돌이 되고 있는 실정이다.In order to form the light absorption type diffraction grating 4, before the active layer 3 is formed, it is withdrawn from the crystal growth apparatus and subjected to various processes such as dielectric deposition, holography, dry etching, wet etching, and the like. Epilayers must be recrystallized to grow. The complexity of the process in such a single mode semiconductor laser is an obstacle to commercialization not only in terms of technology but also in economics.
따라서, 본 발명은 상기한 문제점을 해결하기 위해 단한번의 에피층 결정성장을 통한 이득결합에 의한 단일 모드 반도체 레이저 제조 방법을 제안하였다. 이 기술의 핵심은 기판을 (011)이나 (0-11)방향으로 일정한 각도 기울어진 것을 사용하여 기판 표면에 자연적으로 형성되는 미세한 계단을 준비하고, 상기 미세한 계단상에 활성층이나 회절격자층을 성장시키므로서 이득의 변화가 주기적으로 형성되는 양자 세선 모양의 에피층을 얻을 수 있으며, 상기 에피층상에 연속해서 클래드 층(혹은 활성층 포함) 및 저항성 접촉층을 성장 시켜 양자세선에 수직한 방향으로 공진 방향의 스트라이프를 형성시키는 것으로서, 이에 따라 단 한번의 결정 성장으로 단일 모드 레이저 광원을 제작할 수 있는 이득 결합형 단일모드 반도체 레이저의 제조 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention proposes a method for manufacturing a single mode semiconductor laser by gain coupling through a single epitaxial crystal growth to solve the above problems. The core of this technique is to prepare microscopic steps that are naturally formed on the surface of the substrate by using the substrate inclined at a constant angle in the (011) or (0-11) direction, and grow an active layer or a diffraction grating layer on the microscopic steps. As a result, it is possible to obtain a quantum thin line epitaxial layer in which gain changes are periodically formed, and a cladding layer (or an active layer) and an ohmic contact layer are continuously grown on the epitaxial layer in a direction perpendicular to the quantum thin line. It is an object of the present invention to provide a method for manufacturing a gain-coupled single mode semiconductor laser capable of forming a single mode laser light source with a single crystal growth, thereby forming a stripe of.
상기한 목적을 달성하기 위한 본 발명은 기판상에 양자세선 모양의 활성층을 형성하는 단계와; 상기 활성층상에 클래드층을 형성하는 단계와; 상기 클래드층상에 저항성 전극 접촉층을 형성하는 단계와; 상기 저항성 전극 접촉층상에 상기 양자세선에 수직한 방향으로 레이저 공진기가 형성되도록 스트라이프 전극을 형성하는 단계를 포함하여 이루어진 것을 특징으로 한다.The present invention for achieving the above object comprises the steps of forming a quantum thin wire-like active layer on the substrate; Forming a cladding layer on the active layer; Forming a resistive electrode contact layer on the clad layer; And forming a stripe electrode on the resistive electrode contact layer such that a laser resonator is formed in a direction perpendicular to the quantum fine lines.
도 1은 종래의 광흡수 회절격자층을 이용한 이득 결합형 단일모드 반도체 레이저 구조의 단면도.1 is a cross-sectional view of a gain coupled single mode semiconductor laser structure using a conventional light absorption diffraction grating layer.
도 2는 본 발명에 적용되는 경사진 기판을 이용한 양자우물/양자세선 구조의 에피층 형성 과정을 나타낸 단면도.2 is a cross-sectional view showing an epitaxial layer formation process of a quantum well / quantum fine line structure using an inclined substrate applied to the present invention.
도 3은 본 발명에 따른 이득결합형 단일 모드 반도체 레이저 구조의 사시도.3 is a perspective view of a gain coupled single mode semiconductor laser structure according to the present invention;
도 4는 본 발명에 따른 양자세선 모양의 회절격자를 가지는 이득결합형 레이저의 사시도.4 is a perspective view of a gain-coupled laser having a quantum thin-line diffraction grating according to the present invention.
〈도면의 주요 부분에 대한 부호 설명〉<Description of Signs of Major Parts of Drawings>
1 : 저항성 p전극 접촉층 2 : p형 클래드층1: resistive p-electrode contact layer 2: p-type cladding layer
3 : 활성층 4 : 광 흡수형 회절격자3: active layer 4: light absorption diffraction grating
5 : n형 기판 6 : 경사진 n형 기판5: n-type substrate 6: inclined n-type substrate
7 : 양자우물 8 : 양자세선7: quantum well 8: quantum fine wire
9 : 공진기 방향으로의 스트라이프 p형 전극9: stripe p-type electrode toward resonator
10 : 저항성 전극 접촉층 11 : p형 클래드층10 resistive electrode contact layer 11 p-type cladding layer
12 : 이득값이 주기적 변화를 가지는 활성층12: active layer whose gain has a periodic change
13 : 경사진 n형 기판 14 : 활성층13: inclined n-type substrate 14: active layer
15 : 평탄화 및 결합계수 조절을 위한 간격층15: gap layer for planarization and binding coefficient control
16 : 이득값이 주기적으로 변하는 회절격자16: Diffraction grating whose gain value changes periodically
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 2(a) 및 도 2(b)는 본 발명에 적용되는 경사진 기판을 이용한 양자우물/양자세선 구조의 에피층 형성 과정을 나타낸 단면도로서, 경사진 기판상에 자연적으로 형성되는 이득값이 주기적으로 변하는 양자세선 모양의 형성 과정을 보이고 있다.2 (a) and 2 (b) are cross-sectional views illustrating an epitaxial layer formation process of a quantum well / quantum fine line structure using an inclined substrate applied to the present invention. It shows the process of forming quantum thin line shape that changes periodically.
경사진 기판(6)은 도 2에서와 같은 계단 모양의 결정면을 제공하여 주고, 상기 계단 모양의 결정면에 에피층을 성장할 경우 확산 원리에 의하여 단차가 형성되는 부분에서 주변의 원자들이 모이게 되어, 양자우물(7)과 양자세선(8)이 혼합된 형태의 에피층을 형성하게 된다. 기판(6)의 경사도에 따라서 형성되는 계단의 주기(∧)를 조절 할 수 있으며, 동일한 주기의 양자세선을 얻을 수 있게 된다. 양자세선의 주기에 따라 하기 [수학식 1]에 의해 단일 모드의 중심 파장(λL)이 결정되어 질 수 있다.The inclined substrate 6 provides a stepped crystal plane as shown in FIG. 2, and when the epitaxial layer is grown on the stepped crystal plane, surrounding atoms are collected at a portion where a step is formed by a diffusion principle. The well layer 7 and the quantum fine wire 8 are mixed to form an epitaxial layer. According to the inclination of the board | substrate 6, the period of the staircase formed can be adjusted, and the quantum thin line of the same period can be obtained. According to the period of the quantum thin line, the central wavelength λ L of the single mode may be determined by Equation 1 below.
여기서, neff은 유효 굴절율, m은 회절격자 의 차수를 말한다.Where n eff is the effective refractive index and m is the order of the diffraction grating.
도 3은 본 발명에 따른 반도체 레이저의 실시예를 나타낸 단면도로서, 이득결합형 단일 모드 반도체 레이저 구조의 단면도를 나타낸다.3 is a cross-sectional view showing an embodiment of a semiconductor laser according to the present invention, showing a cross-sectional view of a gain coupled single mode semiconductor laser structure.
도 2에 도시된 바와 같이, 경사진 기판(13)상에 양자세선 모양의 활성층(12)을 형성한 후, 계속해서 p형 클래드층(11)을 2μm 정도 형성한다. 성장층이 점차 두꺼워 지면서 표면은 평탄화가 자연스럽게 이루어지고, 그 위에 저항성 전극 접촉층(10)을 형성하면 단 한번에 단일모드 레이저 구조의 에피층을 모두 형성할 수 있게 된다.그리고, 전극 형성 공정을 통하여 양자세선에 수직한 방향으로 레이저 공진기가 형성되도록 전극 스트라이프(9)를 위치시키면 원하는 파장의 단일 광모드를 얻을 수 있게 된다.As shown in FIG. 2, after the active layer 12 having a quantum thin line shape is formed on the inclined substrate 13, the p-type cladding layer 11 is subsequently formed by about 2 μm. As the growth layer becomes thicker, the surface is naturally flattened, and if the resistive electrode contact layer 10 is formed thereon, it is possible to form all of the epilayers of the single mode laser structure at once. Positioning the electrode stripe 9 so that the laser resonator is formed in the direction perpendicular to the quantum fine lines enables a single optical mode of a desired wavelength to be obtained.
여기서, 기판(13)은 n+-InP, 이득값이 주기적 변화를 갖는 활성층은 InGaAs, p형 클래드층은 p-InP, 저항성 전극 접촉층은 p+-InGaAs로 형성된다.Here, the substrate 13 is formed of n + -InP, the active layer having a periodic change in gain, InGaAs, the p-type cladding layer is p-InP, and the resistive electrode contact layer is formed of p + -InGaAs.
도 4는 본 발명에 따른 반도체 레이저의 다른 실시예를 나타낸 단면도이다.4 is a cross-sectional view showing another embodiment of a semiconductor laser according to the present invention.
도 2에 도시된 바와 같이, 경사진 기판(13)상에 형성된 양자세선을 회절격자(16)로 구성하고, 상기 회절격자상에 InP 간격층(15)을 연속해서 성장한 후, 평탄화된 상태에서 활성층(14)을 연속적으로 성장한다. 이후, 공정은 도 3의 설명에서 언급한 공정과 동일한다. 이 경우는 양자세선이 광 흡수를 위한 회절격자로 작용하는 이득 결합형 단일모드 레이저를 단 한번의 결정 성장으로 형성하게 된다.As shown in FIG. 2, the quantum fine lines formed on the inclined substrate 13 are composed of the diffraction gratings 16, and the InP gap layer 15 is continuously grown on the diffraction gratings, and then in a flattened state. The active layer 14 is grown continuously. Thereafter, the process is the same as the process mentioned in the description of FIG. 3. In this case, quantum fine wire forms a gain-coupled single-mode laser, which acts as a diffraction grating for light absorption, with only one crystal growth.
여기서, 이득값이 주기적으로 변하는 회절격자(16)는 InGaAs, 평탄화 및 결합계수 조절을 위한 간격층(15)은 n-InP, 활성층(14)은 InGaAs(P)/InGaAsP(다중양자우물 구조)로 형성된다.Here, the diffraction grating 16 whose gain is periodically changed is InGaAs, the gap layer 15 for planarization and coupling coefficient adjustment is n-InP, and the active layer 14 is InGaAs (P) / InGaAsP (multi-quantum well structure). Is formed.
이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited.
상술한 바와 같이, 본 발명은 별도의 공정을 거치지 않고 이득이 주기적으로 변하는 활성층이나 광 흡수형 회절격자를 형성시키며 연속해서 나머지 필요한 에피층들을 성장할 수 있게 된다. 따라서, 공정의 단계를 상당히 절감하므로서 제작 단가의 축소에 의한 경제성 향상은 물론이고, 특히 회절격자 형성시에 발생되는 재현성 확보의 문제를 최소화하므로써, 기술적으로도 재현성 및 신뢰성이 우월한 단일모드 반도체를 구현할 수 있을 것이다.As described above, the present invention forms an active layer or a light absorbing diffraction grating whose gain is periodically changed without going through a separate process, and can continuously grow the necessary epi layers. Therefore, it is possible to realize a single-mode semiconductor that is technically superior in reproducibility and reliability by minimizing the reduction in manufacturing cost while minimizing the process cost, and in particular, minimizing the problem of securing reproducibility generated when diffraction grating is formed. Could be.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0025142A KR100368323B1 (en) | 1999-06-29 | 1999-06-29 | Fabrication method of gain coupled single-mode semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0025142A KR100368323B1 (en) | 1999-06-29 | 1999-06-29 | Fabrication method of gain coupled single-mode semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010004465A true KR20010004465A (en) | 2001-01-15 |
KR100368323B1 KR100368323B1 (en) | 2003-01-24 |
Family
ID=19596684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1999-0025142A KR100368323B1 (en) | 1999-06-29 | 1999-06-29 | Fabrication method of gain coupled single-mode semiconductor laser |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100368323B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100379617B1 (en) * | 2001-03-26 | 2003-04-10 | 한국과학기술연구원 | Method of forming quantum dot array using tilted substrate |
KR100528976B1 (en) * | 2003-12-23 | 2005-11-16 | 한국전자통신연구원 | Single frequency laser |
-
1999
- 1999-06-29 KR KR10-1999-0025142A patent/KR100368323B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100379617B1 (en) * | 2001-03-26 | 2003-04-10 | 한국과학기술연구원 | Method of forming quantum dot array using tilted substrate |
KR100528976B1 (en) * | 2003-12-23 | 2005-11-16 | 한국전자통신연구원 | Single frequency laser |
Also Published As
Publication number | Publication date |
---|---|
KR100368323B1 (en) | 2003-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5543353A (en) | Method of manufacturing a semiconductor photonic integrated circuit | |
JP5190115B2 (en) | Multi-cavity etch facet DFB laser | |
JP2008113041A (en) | Waveguide | |
US5394429A (en) | Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same | |
JPH02205092A (en) | Semiconductor device laser and its manufacture | |
US6224667B1 (en) | Method for fabricating semiconductor light integrated circuit | |
US4796274A (en) | Semiconductor device with distributed bragg reflector | |
US4782035A (en) | Method of forming a waveguide for a DFB laser using photo-assisted epitaxy | |
US7083995B2 (en) | Optical semiconductor device and process for producing the same | |
JPH05183236A (en) | Gain coupled distributed feedback type semiconductor laser | |
US6526087B1 (en) | Distributed feedback semiconductor laser | |
JP2932868B2 (en) | Semiconductor optical integrated device | |
KR100368323B1 (en) | Fabrication method of gain coupled single-mode semiconductor laser | |
JPH0470794B2 (en) | ||
KR100377184B1 (en) | Gain coupled single mode semiconductor laser and method for fabricating the same | |
JP2953449B2 (en) | Optical semiconductor device and method of manufacturing the same | |
JP2804502B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2002223032A (en) | Optical element and method for manufacturing it | |
JP2690840B2 (en) | Distributed light reflector and wavelength tunable semiconductor laser using the same | |
JP2770897B2 (en) | Semiconductor distributed reflector and semiconductor laser using the same | |
JPS61202487A (en) | Distributed feedback type semiconductor laser | |
JP2552504B2 (en) | Semiconductor laser array device | |
JP2894285B2 (en) | Distributed feedback semiconductor laser and method of manufacturing the same | |
JPH09307179A (en) | Phase shift type distributed feedback semiconductor laser | |
KR960011480B1 (en) | Manufacturing mehtod of laser diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090102 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |