KR20010001813A - Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme - Google Patents

Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme Download PDF

Info

Publication number
KR20010001813A
KR20010001813A KR1019990021267A KR19990021267A KR20010001813A KR 20010001813 A KR20010001813 A KR 20010001813A KR 1019990021267 A KR1019990021267 A KR 1019990021267A KR 19990021267 A KR19990021267 A KR 19990021267A KR 20010001813 A KR20010001813 A KR 20010001813A
Authority
KR
South Korea
Prior art keywords
enzyme
reactor
production
surfactant
membrane
Prior art date
Application number
KR1019990021267A
Other languages
Korean (ko)
Inventor
조규진
홍기표
장종관
정유희
문일식
Original Assignee
조규진
문일식
정유희
장종관
홍기표
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조규진, 문일식, 정유희, 장종관, 홍기표 filed Critical 조규진
Priority to KR1019990021267A priority Critical patent/KR20010001813A/en
Publication of KR20010001813A publication Critical patent/KR20010001813A/en

Links

Classifications

    • G06Q50/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices

Abstract

PURPOSE: A continuous production process of bio-surfactant that has a biocompatibility using enzyme immobilizing technique is provided, which cuts off the production cost by not involving additional separation process and reduces environmental pollution by using affinitive material for environment. CONSTITUTION: A continuous production process of bio-surfactant using enzyme immobilizing technique is characterized by comprising the following steps of: (i)manufacturing organic/inorganic mixed membrane where enzyme is immobilized, by sol-gel process; (ii)producing pure malto-oligosaccharide from starch by using a membrane reactor; (iii)immobilizing enzyme physically while agitating enzyme with pre-polymer when manufacturing poly-urethane foam and packing poly-urethane foam at PFR reactor; (iv)supplying malto-oligosaccharide to packed PFR reactor and producing bio-surfactant.

Description

효소고정화 기술을 이용한 생물계면활성제의 연속식 생산공정{Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme}Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme}

생물계면활성제는 환원당을 주원료로 하여 회분식 반응기에의하여 생산되고 있다. 또한 연속식 생산 반응기로는 원료를 공급하여 반응기에서 발효를 한 뒤 이 생산물들을 ultrafiltration에 의하여 효모를 재순환 하는 공정을 연구중에 있다. 그러나 이러한 모든 공정들은 부가적인 분리공정들을 함유하고 있어 생산원가 상승의 원인이 되고 있다. 본 발명은 다른 분리기능이 없이 고정화된 효소에 의하여 생물계면활성제를 생산하는 동시에 분리 기능을 수행하는 공정의 발명이다.Biosurfactants are produced in batch reactors using reducing sugars as the main raw material. In addition, we are studying a process to recycle yeast by ultrafiltration after supplying raw materials to a continuous production reactor and fermenting the reactor. All of these processes, however, contain additional separation processes, which contribute to an increase in production costs. The present invention is an invention of a process for producing a biosurfactant by an immobilized enzyme without any other separation function and at the same time performing the separation function.

본 발명은 생물계면활성제의 주원료인 환원당을 생산하는 공정에서부터 생물계면활성제를 생산하는 공정에 이르기까지 모두 환경친화적인 물질을 사용하여 2차적인 환경오염이 없으며 부가적인 분리공정을 함유하지 않은 생산공정을 이루고자 한다.The present invention is a production process that does not contain secondary environmental pollution and does not contain an additional separation process from the production of reducing sugars, the main raw material of the biosurfactant to the process of producing the biosurfactant. To achieve this.

첫 번째로 전분으로부터 환원당을 생산하는 공정에서는 반응기 기능과 분리기능을 동시에 수행할 수 있는 막 반응기의 제조와 이 막 반응기에 사용되는 막을 제조하는 것이다. 막의 제조는 저온에서 유리나 세라믹을 제조하는 졸-겔 방법을 이용하여 효소가 고정화된 유기/무기 혼성막을 제조하고, 이막을 막 반응기에 적용하여 전분으로부터 환원당을 생산하는 공정을 제조하였다.First, in the process of producing reducing sugars from starch, the production of a membrane reactor capable of performing the reactor function and the separation function at the same time and the production of the membrane used in the membrane reactor. In the preparation of the membrane, an organic / inorganic hybrid membrane in which an enzyme is immobilized was prepared by using a sol-gel method of preparing glass or ceramic at low temperature, and the membrane was applied to a membrane reactor to prepare a process of producing reducing sugar from starch.

두 번째로는 기계적 물성과 안정성을 갖고 산소 운반도 용이하며 분리공정이 쉽고 재사용이 가능하여 연속식 공정에 응용이 가능한 폴리우레탄폼에 물리적으로 효소를 고정화하고, 효소가 고정화된 폴리우레탄폼을 튜브 반응기에 충진하여 PFR 반응기에 적용하였다. 또한 전체적으로 사용되어지는 물질이 모두 환경 친화적인 물질들을 사용하여 환경오염이 없는 생물계면활성제 생산 반응공정을 확립하였다.Second, it has mechanical properties and stability, it is easy to transport oxygen, easy to separate process and reusable, so that the enzyme is physically immobilized on the polyurethane foam that can be applied to the continuous process, and the polyurethane foam on which the enzyme is immobilized is tubed. The reactor was charged and applied to the PFR reactor. In addition, all of the materials used are environmentally friendly materials to establish a biosurfactant production reaction process without pollution.

효소고정화기술을 이용하여 아래의 그림에서 보여지고 있는 것처럼 환경 친화적인 생물계면활성제 생산공정을 제조하고자 한다.Using enzyme fixation technology, we will manufacture environmentally friendly biosurfactant production process as shown in the figure below.

[실시예 1]Example 1

효소가 고정화된 유기/무기 혼성막 제조 및 막 반응기의 응용.Preparation of Organic / Inorganic Hybrid Membranes with Enzyme Immobilization and Application of Membrane Reactor.

졸-겔 공정에 의하여 제조되어진 효소 고정화된 막을 1 ㎠로 자른 뒤 효소의 활성을 측정하여 그림 2에 보였다. 그림 2에서 보여지고 있듯이 장시간 동안 효소가 안정하게 활성을 유지하는 것을 확인 할 수가 있었다. 이 막을 이용하여 막 반응기를 만들고 (그림 2), 그 후 전분을 막 반응기에 공급하고 생산되어진 생성물은 HPLC에 의하여 분석하였다. HPLC에 의하여 분석한 결과를 그림 4에 나타내었으며, 한성분만의 환원당이 전체 생성물의 96% 이상 생산되어지는 것을 확인할 수 있었다.The enzyme-immobilized membrane prepared by the sol-gel process was cut into 1 cm 2, and the enzyme activity was measured. As shown in Figure 2, it was confirmed that the enzyme remained stable for a long time. The membrane was used to make a membrane reactor (Figure 2), then starch was fed to the membrane reactor and the product produced was analyzed by HPLC. The analysis results by HPLC are shown in Figure 4, it can be seen that only one component of reducing sugar is produced more than 96% of the total product.

[실시예 2]Example 2

효소가 고정화된 폴리우레탄 폼 제조 및 반응기 제작Enzyme-immobilized Polyurethane Foam Production and Reactor Production

폴리우레탄 폼은 다양한 폴리올을 이용하여 폴리우레탄 폼의 전구체인 프리폴리머를 합성하였다. 합성되어진 프리폴리머를 사용하여 다양한 물성을 갖는 폴리우레탄 폼을 제조하였으며, 그림 4에 폴리우레탄 폼의 수분 흡수력을 시간별로 나타내었다.Polyurethane foams were synthesized using various polyols as prepolymers that are precursors of polyurethane foams. Polyurethane foams having various physical properties were prepared using the synthesized prepolymer, and FIG. 4 shows the water absorption of polyurethane foam over time.

그림 5에서 보여지고 있듯이 수분흡수력과 물성이 우수한 최적의 조건을 선택하여 물리적으로 효소를 고정화하고, 효소의 활성을 측정하여 그림 6에서 나타내었다. 그림에 나타나듯이 효소활성이 장시간 동안 안정하게 유지되어지고 있는 것을 확인할 수가 있다.As shown in Fig. 5, the enzyme was physically immobilized by selecting an optimal condition having excellent water absorption and physical properties, and the enzyme activity was measured. As shown in the figure, it can be seen that the enzyme activity is maintained for a long time.

최적의 물성을 갖는 폴리우레탄 폼에 효소를 고정화하고, 효소가 고정화된 폴리우레탄 폼을 PFR 반응기에 충진하고 1차 막 반응기에서 생산되어진 단 성분만의 말토올리고당을 공급하여 생체 적합적인 생물계면활성제를 생산하였다.The enzyme is immobilized on the polyurethane foam having the optimal physical properties, and the enzyme-immobilized polyurethane foam is filled in the PFR reactor, and only the maltooligosaccharides produced in the primary membrane reactor are supplied to provide biocompatible biosurfactants. Produced.

생성된 계면활성제의 표면 특성과 생체 적합성능을 측정하였다. 농도와 표면장력을 그림 7에 나타내었으며, 14 mmol에서 33 dyne/cm의 결과를 얻었다. 생체 적합성은 생성된 계면활성제를 팔에 도포하여 부작용의 유무를 확인하였으며, 24 시간이상 다른 부작용이 없었고, 양질의 생체적합성물질을 합성할 수가 있었다.The surface properties and biocompatibility of the resulting surfactants were measured. The concentration and surface tension are shown in Fig. 7, and 33 dyne / cm at 14 mmol was obtained. Biocompatibility was confirmed by applying the generated surfactant to the arm for the presence of side effects, no other side effects for more than 24 hours, was able to synthesize a high quality biocompatible material.

일차적으로 막 반응기의 사용되는 효소를 조절함으로서 저 부가가치의 물질로부터 고 부가가치의 물질의 생산을 저가로 생산 할 수가 있으며 모두 생체적합적인 물질을 사용함으로서 환경오염을 줄일 수가 있어 앞으로 환경규제에 대하여 쉽게 대처할 수가 있다. 또한 생산된 생물계면활성제는 생체 적합성을 지니고 있어 고 부가가치가 있으며, 또한 합성 계면활성제에 의하여 야기되는 2차 오염에 대한 문제를 해결할 수가 있다.By controlling the enzymes used in the membrane reactor, the production of high value-added materials from low value-added materials can be produced at low cost, and all biocompatible materials can be used to reduce environmental pollution. There is a number. In addition, the produced biosurfactants are biocompatible and have high added value, and can solve the problem of secondary contamination caused by synthetic surfactants.

Claims (2)

졸-겔 공정에의한 효소 고정화된 막의 제조와 막 반응기의 제조.Preparation of Enzyme Immobilized Membranes by Sol-Gel Process and Preparation of Membrane Reactor. 청구항 1에서 제조된 막반응기를 이용해 단성분의 말토올리고당 생산과 생물계면활성제를 생산하는 공정.A process for producing maltooligosaccharide production of monocomponent and biosurfactant using the membrane reactor prepared in claim 1.
KR1019990021267A 1999-06-08 1999-06-08 Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme KR20010001813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990021267A KR20010001813A (en) 1999-06-08 1999-06-08 Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990021267A KR20010001813A (en) 1999-06-08 1999-06-08 Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme

Publications (1)

Publication Number Publication Date
KR20010001813A true KR20010001813A (en) 2001-01-05

Family

ID=19590945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990021267A KR20010001813A (en) 1999-06-08 1999-06-08 Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme

Country Status (1)

Country Link
KR (1) KR20010001813A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628030A (en) * 1983-08-09 1986-12-09 Petrotec Forschungs Ag Process for the production of rhamnolipids
JPS63258484A (en) * 1987-04-15 1988-10-25 Ensuikou Seito Kk Production of maltooligosaccharide
JPS63304984A (en) * 1987-06-08 1988-12-13 Sakai Eng Kk Use and technology of ester type urethane foam as bioreactor carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628030A (en) * 1983-08-09 1986-12-09 Petrotec Forschungs Ag Process for the production of rhamnolipids
JPS63258484A (en) * 1987-04-15 1988-10-25 Ensuikou Seito Kk Production of maltooligosaccharide
JPS63304984A (en) * 1987-06-08 1988-12-13 Sakai Eng Kk Use and technology of ester type urethane foam as bioreactor carrier

Similar Documents

Publication Publication Date Title
WO2002101019A3 (en) Methods of culturing animal cells and polypeptide production in animal cells
Vorlop et al. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity
WO2009034186A3 (en) Process for cell cultivation
AU5338690A (en) Novel hyperthermostable alpha-alphaamylase
Yoshimoto et al. Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase
CA1211729A (en) Production of organic acids by a continuous fermentation process
Vaija et al. Citric acid production with alginate bead entrapped Aspergillus niger ATCC 9142
Jia et al. Whole cell immobilization of refractory glucose isomerase using tris (hydroxymethyl) phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature
Nigam Investigation of some factors important for solid-state fermentation of sugar cane bagasse for animal feed production
Ogawa et al. Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484
WO1981003665A1 (en) Process for making glucosone
Hayashida et al. Raw Starch-digestive Chitin-immobilized Amylase from a Protease—Glycosidase-less Mutant of Aspergillus awamori var. kawachi
Trelles et al. Immobilized Escherichia coli BL21 as a catalyst for the synthesis of adenine and hypoxanthine nucleosides
KR20010001813A (en) Continuous Process for the Production of Biosurfactant using a Technology of Immobilized Enzyme
US5397700A (en) Method of producing products with a bilayer pellet containing a coimmobilized enzyme system that maintains a ph difference
EP0257535A2 (en) Process for production of starch sugar
JPS61209596A (en) Production of organic acid by immobilized microorganism
Bagai et al. Continuous production of halophilic α-amylase through whole cell immobilization of Halobacterium salinarium
KR950025097A (en) Calcium alginate microorganism immobilized capsule and method for producing same
Araujo et al. Studies on the respiration rate of free and immobilized cells of Cephalosporium acremonium in cephalosporin C production
WO1981001012A1 (en) Production of solvents by immobilized cells of clostridium
Alekseiva et al. Enhancement of acid proteinase production by the fungus Humicola lutea 120-5 immobilized in crosslinked poly (vinyl alcohol) mixed with poly (ethylene glycol)
JPS6227096A (en) Microorganism holding body
DE3561919D1 (en) Fermentation method
Nath et al. NADH production from NAD+ with a formate dehydrogenase system involving immobilized cells of a methylotrophic Arthrobacter strain

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application