KR20000071533A - Process for the production of oxymethylene polymer or oxymethylene copolymer - Google Patents

Process for the production of oxymethylene polymer or oxymethylene copolymer Download PDF

Info

Publication number
KR20000071533A
KR20000071533A KR1020000016889A KR20000016889A KR20000071533A KR 20000071533 A KR20000071533 A KR 20000071533A KR 1020000016889 A KR1020000016889 A KR 1020000016889A KR 20000016889 A KR20000016889 A KR 20000016889A KR 20000071533 A KR20000071533 A KR 20000071533A
Authority
KR
South Korea
Prior art keywords
catalyst
polymerization
copolymer
deactivator
oxymethylene
Prior art date
Application number
KR1020000016889A
Other languages
Korean (ko)
Other versions
KR100841579B1 (en
Inventor
나까무라다까히로
이시까와마사히꼬
미무라히로시
니시자와찌하루
Original Assignee
오오히라 아키라
미츠비시 가스 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오오히라 아키라, 미츠비시 가스 가가쿠 가부시키가이샤 filed Critical 오오히라 아키라
Publication of KR20000071533A publication Critical patent/KR20000071533A/en
Application granted granted Critical
Publication of KR100841579B1 publication Critical patent/KR100841579B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2684Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명에 의하면, 간략하며 그리고 효율적으로 촉매를 실활시킬 수 있고, 촉매를 제거할 필요가 없어서 열안정성이 우수한 옥시메틸렌계 중합체를 제공할 수 있다.According to the present invention, it is possible to provide an oxymethylene polymer which can deactivate the catalyst simply and efficiently, and does not need to remove the catalyst, and is excellent in thermal stability.

트리옥산, 또는 트리옥산과 환상 에테르 및/또는 환상 아세탈과의 혼합물을 양이온형 활성촉매를 이용하여 중합시키고, 이어서 그 촉매의 실활제를 SP 값 (용해도 파라미터) 이 9.5 ∼ 12.5 인 유기용매에 용해시켜 첨가함으로써 중합반응을 정지시켜 옥시메틸렌 중합체 또는 공중합체를 제조하는 방법.Trioxane or a mixture of trioxane and cyclic ether and / or cyclic acetal is polymerized using a cationic active catalyst, and then the deactivator of the catalyst is dissolved in an organic solvent having an SP value (solubility parameter) of 9.5 to 12.5. A method of producing an oxymethylene polymer or copolymer by terminating a polymerization reaction by adding a mixture thereof.

Description

옥시메틸렌 중합체 또는 공중합체의 제조방법{PROCESS FOR THE PRODUCTION OF OXYMETHYLENE POLYMER OR OXYMETHYLENE COPOLYMER}PROCESS FOR THE PRODUCTION OF OXYMETHYLENE POLYMER OR OXYMETHYLENE COPOLYMER}

본 발명은 트리옥산 등의 중합촉매를 실활(失活)시켜 중합반응을 정지시키는 공정을 포함하는 옥시메틸렌 중합체 또는 공중합체의 제조방법에 관한 것이다. 더욱 상세하게는 트리옥산 등을 양이온형 활성촉매로 중합시키고, 이어서 실활제로 중합반응을 정지시켜 옥시메틸렌 중합체 또는 공중합체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an oxymethylene polymer or copolymer comprising a step of inactivating a polymerization catalyst such as trioxane to stop the polymerization reaction. More specifically, the present invention relates to a method for producing an oxymethylene polymer or copolymer by polymerizing trioxane or the like with a cationic active catalyst and then terminating the polymerization reaction with a deactivator.

트리옥산 단독 또는 트리옥산과 환상 에테르 및/또는 환상 아세탈을 양이온형 활성촉매를 이용하여 중합시키고, 옥시메틸렌 중합체 또는 공중합체를 얻는 것은 공지이며 각종 방법이 제안되고 있다. 이들 중, 실질상 용매를 사용하지 않는 괴상(塊狀)중합 또는 모노머에 대해 20 % 이하의 용매를 이용하는 준(準)괴상중합이 공업적으로 바람직한 방법이다. 또한, 중합으로 얻어진 옥시메틸렌 중합체 또는 공중합체의 조(粗)중합체는 해(解)중합을 저지하기 위해 촉매를 실활시킬 필요가 있다.Trioxane alone or trioxane and cyclic ethers and / or cyclic acetals are polymerized using a cationic active catalyst to obtain an oxymethylene polymer or copolymer, and various methods have been proposed. Of these, bulk polymerization using no solvent or quasi-block polymerization using 20% or less of solvent relative to monomers is an industrially preferred method. Moreover, the copolymer of the oxymethylene polymer or copolymer obtained by superposition | polymerization needs to deactivate a catalyst in order to prevent depolymerization.

촉매의 실활방법에 대해서는 종래부터 각종 방법이 제안되고 있다. 예를 들면, 일본 공개특허공보 소 58-34819 호에는 트리에틸아민, 트리부틸아민, 수산화칼슘 등의 염기성 중화제를 포함하는 수용액 중 또는 유기용매 중에서 실활시키는 방법이 제안되고 있다. 그러나, 중합체에 대해 동일 중량 이상의 다량의 실활제의 용매를 이용하는 것은 용매와 중합체의 분리 및 용매회수(回收)가 필요해지고, 실활화 공정이 매우 복잡해지는 결점을 갖고 있어 공업적으로 유리한 방법이라고는 말하기 어렵다.Various methods have been proposed conventionally regarding the deactivation method of the catalyst. For example, Japanese Laid-Open Patent Publication No. 58-34819 proposes a method of inactivating in an aqueous solution containing a basic neutralizing agent such as triethylamine, tributylamine, calcium hydroxide or the like in an organic solvent. However, using a solvent of a large amount of deactivator having the same weight or more with respect to the polymer requires the separation and solvent recovery of the solvent and the polymer, and the deactivation process is very complicated. Hard to say

또 고체의 실활제로서, 일본 공개특허공보 소 63-27519 호에는 아황산금속염을 이용하는 방법이 제안되고 있지만, 이들 고체의 실활제를 이용하여 촉매를 실활시킨 중합체의 열안정성은 만족할만한 것이 아니다. 한편, 일본 공개특허공보 소 57-80415 호에는 3 급 포스핀 화합물의 유기용매용액을 실활제로서 이용하는 방법이, 또한 일본 공개특허공보 평 8-208784 호에는 특정의 힌다드아민 화합물의 유기용매용액을 이용하는 방법이 각각 제안되고 있지만, 이들 용매의 SP 값 (용해도 파라미터) 에 관해서는 전혀 기재가 없다.Moreover, although the method of using a metal sulfite salt is proposed by Unexamined-Japanese-Patent No. 63-27519 as a solid deactivator, the thermal stability of the polymer which deactivated the catalyst using the deactivator of these solids is not satisfactory. On the other hand, Japanese Unexamined Patent Publication No. 57-80415 uses a method of using an organic solvent solution of a tertiary phosphine compound as a deactivator, and Japanese Unexamined Patent Application Publication No. Hei 8-208784 describes an organic solvent solution of a specific hindered amine compound. Although the method of using each is proposed, there is no description about SP value (solubility parameter) of these solvents at all.

본 발명자의 목적은 이러한 상황을 감안하여 세정에 의한 중합촉매의 제거를 실시할 필요가 없이 간략하며 그리고 효율적으로 중합촉매를 실활시켜 열안정성이 우수한 옥시메틸렌 중합체 또는 공중합체를 제조하는 방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an oxymethylene polymer or copolymer having excellent thermal stability by simply and efficiently inactivating a polymerization catalyst without the necessity of removing the polymerization catalyst by washing in view of such a situation. Is in.

본 발명의 다른 목적 및 이점은 이하의 설명으로 분명해질 것이다.Other objects and advantages of the present invention will become apparent from the following description.

본 발명자들은 상기 과제를 해결하기 위해 예의 검토한 결과, 중합촉매의 실활제를 특정의 유기용매에 용해시켜 첨가함으로써 중합을 정지시킬 수 있음을 발견하여 본 발명을 완성하기에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the present inventors discovered that superposition | polymerization can be stopped by dissolving and adding the deactivator of a polymerization catalyst to a specific organic solvent, and came to complete this invention.

즉, 본 발명의 상기 목적 및 이점은 트리옥산 단독 또는 트리옥산과 환상 에테르 및/또는 환상 아세탈과의 혼합물을 양이온형 활성촉매를 이용하여 중합시키고, 이어서 그 촉매의 실활제를 첨가하여 중합반응을 정지시켜 옥시메틸렌 중합체 또는 공중합체를 제조함에 있어서, 그 촉매의 실활제를 SP 값 (용해도 파라미터) 이 9.5 ∼ 12.5 인 유기용매에 용해시켜 첨가하는 것을 특징으로 하는 옥시메틸렌 중합체 또는 공중합체의 제조방법이다.That is, the above object and advantage of the present invention is to polymerize trioxane alone or a mixture of trioxane and cyclic ether and / or cyclic acetal using a cationic active catalyst, and then add a deactivator of the catalyst to carry out the polymerization reaction. In the production of the oxymethylene polymer or copolymer by stopping, the deactivator of the catalyst is dissolved and added to an organic solvent having an SP value (solubility parameter) of 9.5 to 12.5, and a method for producing the oxymethylene polymer or copolymer. to be.

본 발명에 의하면, 촉매의 실활제로서 종래부터 일반적으로 사용되어 온 염기성 중화제 또는 루이스염기 등을 옥시메틸렌 중합체 또는 공중합체와 친화성이 높은 특정한 유기용매에 용해시켜 첨가함으로써 중합촉매의 실활을 간략하며 그리고 효율적으로 실시하고, 실활시의 부(副)반응을 억제시키고, 열안정성이 우수한 옥시메틸렌 중합체 또는 공중합체를 얻을 수 있다. 본 발명에 의하면, 실활제를 용해시키기 위해 이용하는 용매가 옥시메틸렌 중합체 또는 공중합체와 친화성이 높은 작용을 가짐으로써 실활제가 매우 효율적으로 작용하고, 계속 중합되는 활성 양이온형 말단이 안정적인 말단기를 형성하여 봉쇄되는 것으로 이해된다.According to the present invention, the deactivation of the polymerization catalyst is simplified by dissolving and adding a basic neutralizing agent or Lewis base, which has been generally used as a catalyst deactivator, in a specific organic solvent having high affinity with an oxymethylene polymer or copolymer. And it can carry out efficiently, suppresses the side reaction at the time of deactivation, and can obtain the oxymethylene polymer or copolymer excellent in thermal stability. According to the present invention, since the solvent used for dissolving the deactivator has a high affinity with the oxymethylene polymer or copolymer, the deactivator acts very efficiently, and the end group of which the active cationic type terminal which is continuously polymerized is stable It is understood that it is formed and blocked.

발명의 실시 형태Embodiment of the invention

이하, 본 발명을 상세히 설명한다. 본 발명에서의 중합방법으로서는 괴상 중합법, 용융 중합법 등이 있다. 예를 들면, 바람직한 중합방법으로서는 실질상 용매를 이용하지 않는 괴상 중합법이거나 또는 모노머에 대해 20 % 이하의 용매를 이용하는 준괴상 중합법이 있고, 이들 방법에 의하면 용융상태에 있는 모노머를 이용하여 중합시키고, 중합의 진행과 함께 분상(粉狀) 및 괴상화된 고체의 폴리머를 얻을 수 있다.Hereinafter, the present invention will be described in detail. Examples of the polymerization method in the present invention include a bulk polymerization method and a melt polymerization method. For example, a preferable polymerization method is a bulk polymerization method using no actual solvent or a semi-block polymerization method using a solvent of 20% or less with respect to a monomer. According to these methods, polymerization is performed using a monomer in a molten state. In addition, as the polymerization proceeds, a polymer of powdered and aggregated solid can be obtained.

본 발명에서의 원료 모노머는 포름알데히드의 환상 3 량체인 트리옥산을 주체로 하는 것이고, 코모노머로서 이용되는 환상 에테르 또는 환상 아세탈로서는 다음의 일반식 (2) 로 나타나는 화합물이 바람직하다.The raw material monomer in this invention mainly uses trioxane which is a cyclic trimer of formaldehyde, and the compound represented by following General formula (2) is preferable as cyclic ether or cyclic acetal used as a comonomer.

(식중, R1, R2, R3및 R4는 동일 또는 상이한 것이고, 수소원자 또는 탄소수 1 ∼ 5 의 알킬기를 나타낸다. R5는 메틸렌기 또는 옥시메틸렌기 또는 각각 알킬기로 치환된 메틸렌기 또는 옥시메틸렌기 (n 은 0 ∼ 3 의 정수) 를 나타내거나, 또는 일반식 (3) 또는 (4) 로 나타나는 2 가의 기를 나타낸다 (n 은 1 이고, m 은 1 ∼ 4 의 정수).)(Wherein R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 5 is a methylene group substituted with a methylene group or an oxymethylene group or an alkyl group or An oxymethylene group (n represents an integer of 0 to 3) or a divalent group represented by General Formula (3) or (4) (n is 1 and m is an integer of 1 to 4).

-(CH2)m-O-CH2- ‥‥‥ (3)-(CH 2 ) m -O-CH 2- ‥‥‥ (3)

-(O-CH2-CH2)m-O-CH2‥‥‥ (4)-(O-CH 2 -CH 2 ) m -O-CH 2 ‥‥‥ (4)

환상 에테르 또는 환상 아세탈로서는 예를 들면, 에틸렌옥사이드, 프로필렌옥사이드, 1,3-디옥소란, 1,3-디옥산, 1,3- 디옥세판, 1,3,5-트리옥세판, 1,3,6-트리옥소칸 등을 들 수 있다. 특히 코모노머로서는 1,3-디옥소란이 바람직하다. 또 본 발명의 방법에 있어서, 옥시메틸렌 중합체 또는 공중합체의 분자량 조절을 위해 필요하다면 적당한 분자량 조절제를 이용해도 좋다.As the cyclic ether or cyclic acetal, for example, ethylene oxide, propylene oxide, 1,3-dioxolane, 1,3-dioxane, 1,3-dioxane, 1,3,5-trioxepane, 1, 3, 6-trioxokan etc. are mentioned. Especially as a comonomer, 1, 3- dioxolane is preferable. Moreover, in the method of this invention, you may use a suitable molecular weight modifier as needed for molecular weight control of an oxymethylene polymer or copolymer.

본 발명에서의 중합촉매로서는, 일반적인 양이온형 활성촉매가 이용된다. 이와 같은 양이온형 활성촉매로서는 예를 들면, 루이스산, 즉 붕소, 주석, 티탄, 인, 비소 및 안티몬 등의 할로겐화물, 구체적으로는 3 불화붕소, 4 염화주석, 4 염화티탄, 5 염화인, 5 불화인, 5 불화비소 및 5 불화안티몬 및 그 착화합물 또는 염과 같은 화합물, 프로톤산 예를 들면 트리플루오로메탄술폰산, 퍼클로르산, 프로톤산의 에스테르 특히 퍼클로르산과 저급 지방족 알코올과의 에스테르, 프로톤산의 산무수물 특히 퍼클로르산과 저급 지방족 카르복실산과의 혼합산무수물, 또는 트리에틸렌옥소늄헥사플루오로포스파아트, 트리페닐메틸헥사플루오로아르제나아트, 아세틸헥사플루오로보라아트 등을 들 수 있다. 특히 3 불화붕소를 포함하는 화합물, 예를 들면 3 불화붕소의 수화물 및 배위착체 화합물이 바람직하고, 배위착체 화합물 중 에테르류와의 배위착체인 3 불화붕소디에틸에테라아트, 3 불화붕소디부틸에테라아트가 특히 바람직하다.As the polymerization catalyst in the present invention, a general cationic active catalyst is used. Such cationic active catalysts include, for example, Lewis acids, that is, halides such as boron, tin, titanium, phosphorus, arsenic, and antimony, specifically boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, Compounds such as phosphorus pentafluoride, arsenic pentafluoride and antimony pentafluoride and complexes or salts thereof, esters of protonic acids such as trifluoromethanesulfonic acid, perchloric acid, protonic acid, especially esters of perchloric acid with lower aliphatic alcohols, Acid anhydrides of protonic acids, in particular mixed acid anhydrides of perchloric acid and lower aliphatic carboxylic acids, or triethyleneoxonium hexafluorophosphata, triphenylmethylhexafluoroargenaart, acetylhexafluoroboraart, etc. Can be. Particularly preferred are compounds containing boron trifluoride, for example, hydrates and coordination complexes of boron trifluoride, and boron trifluoride diethyl ether teratriate and boron trifluoride, which are coordination complexes with ethers in the coordination complex compounds. Etheraeart is particularly preferred.

본 발명에 이용되는 중합장치로서는, 배치(batch)식 및 연속식 어느 것이라도 좋다. 배치식 중합장치로서는, 일반적으로 이용되는 교반기가 딸린 반응조를 사용할 수 있다. 연속식 중합장치로서는, 중합시의 급격한 고화, 발열에 대처가능한 강력한 교반능력, 치밀한 온도제어, 그리고 스케일(scale)의 부착을 방지하는 셀프크리닝기능을 구비한 중합기가 좋다. 구체적으로는, 니더(kneader), 2 축 스크류식 연속압출 혼련기, 2 축의 퍼들(puddle)형 연속혼합기 등 지금까지 제안되고 있는 트리옥산의 연속중합장치가 사용가능하다. 또 2 종류 이상의 타입의 중합장치를 조합하여 사용할 수도 있다.The polymerization apparatus used in the present invention may be either a batch type or a continuous type. As a batch polymerization apparatus, the reaction tank with a stirrer generally used can be used. As the continuous polymerization apparatus, a polymerization apparatus having a self-cleaning function that prevents rapid solidification during polymerization, strong stirring ability capable of coping with heat generation, tight temperature control, and adhesion of scale is preferable. Specifically, a continuous polymerization apparatus of trioxane, which has been proposed so far, such as a kneader, a twin-screw continuous extrusion kneader, a two-axis puddle continuous mixer, and the like can be used. Moreover, you may use combining two or more types of polymerization apparatuses.

중합온도는 중합방식, 사용촉매의 종류 및 양 등에 의해 특별히 제한이 되지는 않는다. 일반적으로 이용되는 괴상 중합법을 채용한 경우에는 바람직하게는 60 ∼ 120 ℃, 보다 바람직하게는 60 ∼ 110 ℃ 의 온도범위이다. 또, 중합시간은 촉매량 및 중합온도와도 관계가 있으며 특별히 제한은 없지만, 일반적으로는 0.25 ∼ 120 분이 선택되고, 특히 1 ∼ 30 분으로 하는 것이 바람직하다.The polymerization temperature is not particularly limited by the polymerization method, the type and amount of the catalyst used, and the like. When employ | adopting the bulk polymerization method generally used, Preferably it is 60-120 degreeC, More preferably, it is the temperature range of 60-110 degreeC. Moreover, polymerization time is also related to catalyst amount and polymerization temperature, and there is no restriction | limiting in particular, Generally, 0.25-120 minutes is selected and it is preferable to set it as 1-30 minutes especially.

중합을 완료한 조중합체는 중합장치로부터 배출되고, 이어서 바로 실활제와 혼합접촉시켜 중합촉매의 실활화를 실시하여 중합반응을 정지시키는 것이 필요하다. 본 발명에 있어서는, 중합 후에 촉매의 실활제를 특정의 유기용매에 용해시켜 첨가하고, 생성조공중합체와 혼합접촉시켜 촉매의 실활 및 중합의 정지를 실시한다.After completion of the polymerization, the co-polymer is discharged from the polymerization apparatus, and then immediately mixed with the deactivating agent to deactivate the polymerization catalyst to stop the polymerization reaction. In the present invention, after the polymerization, the deactivator of the catalyst is dissolved and added to a specific organic solvent, and mixed contact with the production co-polymer to terminate the deactivation and polymerization of the catalyst.

본 발명에서 이용되는 실활제로서는, 예를 들면 하기식 (1) 으로 나타나는 3 급 포스핀 화합물,As a deactivator used by this invention, the tertiary phosphine compound represented by following formula (1), for example,

(식중, R6, R7및 R8은 탄소수 1 ∼ 18 의 탄화수소기이고, 각각 동일하거나 상이해도 좋다.)(In formula, R <6> , R <7> and R <8> is a C1-C18 hydrocarbon group, and may be same or different, respectively.)

및 아민 화합물을 들 수 있다.And amine compounds.

이들 실활제는 단독 또는 2 종 이상 조합하여 사용할 수 있다.These deactivators can be used individually or in combination of 2 or more types.

상기 식 (1) 중, R6, R7및 R8의 탄소수 1 ∼ 18 의 탄화수소기로서는, 예를 들면 알킬기, 시클로알킬기, 아릴기, 아랄킬기 등을 들 수 있다.In said Formula (1), an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group etc. are mentioned as a C1-C18 hydrocarbon group of R <6> , R <7> and R <8> , for example.

상기식 (1) 로 나타나는 화합물로서는, 예를 들면 트리페닐포스핀 등을 들 수 있다.As a compound represented by said Formula (1), triphenyl phosphine etc. are mentioned, for example.

상기 아민 화합물로서는, 예를 들면 1 급, 2 급, 3 급의 지방족아민 및 방향족아민, 헤테로환아민, 힌다드아민류 등을 들 수 있다.As said amine compound, primary, secondary, tertiary aliphatic amine, aromatic amine, heterocyclic amine, hindered amine, etc. are mentioned, for example.

상기 아민 화합물로서는, 구체적으로는 에틸아민, 디에틸아민, 트리에틸아민, 모노-n-부틸아민, 디-n-부틸아민, 트리-n-부틸아민, 아닐린, 디페닐아민, 피리딘, 피페리딘, 모르폴린 등을 사용할 수 있다.Specific examples of the amine compound include ethylamine, diethylamine, triethylamine, mono-n-butylamine, di-n-butylamine, tri-n-butylamine, aniline, diphenylamine, pyridine, and piperi. Dine, morpholine and the like can be used.

이들 실활제 중에서 3 급 포스핀 화합물 및 3 급 아민 화합물은 바람직하고, 트리페닐포스핀이 가장 바람직하다.Among these deactivators, tertiary phosphine compounds and tertiary amine compounds are preferred, and triphenylphosphine is most preferred.

실활제의 첨가량은 촉매가 실활되어 반응정지가 실시되는 한에 있어서는 특별히 제한은 없지만, 사용한 중합촉매에 대해 몰기준으로 바람직하게는 0.5 ∼ 30 배, 보다 바람직하게는 1 ∼ 20 배이다.The addition amount of the deactivator is not particularly limited as long as the catalyst is deactivated and the reaction is stopped, but is preferably 0.5 to 30 times, more preferably 1 to 20 times on a molar basis with respect to the used polymerization catalyst.

본 발명에 있어서는, 상기 실활제를 용해시키기 위해 이용하는 유기용매로서 SP 값 (용해도 파라미터) 이 9.5 ∼ 12.5 인 것이 이용된다. SP 값이 이 범위외이면, 옥시메틸렌 중합체 또는 공중합체와의 친화성이 낮아지기 때문에 실활제가 효율적으로 작용하지 않게 되어 바람직하지 않다.In this invention, the thing whose SP value (solubility parameter) is 9.5-12.5 is used as an organic solvent used in order to dissolve the said deactivator. If SP value is out of this range, since affinity with an oxymethylene polymer or copolymer becomes low, a deactivator will become ineffective and it is unpreferable.

상기 SP 값을 갖는 유기용매로서는, 구체적으로는 1,4-디옥산, n-프로필알코올, 이소프로필알코올, n-부틸알코올, s-부틸알코올, 이소부틸알코올, t-부틸알코올, n-펜틸알코올, 벤질알코올, 에틸셀로솔브, 에틸카르비토올, 탄산디메틸, 아니솔, 테트랄린 등을 들 수 있다. 그 중에서도 1,4-디옥산, 프로필알코올류, 부틸알코올류, 테트랄린이 바람직하다.Specific examples of the organic solvent having an SP value include 1,4-dioxane, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol and n-pentyl. Alcohol, benzyl alcohol, ethyl cellosolve, ethyl carbitol, dimethyl carbonate, anisole, tetralin and the like. Especially, 1, 4- dioxane, propyl alcohol, butyl alcohol, and tetralin are preferable.

이들 유기용매의 사용량으로서는, 조중합체에 대해 바람직하게는 0.01 ∼ 5 wt %, 보다 바람직하게는 0.01 ∼ 1 wt % 이다.As the usage-amount of these organic solvents, Preferably it is 0.01-5 wt% with respect to a copolymer, More preferably, it is 0.01-1 wt%.

어떤 경우도 실활처리는 조중합체가 미세한 분립체의 상태로 실시하는 것이 바람직하다. 그러기 위해서는, 예를 들면 중합반응장치로서 괴상 중합물을 충분히 분쇄하는 기능을 갖는 것을 사용하는 것이 바람직하고, 또 중합 후의 반응물을 별도로 분쇄기를 이용하여 분쇄한 후에 실활제를 첨가해도 좋고, 또한 실활제의 존재하에서 분쇄와 교반을 동시에 실시해도 좋다. 또 분쇄는 분쇄 후의 입도가 표준체를 이용하여 Ro-Tap (로탭) 셰이커(shaker)로 흔들어 나누고, 100 wt % 가 10 메시(mesh)의 체를 통과하고, 그 중 90 wt % 이상이 20 메시의 체를, 60 wt % 이상이 60 메시의 체를 각각 통과할 수 있는 입도가 되도록 분쇄하는 것이 바람직하다. 이와 같은 입도까지 분쇄가 실시되지 않을 경우는 실활제와 촉매의 반응은 완결되기 어렵고, 잔존하는 촉매에 의해 서서히 해중합이 진행되어 얻어진 폴리머의 분자량 저하를 발생시키는 경우가 있다.In any case, the deactivation is preferably carried out in the state of the fine granules of the copolymer. For that purpose, it is preferable to use what has a function which fully grinds a block polymer as a polymerization reaction apparatus, for example, You may add a quencher after grind | pulverizing the reactant after superposition | polymerization separately using a grinder, You may carry out grinding and stirring simultaneously in presence. In the pulverization, the particle size after pulverization was shaken with a Ro-Tap shaker using a standard body, and 100 wt% passed through a 10 mesh sieve, of which 90 wt% or more was 20 mesh. It is preferable to grind the sieve so that at least 60 wt% of the particles can pass through the sieve of 60 mesh, respectively. When pulverization is not performed to such a particle size, reaction of a deactivator and a catalyst is hard to be completed, and depolymerization may advance gradually with the remaining catalyst, and the molecular weight fall of the obtained polymer may occur.

또한, 실활반응은 바람직하게는 0 ∼ 130 ℃, 보다 바람직하게는 20 ∼ 130 ℃ 에서 실시된다. 너무 온도가 낮으면 실활반응의 완결에 시간이 필요하게 되고, 너무 높으면 해중합이 발생하여 둘 다 바람직하지 못하다.In addition, deactivation reaction becomes like this. Preferably it is 0-130 degreeC, More preferably, it carries out at 20-130 degreeC. Too low a temperature requires time to complete the deactivation reaction, and too high a depolymerization occurs, both of which are undesirable.

본 발명에 있어서 중합촉매의 실활이 실시된 옥시메틸렌 중합체 또는 공중합체는 그대로 나중 단계의 안정화 공정으로 보낼 수 있다. 그러나, 한층 더 정제가 필요하다면 촉매의 실활 후, 세정, 미반응 모노머의 분리회수, 건조 등을 거칠 수 있다. 또 필요에 따라 후공정에 있어서, 각종 안정제, 활제를 배합하고, 압출기 등으로 용융 혼련하고 펠릿화하여 제품으로 할 수 있다.In the present invention, the oxymethylene polymer or copolymer subjected to deactivation of the polymerization catalyst can be sent directly to a stabilization step in a later step. However, if further purification is required, the catalyst may be subjected to washing, separation recovery of unreacted monomers, drying, and the like after deactivation of the catalyst. If necessary, in the subsequent step, various stabilizers and lubricants may be blended, melt-kneaded and pelletized by an extruder or the like to obtain a product.

실시예Example

이하에 본 발명의 실시예 및 비교예를 나타내지만, 본 발명은 이들에 한정되는 것은 아니다. 또한, 실시예, 비교예 중의 용어의 의미 및 측정방법을 이하에 나타낸다.Although the Example and comparative example of this invention are shown below, this invention is not limited to these. In addition, the meaning of the term in an Example and a comparative example and a measuring method are shown below.

[연속 중합기][Continuous Polymerizer]

2 개의 원이 일부 겹친 내단면을 갖고, 내단면의 장경(長徑)이 20 ㎝ 이고, 주위에 재킷(jacket)을 갖는 긴 케이스 내에 1 쌍의 샤프트(shaft)를 구비하고, 각각의 샤프트에는 서로 맞물리는 삼각형에 가까운 판이 다수 박히고, 삼각형에 가까운 판의 선단에서 케이스 내면 및 상대인 삼각형에 가까운 판의 표면을 크리닝할 수 있는 연속혼합기.The two circles have a partially overlapped inner end face, the inner end face having a long diameter of 20 cm, and a pair of shafts in a long case having a jacket around each one, each of which has A continuous mixer in which a plurality of plates close to the interlocking triangles are imbedded, and the inner surface of the case and the surface of the plates close to the opposite triangle are cleaned at the tip of the plate close to the triangle.

[멜트인덱스(melt index) (MI)][Melt index (MI)]

190 ℃, 2,160 g 표준하중 하에서의 용융지수 (단위 g/10 분). 이것은 분자량에 대응하는 특성치로서 평가하였다. 즉, MI 값이 낮을수록 분자량이 높다. 단, 조중합체 분말에 일정한 안정제를 첨가하고, 토오요오세이키사 제조의 라보프라스트밀로 220 ℃, 20 분간 용융 안정화 처리를 실시한 후 측정한 값이다.Melt index at 190 ° C, 2160 g standard load in g / 10 min. This was evaluated as a characteristic value corresponding to molecular weight. In other words, the lower the MI value, the higher the molecular weight. However, it is a value measured after adding a stabilizer to a copolymer powder, carrying out melt-stabilization process by 220 degreeC and 20 minute (s) with the laboprast mill by Toyo Seiki.

[가열중량 감소율][Heating weight reduction rate]

조중합체 분말 2 g 에 안정제 (시바가이기사 제조 : 이가녹스 245) 4.0 wt % 를 첨가하고, 잘 혼합한 후 시험관에 넣고, 질소치환 후 10 torr 감압하, 222 ℃ 에서 2 시간 가열한 경우의 중량 감소율을 나타낸다.Weight when the stabilizer (made by Ciba-Geigy Co., Ltd .: Iganox 245) 4.0 wt% is added to 2 g of co-polymer powder, it mixes well, it puts in a test tube, and it heats at 222 degreeC for 2 hours under reduced pressure 10 torr after nitrogen substitution. Reduction rate is shown.

실시예 1 ∼ 9 및 비교예 1 ∼ 5Examples 1-9 and Comparative Examples 1-5

연속 중합장치로서, 전술한 연속 중합기와 여기에 접속하는 유사한 구조를 갖는 연속 중합기 (샤프트에는 서로 맞물리는 삼각형에 가까운 판 대신에 스크류와 같은 날개가 다수 박혀있다) 및 정지제 혼합기 (2 단째 중합기와 유사한 구조를 갖고, 공급구 부분으로부터 정지제 용액을 주입하고, 연속적으로 중합체와 혼합시키는 연속 중합기) 를 3 대 직열로 접속시킨 것을 사용하여 옥시메틸렌 공중합체의 제조를 실시하였다. 1 대째의 중합기의 입구로부터 트리옥산에 대해 1,3-디옥소란 4.4 중량 % 및 분자량 조절제로서의 메티랄 500 ppm 을 함유하는 트리옥산을 연속적으로 공급하고, 동시에 같은 곳으로 3 불화붕소디에틸에테라아트를 벤젠에 5 wt % 농도로 용해시킨 용액을 전 모노머 (트리옥산 + 1,3-디옥소란) 에 대해 BF3로서 60 ppm 이 되도록 연속적으로 첨가하여 공중합을 실시하였다.As a continuous polymerization apparatus, a continuous polymerizer having a similar structure connected to the aforementioned continuous polymerizer (the shaft is embedded with a plurality of blades like a screw instead of a plate close to an interlocking triangle) and a terminator mixer (second stage polymerization) An oxymethylene copolymer was produced using a structure having a structure similar to that of a group, and connected to three units in series with a continuous polymerizer in which a terminator solution was injected from the feed port portion and continuously mixed with a polymer. From the inlet of the first stage polymerizer, trioxane containing 4.4% by weight of 1,3-dioxolane and 500 ppm of methral as molecular weight modifier was continuously fed to trioxane, and at the same time diethyl boron trifluoride Copolymerization was carried out by continuously adding a solution in which etheraart was dissolved in benzene at a concentration of 5 wt% to 60 ppm as BF 3 with respect to all monomers (trioxane + 1,3-dioxolane).

또 정지제 혼합기로부터 표 1 에 나타낸 용매 (조중합체에 대해 0.5 wt % 에 상당함) 에 용해시킨 실활제를 포함하는 용액을 연속적으로 공급하여 중합을 정지시키고, 출구로부터 옥시메틸렌 공중합체를 수득하였다. 얻어진 중합체의 성상을 표 1 에 나타낸다. 비교를 위해, 다른 용매를 사용한 경우에 대해서도 동일한 방법으로 중합체를 제조하였다. 얻어진 중합체의 성상을 표 1 에 나타낸다.Further, a solution containing a deactivator dissolved in the solvent shown in Table 1 (corresponding to 0.5 wt% of the copolymer) from the terminator mixture was continuously supplied to stop the polymerization, thereby obtaining an oxymethylene copolymer from the outlet. . The properties of the obtained polymer are shown in Table 1. For comparison, polymers were prepared in the same manner as for other solvents. The properties of the obtained polymer are shown in Table 1.

실활제 용액Deactivator solution 중합체의 성상Properties of the polymer 실활제의 종류Type of deactivator 촉매량에대한첨가량 비율(배 몰)Addition ratio to catalyst amount (fold molar) 용매의 종류Type of solvent SP 값SP value MI(g/10 분)MI (g / 10 min) 가열중량감소율(wt %)Heating weight loss rate (wt%) 실시예 1Example 1 트리페닐포스핀Triphenylphosphine 1010 n-부틸알코올n-butyl alcohol 11.411.4 9.09.0 1.81.8 실시예 2Example 2 트리페닐포스핀Triphenylphosphine 55 n-부틸알코올n-butyl alcohol 11.411.4 9.19.1 1.91.9 실시예 3Example 3 트리페닐포스핀Triphenylphosphine 22 n-부틸알코올n-butyl alcohol 11.411.4 9.39.3 2.02.0 실시예 4Example 4 트리페닐포스핀Triphenylphosphine 55 1,4-디옥산1,4-dioxane 9.99.9 9.49.4 2.12.1 실시예 5Example 5 트리페닐포스핀Triphenylphosphine 55 이소프로필알코올Isopropyl Alcohol 11.211.2 9.39.3 2.02.0 실시예 6Example 6 트리페닐포스핀Triphenylphosphine 55 테트랄린Tetralin 9.59.5 9.39.3 2.02.0 실시예 7Example 7 트리에틸아민Triethylamine 55 n-부틸알코올n-butyl alcohol 11.411.4 9.49.4 2.12.1 실시예 8Example 8 트리에틸아민Triethylamine 55 이소프로필알코올Isopropyl Alcohol 11.211.2 9.59.5 2.12.1 실시예 9Example 9 트리에틸아민Triethylamine 55 테트랄린Tetralin 9.59.5 9.59.5 2.12.1 비교예 1Comparative Example 1 트리페닐포스핀Triphenylphosphine 55 벤젠benzene 9.29.2 12.512.5 3.03.0 비교예 2Comparative Example 2 트리페닐포스핀Triphenylphosphine 55 시클로헥산Cyclohexane 8.28.2 12.812.8 3.13.1 비교예 3Comparative Example 3 트리페닐포스핀Triphenylphosphine 55 에탄올ethanol 12.712.7 12.812.8 3.13.1 비교예 4Comparative Example 4 트리에틸아민Triethylamine 55 벤젠benzene 9.29.2 12.712.7 3.13.1 비교예 5Comparative Example 5 트리에틸아민Triethylamine 55 시클로헥산Cyclohexane 8.28.2 13.013.0 3.23.2

본 발명에서의 중합반응의 정지 공정에 의하면, 간략하며 그리고 효율적으로 중합촉매를 실활시킬 수 있고, 세정에 의한 중합촉매의 제거를 실시할 필요가 없어서 열안정성이 우수한 옥시메틸렌계 중합체를 얻을 수 있다.According to the stopping step of the polymerization reaction in the present invention, it is possible to simply and efficiently inactivate the polymerization catalyst, and it is not necessary to remove the polymerization catalyst by washing, thereby obtaining an oxymethylene polymer having excellent thermal stability. .

Claims (5)

트리옥산 단독 또는 트리옥산과 환상 에테르 및/또는 환상 아세탈과의 혼합물을 양이온형 활성촉매를 이용하여 중합시키고, 이어서 그 촉매의 실활제를 첨가하여 중합반응을 정지시켜 옥시메틸렌 중합체 또는 공중합체를 제조함에 있어서, 그 촉매의 실활제를 SP 값 (용해도 파라미터) 이 9.5 ∼ 12.5 인 유기용매에 용해시켜 첨가하는 것을 특징으로 하는 옥시메틸렌 중합체 또는 공중합체의 제조방법.Trioxane alone or a mixture of trioxane with cyclic ethers and / or cyclic acetals is polymerized using a cationic active catalyst, and then a deactivator of the catalyst is added to stop the polymerization reaction to prepare an oxymethylene polymer or copolymer. WHEREIN: The manufacturing method of the oxymethylene polymer or copolymer characterized by dissolving and adding the quencher of this catalyst to the organic solvent whose SP value (solubility parameter) is 9.5-12.5. 제 1 항에 있어서, 실활제가 하기식 (1) 로 나타나는 3 급 포스핀 화합물인 제조방법.The manufacturing method of Claim 1 whose deactivator is a tertiary phosphine compound represented by following formula (1). (식중, R6, R7및 R8은 탄소수 1 ∼ 18 의 탄화수소기이고, 각각 동일하거나 상이해도 좋다.)(In formula, R <6> , R <7> and R <8> is a C1-C18 hydrocarbon group, and may be same or different, respectively.) 제 1 항에 있어서, 실활제가 아민 화합물인 제조방법.The method according to claim 1, wherein the deactivator is an amine compound. 제 1 항에 있어서, 양이온형 활성촉매가 3 불화붕소 또는 그 배위 화합물인 제조방법.The method according to claim 1, wherein the cationic active catalyst is boron trifluoride or a coordination compound thereof. 제 1 항에 있어서, 환상 에테르가 1,3-디옥소란인 제조방법.The process according to claim 1, wherein the cyclic ether is 1,3-dioxolane.
KR1020000016889A 1999-04-02 2000-03-31 Process for the production of oxymethylene polymer or oxymethylene copolymer KR100841579B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09650499A JP4247586B2 (en) 1999-04-02 1999-04-02 Stopping polymerization reaction
JP99-096504 1999-04-02

Publications (2)

Publication Number Publication Date
KR20000071533A true KR20000071533A (en) 2000-11-25
KR100841579B1 KR100841579B1 (en) 2008-06-26

Family

ID=14166954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000016889A KR100841579B1 (en) 1999-04-02 2000-03-31 Process for the production of oxymethylene polymer or oxymethylene copolymer

Country Status (2)

Country Link
JP (1) JP4247586B2 (en)
KR (1) KR100841579B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062326A1 (en) * 2005-12-24 2007-06-28 Ticona Gmbh Production of oxymethylene (co)polymers for molding, including specified homopolymers, involves heterogeneous polymerization of monomer in presence of formaldehyde acetal and cationic initiator and deactivation in basic homogeneous phase
US7812110B2 (en) 2005-12-24 2010-10-12 Ticona Gmbh Process for preparation of oxymethylene polymers, selected polymers, and their use
EP3431520A4 (en) 2016-03-14 2019-11-27 Mitsubishi Gas Chemical Company, Inc. Method for producing oxymethylene copolymer
CN111133016A (en) 2017-09-12 2020-05-08 三菱瓦斯化学株式会社 Process for producing oxymethylene copolymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780415A (en) * 1980-11-10 1982-05-20 Mitsubishi Gas Chem Co Inc Production of oxymethylene copolymer
ES2106278T3 (en) * 1992-03-06 1997-11-01 Polyplastics Co PROCEDURE FOR THE PRODUCTION OF POLYOXYMETHYLENE COPOLYMERS.
JP3257581B2 (en) * 1994-06-13 2002-02-18 三菱瓦斯化学株式会社 Method for producing oxymethylene copolymer
JP3309641B2 (en) * 1995-05-31 2002-07-29 三菱瓦斯化学株式会社 Method for producing oxymethylene copolymer
EP0957128B1 (en) * 1998-05-14 2002-10-09 Mitsubishi Gas Chemical Company, Inc. Polyoxymethylene resin composition

Also Published As

Publication number Publication date
JP4247586B2 (en) 2009-04-02
JP2000290334A (en) 2000-10-17
KR100841579B1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US5844059A (en) Process for preparing polyacetal copolymer
US5866670A (en) Process for preparing polyacetal copolymer
JP3087912B2 (en) Method for stabilizing oxymethylene copolymer
JPH01170610A (en) Production of acetal polymer or copolymer
CA2274377A1 (en) Process for the preparation of polyacetal copolymers
KR100841579B1 (en) Process for the production of oxymethylene polymer or oxymethylene copolymer
JP4270664B2 (en) Method for producing polyoxymethylene copolymer and polyoxymethylene copolymer composition
US7897672B2 (en) Process for producing polyoxymethylene copolymer
JP4610805B2 (en) Process for producing polyacetal copolymer
JPS5851014B2 (en) How to stop polymerization reaction
KR100753387B1 (en) Process for producing oxymethylene copolymer
KR100614024B1 (en) Process for the production of oxymethylene copolymer
JP4605322B2 (en) Method for producing oxymethylene copolymer
JP2000290336A (en) Termination of polymerization reaction
JP2000119356A (en) Raw material for producing stabilized polyoxymethylene copolymer and production of the copolymer using the same
JP6938180B2 (en) Method for manufacturing polyacetal copolymer
JP5225529B2 (en) Process for producing polyacetal copolymer
JP2008195755A (en) Oxymethylene copolymer composition
JP2008195777A (en) Oxymethylene copolymer composition
JP3093148B2 (en) Method for producing polyacetal copolymer
JP2000290335A (en) Termination of polymerization reaction
KR100542901B1 (en) Process for producing stabilized oxymethylene copolymer
CN115232434B (en) Polyoxymethylene resin composition
JP4471050B2 (en) Method for producing oxymethylene copolymer
KR100521732B1 (en) Process for producing stabilized oxymethylene copolymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070808

Effective date: 20080408

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 11