KR20000074884A - Process for the preparation of azetidinone derivatives - Google Patents

Process for the preparation of azetidinone derivatives Download PDF

Info

Publication number
KR20000074884A
KR20000074884A KR1019990019124A KR19990019124A KR20000074884A KR 20000074884 A KR20000074884 A KR 20000074884A KR 1019990019124 A KR1019990019124 A KR 1019990019124A KR 19990019124 A KR19990019124 A KR 19990019124A KR 20000074884 A KR20000074884 A KR 20000074884A
Authority
KR
South Korea
Prior art keywords
formula
compound
produce
azetidinone
reacting
Prior art date
Application number
KR1019990019124A
Other languages
Korean (ko)
Inventor
함원훈
오창영
이기영
김용현
Original Assignee
김선진
주식회사 유한양행
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선진, 주식회사 유한양행 filed Critical 김선진
Priority to KR1019990019124A priority Critical patent/KR20000074884A/en
Publication of KR20000074884A publication Critical patent/KR20000074884A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE: A preparation method of a (3R)-3-£(R)-1-(tert-butyldimethylsilyloxy)-ethyl|-2-azetidinone is provided. Thereby, (3R)-3-£(R)-1-(tert-butyldimethylsilyloxy)-ethyl|-2-azetidinone that is an intermediate used in synthesis of carbapenem antibiotics is produced economically in high yield by stereoselective method. CONSTITUTION: A preparation for an azetidinone derivative represented by the formula (I) comprises the following steps of: (a) reacting the compound, methyl (R)-3-hydroxy butyrate, of the formula (II) with a halomethylbenzylether to prepare dianion under the existence of additives and bases and stereoselectively alkylating the dianion, to produce an ester compound of the formula (III); (b) adding a silylation agent and a reductant to the ester compound, to produce a 1st alcohol of the formula (V), and then reacting a diphenylphosphoazide therewith, to produce an azide compound of the formula (VI); (c) reacting the azide compound with catalyst and an amine-protecting group, to produce aminoalcohol compound of the formula (VII) and then reacting oxidant therewith, to produce an amino acid compound of the formula (VIII); and (d) eliminating the amine-protecting group, and then performing lactamization, to produce a lactame ring.

Description

아제티디논 유도체의 제조 방법{Process for the preparation of azetidinone derivatives}Process for the preparation of azetidinone derivatives

본 발명은 카바페넴계 항생제 합성에 있어 가장 널리 사용되는 중간체인 하기 구조식 (I)로 표시되는 (3R)-3-[(R)-1-(tert-부틸디메틸실릴옥시)-에틸]-2-아제티디논{(3R)-3-[(R)-1-(tert-butyldimethylsilyloxy)-ethyl]-2-azetidinone}을 입체선택적으로 합성하는 방법에 관한 것이다.The present invention relates to (3R) -3-[(R) -1- (tert-butyldimethylsilyloxy) -ethyl] -2 represented by the following structural formula (I) which is the most widely used intermediate in the synthesis of carbapenem antibiotics: It relates to a stereoselective synthesis of -azetidinone {(3R) -3-[(R) -1- (tert-butyldimethylsilyloxy) -ethyl] -2-azetidinone}.

상기에서 R은 tert-부틸디메틸실릴(tert-butyldimethylsilyl)기이다.Wherein R is a tert-butyldimethylsilyl group.

상기 구조식 (I)로 표시되는 아제티디논(azetidinone) 유도체를 합성하는 방법으로는 고리화첨가반응(cycloaddition)을 이용한 방법, 비대칭 알돌(aldol)반응을 이용한 방법, Ru-BINAP 촉매를 이용한 수소화 반응 등이 공지되어 있다(Yuki Gouseikgaku Kyokai Shi 1989, 47, 606-618와 Tetrahedron 1996, 52, 331-375).As a method of synthesizing an azetidinone derivative represented by the above formula (I), a method using cycloaddition, a method using asymmetric aldol reaction, hydrogenation using Ru-BINAP catalyst And Yuki Gouseikgaku Kyokai Shi 1989, 47, 606-618 and Tetrahedron 1996, 52, 331-375.

그러나, 고리화첨가반응(cycloaddition)을 이용하는 방법은 부산물로 입체이성질체가 생성되는 문제점이 있고, 비대칭 알돌반응 또는 촉매수소화 반응을 이용한 방법은 고가의 비대칭보조제 또는 촉매를 사용해야하는 문제점이 있다.However, the method of using cycloaddition has a problem in that stereoisomers are generated as by-products, and the method of using asymmetric aldol reaction or catalytic hydrogenation has a problem of using expensive asymmetric aids or catalysts.

본 발명자들은 상기에서 설명한 바와 같은 선행기술의 문제점을 해결하기 위하여 이 화합물이 가지고 있는 입체구조를 이중음이온(dianion)을 이용한 입체선택적인 알킬화 반응을 통하여 고가의 비대칭보조제 또는 촉매를 사용하지 않고 편리하고 정확하게 조절할 수 있는 기술을 개발하였다.In order to solve the problems of the prior art as described above, the inventors of the present invention provide a convenient and convenient solution without the use of expensive asymmetric aids or catalysts through stereoselective alkylation reactions using diions. We have developed a technique that can be adjusted accurately.

즉, 본 발명은 메틸 (R)-3-하이드록시 부티레이트(methyl (R)-3-hydroxy butyrate)로부터 구조식(I)의 화합물을 안전하고 경제적이며 고수율로 대량생산하는 기술을 개발하는 것을 목적으로 한다.That is, an object of the present invention is to develop a technique for mass-producing a safe, economical and high yield of the compound of formula (I) from methyl (R) -3-hydroxy butyrate It is done.

본 발명은 하기 구조식 (II)의 메틸 (R)-3-하이드록시 부티레이트(methyl (R)-3-hydroxy butyrate)로부터 두 분자의 리튬 디이소프로필아민(lithium diisopropylamine, LDA)를 반응시켜 형성한 이중음이온(dianion)에 입체선택적인 알킬화를 통하여 하기구조식(Ⅲ)의 화합물을 제조한 후 알콜기를 실릴기로 보호화하여 하기구조식(Ⅳ)의 화합물을 제조하고, 에스테르를 알콜로 환원하여 하기구조식(Ⅴ)의 일급 알콜을 제조한다. 일급 알콜은 치환반응을 통하여 하기구조식(Ⅵ)의 아자이드(azide)로 전환한 다음 팔라듐(palladium)을 사용한 촉매수소화 반응을 이용하여 환원함과 동시에 아민기가 보호된 하기구조식(Ⅶ)의 화합물을 제조하고, 형성된 일급 알콜은 산화반응을 통하여 하기구조식(Ⅷ)의 아미노산을 제조한 다음 아민의 보호기를 탈보호화하여 이를 락탐화반응(lactamization)을 수행하여 하기구조식(Ⅰ)의 아제티디논 화합물 제조하는 방법에 관한 것이다(반응식 1).The present invention is formed by reacting two molecules of lithium diisopropylamine (LDA) from methyl (R) -3-hydroxy butyrate of formula (II) Compounds of the following structural formula (III) were prepared by stereoselective alkylation of a double anion, followed by protecting the alcohol group with a silyl group to prepare the compound of the following structural formula (IV), and reducing the ester to alcohol to reduce the following formula ( Prepare the primary alcohol of V). The primary alcohol is converted to azide of the following structural formula (VI) through a substitution reaction and then reduced by catalytic hydrogenation using palladium. The prepared primary alcohol is prepared by preparing an amino acid of the following structural formula (산화) through an oxidation reaction and then deprotecting the protecting group of the amine to perform lactamization to prepare an azetidinone compound of the following structural formula (I). It relates to the method (Scheme 1).

반응식 1.Scheme 1.

각 단계별로 보다 자세히 설명하면 다음과 같다.Each step is described in more detail as follows.

구조식 (II)의 화합물에 할로메틸벤질에테르(halomethylbenzylether, BOMCl 또는 BOMBr)를 사용하여 α-알킬화 반응을 수행하여 구조식 (III)의 화합물을 제조한다. 염기와 첨가제를 사용하여 α-알킬화 반응을 수행하는 것이 바람직하다. 첨가제로는 에놀레이트(enolate)의 알킬화 반응에 첨가제로 많이 사용되는 헥사메틸포스포라마이드(hexamethylphosphoramide, HMPA)를 사용하는 것이 바람직하고, 염기로는 디이소프로필아민(diisopropylamine)을 사용하는 것이 바람직하다.The compound of formula (III) is prepared by carrying out the α-alkylation reaction using halomethylbenzylether (BOMCl or BOMBr) to the compound of formula (II). Preference is given to carrying out the α-alkylation reaction using a base and an additive. As the additive, hexamethylphosphoramide (HMPA), which is frequently used as an additive in the alkylation reaction of enolate, is preferably used, and diisopropylamine is preferably used as a base. .

반응조건으로 테트라하이드로퓨란(tetrahydrofuran, THF)을 용매로 하여 1.4당량의 할로메틸벤질에테르와 참가제로 1.8당량의 HMPA를 사용하고 리튬 디이소프로필아민(LDA)의 양을 1.7, 2.0, 2.2, 2.4 당량으로 높여가면서 반응수율과 입체선택성을 조사하였다(Table 1). 반응수율 분석은 HPLC를 사용하였으며, 부분입체선택성의 비율(diastereomeric ratio, d.r)은 GC를 사용하여 결정하였다. 그 결과는 첨가제로 HMPA를 사용하였을 때 전체적으로 반응수율이 크게 향상됨을 보여주었다. 사용한 염기의 당량에 따른 반응양상을 검토해보면 염기의 양이 증가함에 따라 반응수율이 점차적으로 증가하여 2.4당량의 염기를 사용하였을 때는 매우 적은 양의 출발물질만이 남아있음을 알 수 있었다. 그러나 GC를 이용한 부분입체선택성의 비율(diastereomeric ratio)을 조사하였을 때 1.7 당량과 2.0 당량의 염기를 사용하였을 때는 25:1 이상의 매우 좋은 입체선택성을 나타냄을 보여주었으나, 사용한 염기의 양이 과량일 경우는 점차 그 선택성이 줄어들어 2.4 당량을 사용하였을 때는 4:1의 비율로 신(syn)형태 산물의 양이 현저히 증가하는 결과를 보여주었다.As the reaction conditions, tetrahydrofuran (THF) was used as a solvent, 1.4 equivalents of halomethylbenzyl ether and 1.8 equivalents of HMPA were used, and the amount of lithium diisopropylamine (LDA) was 1.7, 2.0, 2.2, 2.4. The reaction yield and stereoselectivity were investigated as the equivalent weight increased (Table 1). Reaction yield analysis was performed using HPLC, and the diastereomeric ratio (d.r) was determined using GC. The results showed that the overall reaction yield improved significantly when using HMPA as an additive. As a result of examining the reaction pattern according to the equivalent amount of the used base, the reaction yield gradually increased as the amount of the base was increased, indicating that only a very small amount of starting material remained when using 2.4 equivalents of the base. However, when the diastereomeric ratio using GC was examined, the use of 1.7 and 2.0 equivalent bases showed very good stereoselectivity of 25: 1 or more, but the amount of base used was excessive. In some cases, the selectivity gradually decreased, and the use of 2.4 equivalents resulted in a significant increase in the amount of syn form products at a ratio of 4: 1.

Table 1. 메틸 (R)-3-하이드록시 부티레이트의 α-알킬화Table 1. α-alkylation of methyl (R) -3-hydroxy butyrate

LDA(당량) 전환율(%) 반응수율(%) d.r.(anti:syn)LDA (equivalent) Conversion (%) Reaction yield (%) d.r. (anti: syn) 1.7 68 60 >25 : 12.0 76 70 >25 : 12.2 82 75 12 : 12.4 84 78 4 : 11.7 68 60> 25: 12.0 76 70> 25: 12.2 82 75 12: 12.4 84 78 4: 1

여기서, 전환율이란 반응물질인 구조식 (II)에 대해 반응전과 반응후의 양을 측정하여 백분율(%)로 나타내었다.Here, the conversion rate is expressed as a percentage (%) by measuring the amount before and after the reaction with respect to the structural formula (II) as a reactant.

결과적으로 HMPA가 알킬화의 반응성을 현저히 증가시킴을 알 수 있었고, 이때 사용된 염기의 양이 증가할수록 반응수율은 좋아지지만 과량의 염기를 사용할 때는 부분입체(이성질)선택성(diastereoselectivity)이 감소함을 알 수 있었다.As a result, it was found that HMPA significantly increased the reactivity of alkylation, and the reaction yield improved as the amount of base used increased, but the diastereoselectivity decreased when the excess base was used. Could know.

이상의 결과를 바탕으로 HMPA를 사용하여 최적화한 조건으로 메틸 (R)-3-하이드록시 부티레이트를 입체선택적으로 알킬화하여 α-위치에 벤질옥시메틸(benzyloxymethyl)기가 치환된 베타-하이드록시 에스테르 (Ⅲ)을 만들고, 형성된 이급 알콜을 디메틸포름아마이드(dimethylformamide, DMF)상에서 tert-부틸디메틸실릴클로라이드 또는 트리이소프로필클로라이드와 이미다졸(imidazole)을 사용하여 90%의 수율로 실릴기로 보호화 한 다음 에스테르(ester)기를 환원제로 디이소부틸 알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAL-H, 1.5M 톨루엔 용액)를 사용하여 86%의 수율로 알콜(Ⅴ)를 얻었다. 이때 반응을 -78℃가 아닌 -10℃에 시행하였을 때도 부반응 없이 같은 결과를 얻을 수 있었다.Based on the above results, beta-hydroxy ester (III) having a benzyloxymethyl group substituted at the α-position by stereoselectively alkylating methyl (R) -3-hydroxy butyrate under conditions optimized using HMPA The secondary alcohol formed was protected with silyl group in 90% yield using tert-butyldimethylsilylchloride or triisopropyl chloride and imidazole on dimethylformamide (DMF), and then ester ) Diisobutyl aluminum hydride (DIBAL-H, 1.5 M toluene solution) as a reducing agent to give the alcohol (V) in 86% yield. At this time, even when the reaction was carried out at -10 ℃ instead of -78 ℃ could obtain the same results without side reactions.

화합물(V)를 락탐화 반응(lactamization)의 전구체인 β-아미노산으로 전환하기 위해서는 일급 알콜을 아민으로 변화시키는 것이 필요한데 이때 사용되는 가장 보편적인 방법은 알콜을 이탈기로 치환한 다음 구핵공격을 통해 아자이드를 도입하는 방법이다. 따라서, 화합물(Ⅴ)를 피리딘(pyridine)에서 메탄설포닐 클로라이드 또는 p-톨루엔설포닐 클로라이드 등)를 사용하여 메실화 반응(mesylation)을 한 다음 DMF상에서 소듐 아자이드(sodium azide)로 60℃에서 48시간동안 반응시켜 아자이드를 75%(2단계)의 수율로 얻을 수 있었다. 그러나 이 방법에서 아자이드를 도입할 때 반응시간이 매우 길고 폭발성이 있는 아자이드 화합물을 60℃이상으로 가열하는 등의 단점이 있기 때문에, 바람직하게는 미쯔노부(Mitsunobu) 조건을 이용하고 아자이드 시약으로서 유기용매에 용해성을 나타내는 디페닐포스로아자이드(diphenylphosphoazide, DPPA)를 사용하여 테트라하이드로퓨란(tetrahydrofuran)에서 실온으로 2시간동안 반응하였을 때 높은 수율로 아자이드를 도입할 수 있었다.To convert compound (V) to β-amino acid, a precursor for lactamization, it is necessary to convert primary alcohols to amines. The most common method used is to replace alcohols with leaving groups and then to aza via nucleoatesis. How to introduce id. Thus, compound (V) was mesylated using pyridine with methanesulfonyl chloride or p-toluenesulfonyl chloride, etc.) and then at 60 ° C. with sodium azide on DMF. The reaction was carried out for 48 hours to obtain azide in 75% yield. However, this method has a disadvantage in that the reaction time is very long when introducing azide and the explosive azide compound is heated to 60 ° C. or higher. Therefore, Mitsunobu conditions are used and the azide reagent is preferably used. As azide, diphenylphosphoazide (DPPA), which shows solubility in an organic solvent, was used to introduce azide in high yield when reacted at tetrahydrofuran for 2 hours at room temperature.

얻어진 아자이드(Ⅵ)는 아민으로 환원함과 동시에 알콜 보호기인 벤질기를 탈보호화하기 위하여 촉매수소화 반응을 수행하여 24시간 이내에 아민이 보호된 아미노 알콜(Ⅶ)을 82.4%의 수율로 얻었다. 환원반응에는 촉매로서 Pd/C 등을 사용하며, 팔라듐 하이드록사이드(Palladium hydroxide)를 사용하는 것이 더욱 바람직하다. 또한, 환원된 아민이 반응기내에서 통상의 아민보호기로 보호하였다. 특히, 아민보호기로는 tert-부틸옥시카보닐(BOC)기가 바람직하다. 이렇게 얻어진 알콜은 NaIO4와 촉매량의 RuCl3를 사용하여 아미노산 화합물(Ⅷ)로 산화되었다.The obtained azide (VI) was subjected to catalytic hydrogenation in order to reduce to amine and to deprotect the benzyl group, which is an alcohol protecting group, to obtain amine-protected amino alcohol (VII) in a yield of 82.4%. In the reduction reaction, Pd / C or the like is used as the catalyst, and palladium hydroxide is more preferably used. In addition, the reduced amine was protected with a conventional amine protecting group in the reactor. In particular, a tert-butyloxycarbonyl (BOC) group is preferable as the amine protecting group. The alcohol thus obtained was oxidized to an amino acid compound using NaIO 4 and a catalytic amount of RuCl 3 .

아민이 보호된 아미노산을 락탐화 반응(lactamization)을 수행하기 위하여 아민의 BOC을 트리플루오로아세트산(trifluoroacetic acid, TFA)를 사용하여 제거하였는데 이때 용매를 사용하지 않았을 경우 알콜 보호기인 TBDMS도 같이 떨어져나갔기 때문에 이를 방지하기 위하여 디클로로메탄(MC)을 사용하여 20%로 희석시킨 TFA를 사용하여 BOC을 제거한 다음 농축 후 별다른 정제없이 락탐화 반응을 시도하였다. 베타-락탐의 합성에 있어서 아마이드의 형성반응은 매우 다양한 조건에서 시도되었으나 1981년 오노(Ohno) 등이 사용한 트리페닐포스핀-디피리딜디술파이드-아세토니트릴(Ph3P-(PyS)2-CH3CN) 조건이 가장 좋은 반응으로 널리 사용되므로 앞서 행한 탈보호화 반응에 의해 잔류된 산을 트리에틸아민을 사용하여 중화한 다음 이 방법을 이용하여 락탐화 반응(lactamization)을 시행하였다. 60℃에서 12시간동안 교반하여 81%의 수율로 아제티디논 화합물(Ⅰ)을 합성하였다.In order to perform the lactamization of the amine-protected amino acid, the BOC of the amine was removed using trifluoroacetic acid (TFA), but when the solvent was not used, the alcohol protecting group TBDMS was also removed. Therefore, to prevent this, BFA was removed using TFA diluted to 20% with dichloromethane (MC), and then concentrated, and lactamation reaction was attempted without any purification. Amide formation reaction was attempted in the synthesis of beta-lactam under a variety of conditions, but triphenylphosphine-dipyridyldisulfide-acetonitrile (Ph 3 P- (PyS) 2 -used by Ohno et al. In 1981. Since the CH 3 CN) condition is widely used as the best reaction, the acid remaining by the deprotection reaction performed above was neutralized with triethylamine, and then lactamization was performed using this method. Stirred at 60 ° C. for 12 hours to synthesize azetidinone compound (I) in a yield of 81%.

이하 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited thereto.

실시예 1 : (2R, 3R)-methyl 2-[(benzyloxy)methyl]-3-hydroxy-butyrate의 제조Example 1 Preparation of (2R, 3R) -methyl 2-[(benzyloxy) methyl] -3-hydroxy-butyrate

디이소프로필아민(diisopropylamine) 28ml(0.20mol)을 455ml의 THF에 가한후 0℃로 냉각하고 131.3ml(0.21mol)의 n-BuLi(1.6M 헥산 용액)을 적가하였다. 1시간 동안 교반후 -78℃로 냉각하고 228ml의 THF에 용해한 11.812g(0.1mol)의 methyl (R)-3-hydroxybutyrate를 천천히 적가한 다음 30분간 교반하였다. 32ml(1.84mol)의 헥사메틸포스포아마이드(HMPA)에 용해한 벤질옥시메틸 클로라이드(benzyloxymethyl chloride) 18.6ml(0.14mol)를 적가하고 -78℃에서 2.5시간동안 교반하였다. 200ml의 포화 NH4Cl 수용액을 가하고, 유기층을 분리한 다음 물층은 에테르로 추출하였다.(100ml×3회) 합한 유기층은 소금물로 세척하고 MgSO4로 건조한 다음 감압하에서 농축한 다음 칼람으로 분리(전개용매 : EtOAc/n-Hexane, 1:1)하여 16.7g의 무색의 오일인 벤질에테르(Ⅲ)을 얻었다. (70%)28 ml (0.20 mol) of diisopropylamine was added to 455 ml of THF, cooled to 0 ° C., and 131.3 ml (0.21 mol) of n-BuLi (1.6 M hexane solution) was added dropwise. After stirring for 1 hour, cooled to -78 ℃ and 11.812g (0.1mol) methyl (R) -3-hydroxybutyrate dissolved in 228ml of THF was slowly added dropwise and stirred for 30 minutes. 18.6 ml (0.14 mol) of benzyloxymethyl chloride dissolved in 32 ml (1.84 mol) of hexamethylphosphoamide (HMPA) was added dropwise and stirred at -78 ° C for 2.5 hours. 200 ml of saturated NH 4 Cl aqueous solution was added, the organic layer was separated and the water layer was extracted with ether (100 ml × 3 times). The combined organic layers were washed with brine, dried over MgSO 4 , concentrated under reduced pressure and separated by column (development). Solvent: EtOAc / n-Hexane, 1: 1) afforded 16.7 g of colorless oil benzyl ether (III). (70%)

Rf= 0.38(EtoAc/n-Hexane, 1:1)R f = 0.38 (EtoAc / n-Hexane, 1: 1)

1H NMR (CDCl3, 300MHz) δ 1.22(d, 3H, CH3C, J=6.5Hz), 2.75(q, 1H, CHC=O, J=6Hz), 2.81(br s, 1H, OH), 3.74(s, 3H, CH3OC=O), 3.76(abx, 1H, HCHO, J=9.4, 6.0Hz), 3.77(abx, 1H, HCHO, J=9.4, 6.0Hz), 4.13(dq, 1H, CHOSi, J=6.0, 6.5Hz), 4.51(ab, 1H, HCHPh, J=11.6Hz), 4.52(ab, 1H, CHCPh, J=11.6Hz), 7.25-7.4(m, 5H, PhH) 1 H NMR (CDCl 3 , 300 MHz) δ 1.22 (d, 3H, CH 3 C, J = 6.5 Hz), 2.75 (q, 1H, CHC = O, J = 6 Hz), 2.81 (br s, 1H, OH) , 3.74 (s, 3H, CH 3 OC = O), 3.76 (abx, 1H, HCHO, J = 9.4, 6.0 Hz), 3.77 (abx, 1H, HCHO, J = 9.4, 6.0 Hz), 4.13 (dq, 1H, CHOSi, J = 6.0, 6.5 Hz), 4.51 (ab, 1H, HCHPh, J = 11.6 Hz), 4.52 (ab, 1H, CHCPh, J = 11.6 Hz), 7.25-7.4 (m, 5H, PhH)

[α]25 D-7.935°(c 1.01, CHCl3)[α] 25 D -7.935 ° (c 1.01, CHCl 3 )

실시예 2 : Methyl (2R,3R)-2-[(benzyloxy)methyl]-3-(tert-butyldimethylsilyloxy) butyrate의 제조Example 2 Preparation of Methyl (2R, 3R) -2-[(benzyloxy) methyl] -3- (tert-butyldimethylsilyloxy) butyrate

100ml의 N,N-디메틸포름아마이드(N,N-DMF)에 15g(62.95mmol)의 벤질에테르(Ⅲ)을 용해하고 tert-부틸클로로디메틸실란(tert-butylchlorodimethylsilane) 11.4g (75.54mmol)과 이미다졸 5.14g (75.54mmol)을 가한 뒤 5시간 동안 교반하였다. 반응완결 후 반응액을 400ml의 에테르와 100ml의 10%-HCl의 혼합액에 희석시킨 다음 유기층을 분리해내고 100ml의 H2O와 100ml의 포화 NaHCO3로 세척하였다. 유기층을 MgSO4로 건조하고 감압하에서 농축한 다음 칼람으로 분리(전개용매 : Hexane/EtOAc, 15:1)하여 18.5g(83.4%)의 무색 투명한 오일상의 실릴 에테르(silyl ether)(Ⅳ)를 얻었다.Dissolve 15 g (62.95 mmol) of benzyl ether (III) in 100 ml of N, N-dimethylformamide (N, N-DMF), and 11.4 g (75.54 mmol) of tert-butylchlorodimethylsilane. 5.14 g (75.54 mmol) of dazol was added and stirred for 5 hours. After completion of the reaction, the reaction solution was diluted with a mixture of 400 ml of ether and 100 ml of 10% -HCl, and then the organic layer was separated and washed with 100 ml of H 2 O and 100 ml of saturated NaHCO 3 . The organic layer was dried over MgSO 4 , concentrated under reduced pressure, and separated by column (developing solvent: Hexane / EtOAc, 15: 1) to give 18.5 g (83.4%) of a colorless transparent oily silyl ether (IV). .

Rf= 0.5(Hexane/EtOAc, 10:1)R f = 0.5 (Hexane / EtOAc, 10: 1)

1H NMR (CDCl3, 300MHz) δ 0.0(s, 6H,(CH3)2Si), 0.82(s, 9H, (CH3)3C), 1.12(d, 3H, CH3, J=6Hz), 2.7-2.8(m, 1H, CHC), 3.6-3.7(m, 2H, CH2O), 3.74(s, 3H, CH3O), 4.03(dq, 1H, CHOSi, J=6.6Hz), 4.43(s, 2H, CH2Ph), 7.24(s, 5H, PhH) 1 H NMR (CDCl 3 , 300 MHz) δ 0.0 (s, 6H, (CH 3 ) 2 Si), 0.82 (s, 9H, (CH 3 ) 3 C), 1.12 (d, 3H, CH 3 , J = 6Hz ), 2.7-2.8 (m, 1H, CHC), 3.6-3.7 (m, 2H, CH 2 O), 3.74 (s, 3H, CH 3 O), 4.03 (dq, 1H, CHOSi, J = 6.6 Hz) , 4.43 (s, 2H, CH 2 Ph), 7.24 (s, 5H, PhH)

[α]25 D-8.899°(c 1.03, CHCl3)[α] 25 D -8.899 ° (c 1.03, CHCl 3 )

실시예 3 : (2R,3R)-2-[(benzyloxy)methyl]-3-(tert-butyldimethylsilyloxy) butanol의 제조Example 3 Preparation of (2R, 3R) -2-[(benzyloxy) methyl] -3- (tert-butyldimethylsilyloxy) butanol

120ml의 에테르에 실릴 에테르(Ⅳ) 12.68g(36mmol)을 용해하고 -78℃로 냉각한 후 DIBAL(1.5M in Toluene) 52.8ml(79.2mmol)을 적가 하고 1시간 동안 교반하였다. 반응완결 후 2.4ml의 메탄올을 가하고, 상온까지 온도를 상승시켰다. 반응액을 150ml의 포화 포타슘 소듐 타트레이트(potasium sodium tartrate) 수용액에 용해한 다음 1시간 동안 교반하였다. 유기층을 분리해낸 후 물층은 에테르로 추출하였다.(50ml×2회) 합한 유기층은 소금물로 세척하고 MgSO4로 건조한 후 감압하에서 농축한 다음 칼람으로 분리(전개용매 : Hexane/EtOAc, 6:1)하여 10g의 무색 투명한 오일상의 알콜(Ⅴ)을 얻었다. (85.7%)12.68 g (36 mmol) of silyl ether (IV) was dissolved in 120 ml of ether, cooled to -78 ° C, and 52.8 ml (79.2 mmol) of DIBAL (1.5 M in Toluene) was added dropwise and stirred for 1 hour. 2.4 ml of methanol was added after completion of the reaction, and the temperature was raised to room temperature. The reaction solution was dissolved in 150 ml of saturated potassium sodium tartrate aqueous solution and stirred for 1 hour. The organic layer was separated and the water layer was extracted with ether (50ml × 2 times). The combined organic layers were washed with brine, dried over MgSO 4 , concentrated under reduced pressure, and separated by column (developing solvent: Hexane / EtOAc, 6: 1). 10 g of colorless transparent oily alcohol (V) was obtained. (85.7%)

Rf= 0.25 (Hexane/EtOAc, 10:1)R f = 0.25 (Hexane / EtOAc, 10: 1)

1H NMR (CDCl3, 500MHz) δ 0.08(d, 6H, (CH3)2Si), 0.88(s, 9H, (CH3)3C), 1.23(d, 3H, CH3C, J=6.5Hz), 1.71∼1.74(m, 1H, CHC), 3.63(q, 1H, CH2OBn, J=6.5, 9Hz), 3.69(q, 1H, CH2OBn, J=6.5, 9.5Hz), 3.74(q, 1H, CH2OH, J=4, 11.5Hz), 4.0(q, 1H, CH2OH, J=4, 11Hz), 4.15∼4.20(dq, 1H, CHOSi, J=6.5Hz, 3.5Hz), 4.49∼4.55 (q, 2H, CH2Ph), 7.27∼7.37(m, 5H, PhH) 1 H NMR (CDCl 3 , 500 MHz) δ 0.08 (d, 6H, (CH 3 ) 2 Si), 0.88 (s, 9H, (CH 3 ) 3 C), 1.23 (d, 3H, CH 3 C, J = 6.5 Hz), 1.71 to 1.74 (m, 1H, CHC), 3.63 (q, 1H, CH 2 OBn, J = 6.5, 9 Hz), 3.69 (q, 1H, CH 2 OBn, J = 6.5, 9.5 Hz), 3.74 (q, 1H, CH 2 OH, J = 4, 11.5 Hz), 4.0 (q, 1H, CH 2 OH, J = 4, 11 Hz), 4.15 to 4.20 (dq, 1H, CHOSi, J = 6.5 Hz, 3.5 Hz), 4.49 to 4.55 (q, 2H, CH 2 Ph), 7.27 to 7.37 (m, 5H, PhH)

13C NMR (CDCl3, 125MHz) δ-4.45, -3.66, 18.55, 22.68, 26.47, 47.50, 62.93, 69.76, 71.29, 74.15, 128.38, 128.45, 129.12, 138.86 13 C NMR (CDCl 3 , 125 MHz) δ-4.45, -3.66, 18.55, 22.68, 26.47, 47.50, 62.93, 69.76, 71.29, 74.15, 128.38, 128.45, 129.12, 138.86

IR(neat) 3453, 2955, 2930, 2891, 2857, 1468, 1366, 1254 cm-1 IR (neat) 3453, 2955, 2930, 2891, 2857, 1468, 1366, 1254 cm -1

[α]28 D-8.271°(c 0.7133, CHCl3)[α] 28 D -8.271 ° (c 0.7133, CHCl 3 )

MS (EI) 325 (M+)MS (EI) 325 (M + )

실시예 4 : (2R,3R)-2-[(benzyloxy)methyl]-3-(tert-butyldimethylsilyloxy) butane azide의 제조Example 4 Preparation of (2R, 3R) -2-[(benzyloxy) methyl] -3- (tert-butyldimethylsilyloxy) butane azide

10ml의 테트라하이드로퓨란에 알콜 (Ⅴ) 1g(3.1mmol)을 용해하고 트리페닐포스핀(triphenylphosphine) 1.62g(6.2mmol), 디에틸아조디카복실레이트 (diethylazodicarboxylate) 0.97ml (6.2mmol)을 차례로 가한 다음 디페닐포스포아자이드 1.33ml(6.2mmol)을 천천히 적가하고 실온에서 2시간동안 교반하였다. 반응완결 후 물 20ml를 가하여 희석한 다음 에테르(20ml×2)로 추출하였다. 합한 유기층은 소금물로 세척하고 MgSO4로 건조한 후 감압하에서 농축하여 칼람으로 분리(전개용매 : Hexane/EtOAc, 10:1)하여 1.02g의 무색 투명한 오일상의 아자이드(Ⅵ)를 얻었다. (94.7%)Dissolve 1 g (3.1 mmol) of alcohol (V) in 10 ml of tetrahydrofuran, add 1.62 g (6.2 mmol) of triphenylphosphine and 0.97 ml (6.2 mmol) of diethylazodicarboxylate. Then 1.33 ml (6.2 mmol) diphenylphosphoazide was slowly added dropwise and stirred at room temperature for 2 hours. After completion of the reaction, 20 ml of water was added thereto, diluted, and extracted with ether (20 ml × 2). The combined organic layers were washed with brine, dried over MgSO 4 , concentrated under reduced pressure, separated by column (developing solvent: Hexane / EtOAc, 10: 1) to obtain 1.02 g of azide (VI) as a colorless transparent oily product. (94.7%)

Rf= 0.6 (Hexane/EtOAc, 6:1)R f = 0.6 (Hexane / EtOAc, 6: 1)

1H NMR (CDCl3, 500MHz) δ 0.04(d, 6H, (CH3)2Si), 0.88(s, 9H, (CH3)3C), 1.23(d, 3H, CH3C, J=6.5Hz), 1.18(m, 1H, CHC), 3.38(q, 1H, CH2N3, J=7.1, 12.2Hz), 3.45(q, 1H, CH2OBn, J=6.0, 9.1Hz), 3.51(q, 1H, CH2N3, J=7.1, 4.8Hz), 3.53(q, 1H, CH2OBn, J=5.1, 9.1Hz), 3.98(m, 1H, CHOSi), 4.46∼4.53 (q, 2H, CH2Ph), 7.26∼7.37(m, 5H, PhH) 1 H NMR (CDCl 3 , 500 MHz) δ 0.04 (d, 6H, (CH 3 ) 2 Si), 0.88 (s, 9H, (CH 3 ) 3 C), 1.23 (d, 3H, CH 3 C, J = 6.5 Hz), 1.18 (m, 1H, CHC), 3.38 (q, 1H, CH 2 N 3 , J = 7.1, 12.2 Hz), 3.45 (q, 1H, CH 2 OBn, J = 6.0, 9.1 Hz), 3.51 (q, 1H, CH 2 N 3 , J = 7.1, 4.8 Hz), 3.53 (q, 1H, CH 2 OBn, J = 5.1, 9.1 Hz), 3.98 (m, 1H, CHOSi), 4.46 to 4.53 ( q, 2H, CH 2 Ph), 7.26 to 7.37 (m, 5H, PhH)

13C NMR (CDCl3, 125MHz) δ-4.32, -3.53, 18.69, 22.23, 26.52, 47.27, 50.27, 67.25, 69.07, 73.97, 128.35, 128.40, 129.09, 138.91 13 C NMR (CDCl 3 , 125 MHz) δ-4.32, -3.53, 18.69, 22.23, 26.52, 47.27, 50.27, 67.25, 69.07, 73.97, 128.35, 128.40, 129.09, 138.91

IR(neat) 2956, 2931, 2893, 2858, 2099, 1458 cm-1 IR (neat) 2956, 2931, 2893, 2858, 2099, 1458 cm -1

MS (EI) 350 (M+)MS (EI) 350 (M + )

실시예 5 : (2S,3R)-2-[tert-butylcarbamoylmethyl]-3-(tert-butyldimethyl- silyloxy) butanol의 제조Example 5 Preparation of (2S, 3R) -2- [tert-butylcarbamoylmethyl] -3- (tert-butyldimethyl-silyloxy) butanol

아자이드(Ⅵ) 0.89g(2.55mmol)을 에틸아세테이트 10ml에 용해하고 팔라듐 하이드록사이드(palladium hydroxide) 100mg과 디-tert-부톡시카바메이트(di-tert-butoxycarbamate) 0.834g을 차례로 가한 다음 1기압의 수소하에서 24시간동안 실온에서 교반하였다. 반응완결 후 반응액을 셀라이트(celite)상에서 여과한 후 농축한 다음 칼람으로 분리(전개용매 : Hexane/EtOAc, 6:1)하여 0.7g의 백색 분말상의 N-Boc로 보호된 알콜(Ⅶ)을 얻었다. (82.4%)0.89 g (2.55 mmol) of azide (VI) was dissolved in 10 ml of ethyl acetate, 100 mg of palladium hydroxide, and 0.834 g of di-tert-butoxycarbamate were added, followed by 1 Stir at room temperature under hydrogen at atmospheric pressure for 24 hours. After completion of the reaction, the reaction solution was filtered over celite, concentrated and separated by column (developing solvent: Hexane / EtOAc, 6: 1) to 0.7 g white N-Boc-protected alcohol (상의). Got. (82.4%)

Rf= 0.15 (Hexane/EtOAc, 6:1)R f = 0.15 (Hexane / EtOAc, 6: 1)

1H NMR (CDCl3, 500MHz) δ 0.07(d, 6H, (CH3)2Si), 0.88(s, 9H, (CH3)3C), 1.2(d, 3H, CH3C, J=6Hz), 1.44(s, 9H, O(CH3)3), 1.63(m, 1H, CHC), 3.22(dt, 1H), 3.30(br, 1H), 3.49(m, 1H), 3.62(m, 2H), 3.96(m, 1H, CHOSi), 5.02(br, 1H, NH) 1 H NMR (CDCl 3 , 500 MHz) δ 0.07 (d, 6H, (CH 3 ) 2 Si), 0.88 (s, 9H, (CH 3 ) 3 C), 1.2 (d, 3H, CH 3 C, J = 6 Hz), 1.44 (s, 9H, O (CH 3 ) 3 ), 1.63 (m, 1H, CHC), 3.22 (dt, 1H), 3.30 (br, 1H), 3.49 (m, 1H), 3.62 (m , 2H), 3.96 (m, 1H, CHOSi), 5.02 (br, 1H, NH)

13C NMR (CDCl3, 125MHz) δ-4.38, -3.54, 18.59, 22.40, 26.53, 29.05, 37.95, 48.45, 62.26, 69.86, 80.21, 158.10 13 C NMR (CDCl 3 , 125 MHz) δ-4.38, -3.54, 18.59, 22.40, 26.53, 29.05, 37.95, 48.45, 62.26, 69.86, 80.21, 158.10

IR(neat) 3410, 2956, 2931, 2891, 2859, 1695, 1511, 1470, 1391, 1367 cm-1 IR (neat) 3410, 2956, 2931, 2891, 2859, 1695, 1511, 1470, 1391, 1367 cm -1

MS (EI) 334 (M+)MS (EI) 334 (M + )

실시예 6 : (2S,3R)-2-[tert-butylcarbamoylmethyl]-3-(tert-butyldimethyl silyloxy) butanoic acid의 제조Example 6 Preparation of (2S, 3R) -2- [tert-butylcarbamoylmethyl] -3- (tert-butyldimethyl silyloxy) butanoic acid

아미노 알콜(VII) 540mg을 CH3CN-CCl4-H2O(4ml:4ml:6ml)의 혼합용매에 녹이고 소듐퍼이오데이트(NaIO4) 1.42g(6.64mmol)와 루테니움 클로라이드(Rucl3) 7.4mg(2.2mol%)을 가한 다음 격렬히 교반하면서 4시간 동안 반응하였다. 반응완결 후 디클로로메탄 10ml를 가하여 희석한 다음 물층을 분리해내고 농축하였다. 여기에 디에틸 에테르를 가하여 불용성의 침전은 셀라이트(celite)상에서 여과해내고 다시 농축한 다음 칼람으로 분리(전개용매 : Hexane/EtOAc, 1:1)하여 480mg의 백색 분말상의 아미노산(VIII)을 얻었다. (85.3%)540 mg of amino alcohol (VII) was dissolved in a mixed solvent of CH 3 CN-CCl 4 -H 2 O (4 ml: 4 ml: 6 ml), 1.42 g (6.64 mmol) of sodium periodate (NaIO 4 ) and ruthenium chloride (Rucl) 3 ) 7.4 mg (2.2 mol%) was added, followed by reaction for 4 hours with vigorous stirring. After completion of the reaction, 10 ml of dichloromethane was added, diluted, and the water layer was separated and concentrated. Diethyl ether was added thereto, and the insoluble precipitate was filtered off over celite, concentrated again and separated by column (developing solvent: Hexane / EtOAc, 1: 1) to give 480 mg of white powdery amino acid (VIII). Got it. (85.3%)

Rf= 0.35 (Hexane/EtOAc, 1:1)R f = 0.35 (Hexane / EtOAc, 1: 1)

1H NMR (CDCl3, 500MHz) rotamer δ 0.01, 0.11(d, 6H, (CH3)2Si), 0.90(s, 9H, (CH3)3C), 1.22(d, 3H, CH3C, J=6.5Hz), 1.43(s, 9H, O(CH3)3), 2.64, 2.69(br, 1H, CHCO), 3.23, 3.25(br, 1H, CH2N), 3.45, 3.50(br, 1H, CH2N), 4.13, 4.25(br, 1H, CHOSi), 5.22, 6.23(br, 1H, NH) 1 H NMR (CDCl 3 , 500 MHz) rotamer δ 0.01, 0.11 (d, 6H, (CH 3 ) 2 Si), 0.90 (s, 9H, (CH 3 ) 3 C), 1.22 (d, 3H, CH 3 C , J = 6.5 Hz), 1.43 (s, 9H, O (CH 3 ) 3 ), 2.64, 2.69 (br, 1H, CHCO), 3.23, 3.25 (br, 1H, CH 2 N), 3.45, 3.50 (br , 1H, CH 2 N), 4.13, 4.25 (br, 1H, CHOSi), 5.22, 6.23 (br, 1H, NH)

13C NMR (CDCl3, 125MHz) δ-4.51, -3.87, 18.53, 21.08, 26.34, 29.07, 38.83, 52.80, 69.29, 80.16, 158.68, 175.63 13 C NMR (CDCl 3 , 125 MHz) δ-4.51, -3.87, 18.53, 21.08, 26.34, 29.07, 38.83, 52.80, 69.29, 80.16, 158.68, 175.63

IR(KBr) 3319, 3273, 2979, 2956, 2932, 2859, 1725, 1699, 1653, 1475, 1409, 1366 cm-1 IR (KBr) 3319, 3273, 2979, 2956, 2932, 2859, 1725, 1699, 1653, 1475, 1409, 1366 cm -1

MS (EI) 349 (M+)MS (EI) 349 (M + )

실시예 7 : (3R,4S)-3-[(R)-1-((tert-butyl-dimethylsilyloxy)-ethyl]-2- azetidinone의 제조Example 7 Preparation of (3R, 4S) -3-[(R) -1-((tert-butyl-dimethylsilyloxy) -ethyl] -2-azetidinone

아미노산(VIII) 300mg(0.863mmol)을 2ml의 디클로로메탄에 녹이고 0℃에서 0.5ml의 트리플루오로 아세트산(trifluoro aceticacid)를 가한 다음 20분간 교반하였다. 반응완결 후 반응액을 농축하고 이를 17.3ml의 아세토나이트릴(acetonitrile)에 용해한 뒤 0.12ml의 트리에틸아민을 가하고 5분간 교반하였다. 이후 트리페닐 포스핀(triphenyl phosphine) 272mg(1.036mmol)과 2-알드리티올(2-aldrithiol) 22.82mg(1.036mmol)을 가하여 60℃에서 12시간 동안 교반하고 물 10ml를 가한 다음 에틸아세테이트(15ml×2)로 추출하였다. 합한 유기층은 소금물로 세척하고 MgSO4로 건조한 후 감압하에서 농축한 다음 칼람으로 분리(전개용매 : Hexane/EtOAc, 2:1)하여 백색 결정상의 아제티디논(I)을 160mg(81%) 얻었다.300 mg (0.863 mmol) of amino acid (VIII) was dissolved in 2 ml of dichloromethane, and 0.5 ml of trifluoro acetic acid was added at 0 ° C., followed by stirring for 20 minutes. After completion of the reaction, the reaction solution was concentrated and dissolved in 17.3 ml of acetonitrile, 0.12 ml of triethylamine was added and stirred for 5 minutes. Then, 272 mg (1.036 mmol) of triphenyl phosphine and 22.82 mg (1.036 mmol) of 2-aldrithiol were added thereto, stirred at 60 ° C. for 12 hours, 10 ml of water was added thereto, and ethyl acetate (15 ml) was added. 2 ×). The combined organic layers were washed with brine, dried over MgSO 4 , concentrated under reduced pressure, and separated by column (developing solvent: Hexane / EtOAc, 2: 1) to obtain 160 mg (81%) of azetidinone (I) as white crystals.

Rf= 0.25 (Hexane/EtOAc, 2:1)R f = 0.25 (Hexane / EtOAc, 2: 1)

1H NMR (CDCl3, 500MHz) δ 0.08(d, 6H, (CH3)2Si), 0.88(s, 9H, (CH3)3C), 1.19(d, 3H, CH3C, J=6.24Hz), 3.23(qt, 1H, CHCO), 3.29(t, 1H, CH2N, J=5.1Hz), 3.35(q, 1H, CH2N, J=5.1, 2.55Hz), 4.21(m, 1H, CHOSi, J=6.24, 4.54Hz), 5.76(br s, 1H, NH) 1 H NMR (CDCl 3 , 500 MHz) δ 0.08 (d, 6H, (CH 3 ) 2 Si), 0.88 (s, 9H, (CH 3 ) 3 C), 1.19 (d, 3H, CH 3 C, J = 6.24 Hz), 3.23 (qt, 1H, CHCO), 3.29 (t, 1H, CH 2 N, J = 5.1 Hz), 3.35 (q, 1H, CH 2 N, J = 5.1, 2.55 Hz), 4.21 (m , 1H, CHOSi, J = 6.24, 4.54 Hz), 5.76 (br s, 1H, NH)

13C NMR (CDCl3, 125MHz) δ -4.31, -3.56, 18.66, 22.25, 26.42, 38.34, 60.03, 65.96, 170.20 13 C NMR (CDCl 3 , 125 MHz) δ -4.31, -3.56, 18.66, 22.25, 26.42, 38.34, 60.03, 65.96, 170.20

IR(neat) 3189, 2959, 2929, 2894, 2857, 1746, 1469, 1370 cm-1 IR (neat) 3189, 2959, 2929, 2894, 2857, 1746, 1469, 1370 cm -1

[α]27 D-74.2°(c 0.7, CHCl3)[α] 27 D −74.2 ° (c 0.7, CHCl 3 )

이와 같은 본 발명의 방법에 따라 구조식 Ⅰ의 화합물을 제조하면 출발물질인 메틸 (R)-3-하이드록시 부티레이트로부터 30% 이상의 고수율로 구조식 Ⅰ의 화합물을 제조할 수 있으며, 출발물질이 가지고 있는 입체구조를 이용한 선택적인 알킬화를 통하여 편리하게 화합물 Ⅰ에 존재하는 두 개의 입체화학을 효율적으로 조절할 수 있었다. 특히, β-히드록시 에스테르의 α-히드록시메칠화에 있어서 나타났던 반응수율과 입체선택성의 문제점이 HMPA를 첨가제로 사용함으로써 월등히 향상된 결과를 얻었다.When the compound of formula I is prepared according to the method of the present invention, it is possible to prepare the compound of formula I in a high yield of 30% or more from the starting material methyl (R) -3-hydroxy butyrate. Selective alkylation using the steric structure facilitated efficient control of the two stereochemistry present in compound I. In particular, the problems of reaction yield and stereoselectivity in the α-hydroxymethylation of β-hydroxy ester were significantly improved by using HMPA as an additive.

Claims (4)

하기 구조식 (II)의 화합물과 할로메틸벤질에테르(halomethylbenzylether)를 첨가제와 염기 존재하에서 반응시켜 입체선택적으로 알킬화하여 하기 구조식 (III)의 에스테르(ester)화합물을 제조하는 단계,Preparing a ester compound of formula (III) by stereoselectively alkylating the compound of formula (II) with halomethylbenzylether in the presence of an additive and a base; 에스테르 화합물에 실릴화제와 환원제를 가하여 일차 알콜로 제조한 다음, 디페닐포스포아자이드(DPPA)를 반응시켜 하기 구조식 (VI)의 아자이드 화합물을 제조하는 단계,Preparing an azide compound of formula (VI) by adding a silylating agent and a reducing agent to the ester compound to prepare a primary alcohol, and then reacting diphenylphosphoazide (DPPA); 아자이드 화합물에 촉매와 아민보호기를 반응시켜 하기 구조식 (VII)의 아미노알콜 화합물을 제조한 다음, 산화제를 반응시켜 하기 구조식 (VIII)의 아미노산 화합물을 제조하는 단계,Reacting an azide compound with a catalyst and an amine protecting group to produce an aminoalcohol compound of formula (VII), and then reacting an oxidant to prepare an amino acid compound of formula (VIII), 아미노산 화합물의 아민보호기를 제거한 다음, 고리화 반응을 수행하여 최종적으로 락탐환을 제조하는 단계로 구성되는 것을 특징으로 하는 하기 구조식 (I)의 아제티디논 화합물의 제조방법Removing the amine protecting group of the amino acid compound, and then performing a cyclization reaction to prepare a lactam ring finally a method for producing an azetidinone compound of formula (I) 상기에서 R은 tert-부틸디메틸실릴(tert-butyldimethylsilyl)기이다.Wherein R is a tert-butyldimethylsilyl group. 제 1항에 있어서, 염기가 리튬 디이소프로필아민(lithium diisopropylamine)인 것을 특징으로 하는 아제티디논 화합물의 제조방법The method for producing an azetidinone compound according to claim 1, wherein the base is lithium diisopropylamine. 제 1항에 있어서, 첨가제가 디페닐포스포아자이드(diphenylphophoazide)인 것을 특징으로 하는 아제티디논 화합물의 제조방법The method for producing an azetidinone compound according to claim 1, wherein the additive is diphenylphophoazide. 제 1항에 있어서, 촉매가 팔라듐 하이드록사이드(palladium hydroxide)인 것을 특징으로 하는 아제티디논 화합물의 제조방법The method for producing an azetidinone compound according to claim 1, wherein the catalyst is palladium hydroxide.
KR1019990019124A 1999-05-27 1999-05-27 Process for the preparation of azetidinone derivatives KR20000074884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990019124A KR20000074884A (en) 1999-05-27 1999-05-27 Process for the preparation of azetidinone derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990019124A KR20000074884A (en) 1999-05-27 1999-05-27 Process for the preparation of azetidinone derivatives

Publications (1)

Publication Number Publication Date
KR20000074884A true KR20000074884A (en) 2000-12-15

Family

ID=19587987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990019124A KR20000074884A (en) 1999-05-27 1999-05-27 Process for the preparation of azetidinone derivatives

Country Status (1)

Country Link
KR (1) KR20000074884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335848B1 (en) * 2000-03-31 2002-05-08 윤재승 Azetidinone derivatives, a process for their preparation and a method for producing 1-β-alkylazetidinone using the same
KR20020087500A (en) * 2000-12-23 2002-11-23 주식회사대웅제약 A process for preparing 3-substituted azetidinone
CN111518014A (en) * 2020-04-28 2020-08-11 温州大学新材料与产业技术研究院 Synthesis method of 2-azabicyclo [3.2.0] compound
CN114634957A (en) * 2020-12-15 2022-06-17 苏州引航生物科技有限公司 Method for synthesizing 4AA intermediate through biocatalysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335848B1 (en) * 2000-03-31 2002-05-08 윤재승 Azetidinone derivatives, a process for their preparation and a method for producing 1-β-alkylazetidinone using the same
KR20020087500A (en) * 2000-12-23 2002-11-23 주식회사대웅제약 A process for preparing 3-substituted azetidinone
CN111518014A (en) * 2020-04-28 2020-08-11 温州大学新材料与产业技术研究院 Synthesis method of 2-azabicyclo [3.2.0] compound
CN114634957A (en) * 2020-12-15 2022-06-17 苏州引航生物科技有限公司 Method for synthesizing 4AA intermediate through biocatalysis

Similar Documents

Publication Publication Date Title
KR100590342B1 (en) Enantioselective synthesis of azetidinone intermediate compounds
US20090131707A1 (en) Chemical process for the preparation of intermediates to obtain n-formyl hydroxylamine compounds
HU207288B (en) Process for enenthioselective producing phenyl-isoserine derivatives
Yakura et al. Enantioselective Synthesis of Pachastrissamine (Jaspin B) Using Dirhodium (II)-Catalyzed C–H Amination and Asymmetric Dihydroxylation as Key Steps
MXPA01001187A (en) Synthesis of 3,6-dialkyl- 5,6-dihydro-4- hydroxy-2h- pyran-2- one.
Panek et al. Diastereoselective electrophilic addition reactions to chiral. beta.-dimethylphenylsilyl ester enolates. Synthesis of 2, 3-anti-. alpha.-substituted-. beta.-silyl-(E)-hex-4-enoates
KR20000074884A (en) Process for the preparation of azetidinone derivatives
US20130310577A1 (en) Convergent synthesis of renin inhibitors and intermediates useful therein
Madau et al. Stereoselective synthesis of unnatural aminoacids cis-4-hydroxyproline and bulgecinine
JP2005518427A (en) New boronate ester
US5859281A (en) Catalytic asymmetric aminohydroxylation of olefins with sulfonamides
EP0333268A1 (en) Process for synthesis of a chiral 3-beta hydrogen (3R) 4-aroyloxy azetidinone
EP0992491B1 (en) Processes for producing azetidine-2-carboxylic acid and intermediates thereof
WO2009157386A1 (en) Method for producing optically active amine compound
Yoon et al. Diastereoselective synthesis of anti-1, 2-aminoalcohol by palladium (ll) catalyzed aza-claisen rearrangement
CN110590781A (en) Method for synthesizing chiral five-membered carbocyclic purine nucleoside by asymmetric allylamine reaction
US11110444B2 (en) Chiral catalyst and heterogeneous chiral catalyst comprising the same
JP4181233B2 (en) Method for producing pyrrolidine-2,4-dione derivative
CN112390738B (en) Ezetimibe intermediate compound and synthetic method of ezetimibe
KR20000074885A (en) Process for the preparation of beta-methyl azetidinone derivatives
JP3388874B2 (en) Method for producing β-lactam compound
KR100225534B1 (en) Stereospecific process for preparing (2r,3s)-beta--phenylisoserine
KR101314955B1 (en) Process for the preparation of intermediate of penem antibiotic
CN116813659A (en) Chiral aryl iodine catalyst with threonine as chiral source, and synthetic method and application thereof
JP2922943B2 (en) Imidazolidinone derivatives

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid