KR20000067566A - Cooling water inhibitor and its feeding method in a stave cooler system - Google Patents

Cooling water inhibitor and its feeding method in a stave cooler system Download PDF

Info

Publication number
KR20000067566A
KR20000067566A KR1019990015482A KR19990015482A KR20000067566A KR 20000067566 A KR20000067566 A KR 20000067566A KR 1019990015482 A KR1019990015482 A KR 1019990015482A KR 19990015482 A KR19990015482 A KR 19990015482A KR 20000067566 A KR20000067566 A KR 20000067566A
Authority
KR
South Korea
Prior art keywords
cooling water
treatment agent
cooling
concentration
stave
Prior art date
Application number
KR1019990015482A
Other languages
Korean (ko)
Other versions
KR100431837B1 (en
Inventor
최태화
심상희
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0015482A priority Critical patent/KR100431837B1/en
Publication of KR20000067566A publication Critical patent/KR20000067566A/en
Application granted granted Critical
Publication of KR100431837B1 publication Critical patent/KR100431837B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/16Feed or discharge arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE: An antiscale agent for stave cooling and also a method for injecting the same into the stave cooling system are provided. The antiscale agent can prevent corrosion & scaling by both forming thin film on the inner surface of the stave cooler and bonding scale-inducing materials with high molecular compounds. CONSTITUTION: The antiscale agent comprises 20-30 wt.% of nitrite, 0.3-0.8 wt.% of a dispersing agent, 0.5-1.6 wt.% of polyol ester or an organic phosphate selected from the group consisting of triethanolamine phosphate, aminotrismethylene phosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4tricarboxylic acid and the rest of water. The method comprises the steps of (i) a first step of injecting the antiscale agent into cooling water for adjusting the concentration to 5000-6000ppm; a second step of measuring the concentration of NO2 ion in cooling water on realtime; and a third step of adding the supplementary agent thereto for maintaining NO2 ion to 600-1200ppm.

Description

노체 스테이브 냉각수 처리제 및 그 투입방법{Cooling water inhibitor and its feeding method in a stave cooler system}Furnace stave coolant treatment agent and its feeding method {Cooling water inhibitor and its feeding method in a stave cooler system}

본 발명은 제철소 노체의 냉각설비인 스테이브 쿨러의 부식과 관석을 방지하기 위한 냉각수 처리제 및 이 처리제의 투입방법에 관한 것이다.The present invention relates to a cooling water treatment agent for preventing corrosion and capstone of a stave cooler which is a cooling facility of an ironworks furnace body, and a method of introducing the treatment agent.

선철을 생산하는 고로 또는 코렉스 용융로 등의 노체는 내부가 고온을 유지하기 때문에 노체 철피를 보호하기 위해 냉각장치로서 스테이브 쿨러를 채용하고 있다. 도 1에 나타난 바와 같이, 스테이브 쿨러(10)에는 연와(12)가 박혀 있고 냉각수가 흐르는 배관이 내장된 주물형태의 길쭉한 상자모양이다. 냉각관(14,16)은 고로(1) 노체 열부하가 심한 개소에는 몇개의 수직냉각관(14)과 좌우로 반복하여 구부러진 냉각관(16)이 내장되어 있으며, 열부하가 심하지 않은 개소에는 수직냉각관(12)만 있다. 열부하의 정도에 따라 배관의 간격을 다르게 조정한다.A furnace such as a pig iron-producing furnace or a corex melting furnace maintains a high temperature, and thus, a stave cooler is employed as a cooling device to protect the furnace shell. As shown in FIG. 1, the stave cooler 10 has a kite 12 embedded therein and has an elongated box shape in which a pipe in which cooling water flows is embedded. The cooling pipes 14 and 16 have a plurality of vertical cooling pipes 14 and a cooling pipe 16 that is repeatedly bent from side to side in a place where the furnace heat load is severe, and vertical cooling is performed in a place where the heat load is not severe. There is only a tube 12. Adjust the pipe spacing according to the heat load.

스테이브 쿨러(10)는 대형구조물이어서 부식이나 마모 등에 의한 결함의 발생시 보수나 교체가 용이하지 않다. 따라서, 냉각설비를 잘 유지하여야 하는데, 이를 위해서는 적절한 열부하관리가 필요할 뿐만 아니라 부식 및 관석(스케일)형성을 방지하기 위한 냉각수의 수질관리가 매우 중요하다. 냉각설비가 부식되어 냉각수가 고로내로 유입될 경우에는 대형 폭발사고를 유발할 수 있으며 냉각관 내부에 관석이 부착할 경우에는 열전도율이 저하되어 설비변형이나 열화로 인해 설비사고가 유발될 수 있다.Since the stave cooler 10 is a large structure, it is not easy to repair or replace a defect caused by corrosion or wear. Therefore, it is necessary to maintain the cooling system well, which requires not only proper heat load management but also the management of the water quality of the cooling water to prevent corrosion and formation of capstone (scale). If the cooling equipment is corroded and the coolant flows into the blast furnace, it may cause a large explosion accident. If the capstone is attached to the inside of the cooling pipe, the thermal conductivity may deteriorate and the equipment accident may occur due to deformation or deterioration of the equipment.

따라서, 부식과 관석을 방지할 수 있는 성분을 함유하는 처리제(약품)를 냉각수에 투입하여 설비사고를 방지하고 있다.Therefore, a treatment agent (chemical) containing a component capable of preventing corrosion and capstone is added to the cooling water to prevent equipment accidents.

종래, 냉각수 처리제에는 부식방지를 위해 크롬산염, NaOH, 황산염(Na2SO3)이나 하이드라진(N2H4) 성분 등이 함유된다. 크롬산염은 발암물질이어서 현재 거의 사용하고 있지 않은 성분으로, 첨가량의 부족할 경우에는 공식(pitting)의 우려가 있다. 상기 NaOH는 냉각수의 pH를 높여 표면의 부동태화를 촉진(Fe(OH)2피막형성)하면서 Fe용출속도를 억제하거나, 또는 탄산칼슘의 석출을 용이하게 하여 냉각관에 탄산칼슘의 피막을 형성하기도 한다. 상기 황산염(Na2SO3)이나 하이드라진(N2H4)은 물속에 녹아있는 용존산소를 제거하여 부식을 억제한다. 냉각수 계통이 완전히 밀폐계이면 용존산소가 부식에 소모되고 물속에 존재하지 않아서 부식이 더이상 진전되지 않지만, 실제 고로 냉각설비에서는 누수 및 증발에 의해 매일 10∼30% 정도 냉각수가 보충되기 때문에 계속해서 용존산소에 의한 부식이 일어날 수 있다.Conventionally, the cooling water treatment agent contains chromate, NaOH, sulfate (Na 2 SO 3 ), hydrazine (N 2 H 4 ), or the like to prevent corrosion. Chromate is a carcinogen and is rarely used, and there is a risk of pitting if the amount of addition is insufficient. The NaOH promotes passivation of the surface by increasing the pH of the cooling water (Fe (OH) 2 film formation) to suppress the Fe dissolution rate, or facilitate the precipitation of calcium carbonate to form a film of calcium carbonate in the cooling tube do. The sulfate (Na 2 SO 3 ) or hydrazine (N 2 H 4 ) to remove the dissolved oxygen dissolved in the water to inhibit the corrosion. If the cooling water system is completely enclosed, dissolved oxygen is consumed for corrosion and it does not exist in the water, so the corrosion is no longer developed. However, in the blast furnace cooling system, water is continuously dissolved because 10 ~ 30% of the cooling water is supplemented by leakage and evaporation. Corrosion by oxygen may occur.

또한, 냉각수 처리제에는 관석형성을 억제하기 위해 인산염계 등의 관석방지제를 첨가하여 경도(Ca, Mg)성분을 제거한다. 이와 같은 방식물은 항상 pH를 높게 유지해주어야 하며, 이들 약품을 투입시 생성된 수산화칼슘(Ca(OH)2), 탄산칼슘(CaCO3), 인산칼슘(Ca3(PO4)2), 규산염(Si(OH)4) 등의 화합물이 관석을 형성하는 주요성분을 구성하게 되어 문제가 된다. 물론, 약품투입후 적절한 시간내에 냉각수를 전량 교체하여 상기 생성된 화합물을 제거할 수는 있으나, 실제 공정에서는 보충수가 충분치 못하거나 냉각수 유로가 매우 복잡하여 스테이브 쿨러 유니트별로 각각 냉각수를 배출시키는 노력이 필요하기 때문에 생성물을 깨끗이 배출시키는 데는 한계가 있다.In addition, in order to suppress the formation of capstone, the cooling water treatment agent is added with a capstone inhibitor such as phosphate to remove hardness (Ca, Mg) components. Such anticorrosives should be kept at a high pH at all times. Calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), silicates Compounds such as Si (OH) 4 ) constitute a major component that forms a capstone, which is a problem. Of course, it is possible to remove the compound by replacing the entire amount of cooling water within a suitable time after the chemical injection, but in the actual process, the effort to discharge the cooling water for each of the stave cooler unit is not enough to supplement the water or the cooling water flow path is very complicated There is a limit to the clean discharge of the product because it is necessary.

본 발명에서는 이와 같은 종래의 문제점을 해소하기 위해 안출된 것으로, 스테이브 강관의 표면에 보다 치밀하고 얇은 부동태피막을 형성함과 동시에 냉각수의 관석형성 성분들을 고분자물질과 결합시켜 용해도를 높여 단단한 광석을 형성하지 못하도록 함으로써 부식 및 관석이 방지할 수 있는 냉각수처리제를 제공하는데 그 목적이 있다.In order to solve such a conventional problem, in the present invention, a dense and thin passivation film is formed on the surface of the stave steel pipe, and at the same time, the capstone forming components of the cooling water are combined with the polymer material to increase the solubility to provide a hard ore. It is an object of the present invention to provide a cooling water treatment agent which can prevent corrosion and capstone by preventing formation.

도 1은 고로의 스테이브 쿨러의 개략도.1 is a schematic diagram of a stave cooler of a blast furnace;

도 2는 냉각수처리제의 특성을 알아보기 위한 실험장치의 일례도.2 is an example of an experimental apparatus for checking the characteristics of the coolant treatment agent.

도 3은 실제 냉각관에 대한 본 발명의 냉각수처리제의 특성을 알아보기 위한 실험장치의 일례도.Figure 3 is an example of an experimental apparatus for determining the characteristics of the coolant treatment agent of the present invention for the actual cooling tube.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1....... 고로 10....... 스테이브 쿨러1 ....... Blast Furnace 10 ....... Stave Cooler

12..... 연와 14, 16..... 냉각수관12 ..... lead and 14, 16 ..... coolant pipe

상기 목적을 달성하기 위한 본 발명의 냉각수 처리제는, 중량%로 아질산염:20∼30%, 유기인산염 또는 폴리올에스터:0.5∼1.6%, 분산제:0.3∼0.8% 나머지 물을 포함하여 이루어진다.The cooling water treatment agent of the present invention for achieving the above object comprises nitrite: 20 to 30%, organophosphate or polyol ester: 0.5 to 1.6%, dispersant: 0.3 to 0.8% by weight of the remaining water.

또한, 본 발명의 냉각수 처리제 투입방법은, 스테이브 쿨러에 내장된 냉각관의 냉각수에 청구범위 1항의 냉각수 처리제의 농도가 5000∼6000ppm가 되도록 투입하는 단계; 상기 냉각관의 냉각수에 NO2이온의 농도를 실시간으로 측정하는 단계; 측정되는 NO2이온의 농도가 600∼1200ppm을 만족하도록 상기 냉각수 처리제를 보충수에 투입하여 냉각관에 공급하는 단계;를 포함하여 구성된다.In addition, the cooling water treatment agent input method of the present invention, the step of injecting the cooling water of the cooling tube embedded in the stave cooler so that the concentration of the cooling water treatment agent of claim 1 is 5000 ~ 6000ppm; Measuring the concentration of NO 2 ions in the cooling water of the cooling tube in real time; And supplying the cooling water treatment agent to the supplemental water so that the measured concentration of the NO 2 ion satisfies 600 to 1200 ppm.

이하, 본 발명을 냉각수 처리제와 그 투입방법으로 구분하여 설명한다.Hereinafter, the present invention will be described by dividing the cooling water treatment agent and its input method.

[냉각수 처리제][Coolant Treatment Agent]

본 발명의 냉각수처리제는 (a)아질산염, (b)유기인산염 또는 폴리올에스터 (c)분산제를 주요성분으로 하고 필요에 따라 (d)구리합금 부식방지제가 함유되는데, 이를 구분하여 설명하면 다음과 같다.The cooling water treatment agent of the present invention contains (a) nitrite, (b) organic phosphate, or polyol ester (c) dispersant as a main component, and (d) copper alloy corrosion inhibitor as necessary. .

(a)아질산염(a) nitrite

아질산염은 산화제로서 스테이브 강관의 표면에 얇고 치밀한 γ-Fe2O3의 피막을 형성하여 부식을 방지하는데, 이러한 아질산염으로는 아질산나트륨(NaNO2), 아질산칼륨(KNO2), 아질산수소(HNO2) 등을 예로 들 수 있다. 아질산염은 20-30중량%(이하, 간단히 %로 함)로 함유되는 것이 바람직한데, 이는 20%이상 함유되어야 부동태피막을 효과적으로 형성할 수 있으며, 30%를 넘으면 상온의 물에 용해할 때 용해가 어려워지기 때문이다.Nitrite is to prevent corrosion by forming a surface of a thin dense γ-Fe coating 2 O 3 in the stacking eve steel pipe as an oxidizing agent, such nitrite include sodium nitrite (NaNO 2), potassium nitrite (KNO 2), nitrite, hydrogen (HNO 2 ) and the like. Nitrite is preferably contained in an amount of 20-30% by weight (hereinafter simply referred to as%), which must be contained in an amount of 20% or more to effectively form a passivation film. If it is more than 30%, it is dissolved in water at room temperature. Because it becomes difficult.

(b)유기인산염 또는 폴리에스터(b) organic phosphates or polyesters

본 발명의 냉각수 처리제에는 관석을 방지하기 위해 유기인산염 또는 폴리에스터(polyolester:POE)를 이용한다. 이들 성분은 관석의 방지뿐만 아니라, 아질산염과 상화작용하여 부동태피막을 더욱 강하시킨다.In the cooling water treatment agent of the present invention, organophosphate or polyester (POE) is used to prevent capstone. These ingredients not only prevent dialysis but also interact with nitrite to further lower the passivation film.

유기인산염으로는, 트리에탄올아민포스페이트(triethanolamine phosphate:TAEP), 아미노트리스메틸렌포스포닉산(aminotrismethylene phosphonic acid:AMP), 1-하이드록시에틸리덴-1,1-디포스포닉산(1-hydroxyethylidene-1,1-diphosphonic acid:HEDP), 2-포스포노부탄-1,2,4-트리카복실린산(2-phosphonobutane-1,2,4-tricarboxylic acid:PBTC)등이 있다. 본 발명에서는 이중 어느 것을 사용하여도 관석방지가 가능하나 스테이브 냉각수가 100℃에 가까운 고온일 경우 열안정성이 높은 PBTC가 선호된다.Examples of the organic phosphate include triethanolamine phosphate (TAEP), aminotrismethylene phosphonic acid (AMP), and 1-hydroxyethylidene-1,1-diphosphonic acid (1-hydroxyethylidene-1 , 1-diphosphonic acid (HEDP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC)). In the present invention, any one of them can be used to prevent capstone, but PBTC having high thermal stability is preferred when the stave cooling water is close to 100 ° C.

이러한 유기인산염들과 폴리올에스터는 탄산칼슘 또는 마그네슘계 입자에 화학흡착(chemisorption)하여 결정의 형상을 변화시켜 스케일결정 구조가 아주 약한 응집력을 갖게 하여 단단한 관석을 형성하지 못하게 한다. 유기인산염의 사용량은 칼슘농도에 비해 극히 적은 량(0.5∼5ppm)으로도 관석발생을 막을 수 있다. 즉, 유기인산염 또는 폴리올에스터는 0.5-1.0%로 함유되는데, 이는 효과적인 관석방지를 위해 0.5%이상 함유하며 1.0%이상 함유되어도 첨가량 증가로 수반되는 효과의 차이가 크지 않기 때문이다.These organophosphates and polyol esters are chemisorbed on calcium carbonate or magnesium particles to change the shape of the crystals so that the scale crystal structure has a very weak cohesive force to prevent the formation of hard capstone. The amount of organophosphate used can prevent capstone formation even at a very small amount (0.5 to 5 ppm) relative to the calcium concentration. That is, the organic phosphate or polyol ester is contained in 0.5-1.0%, because it contains more than 0.5% for effective prevention of capstone, and even if it contains more than 1.0% does not have a large difference in the effect of increasing the amount added.

(c)분산제(c) dispersant

분산제는 관석형성 입자의 표면을 부드럽게 하여 냉각관에 부착이 어렵게 하 기 위해 첨가되며, 통상 다양한 중합체(polymer) 또는 공중합체(Co, ter-polymer)가 사용되고 있다. 예를 들어 아크릴산 중합체 또는 공중합체, 이들의 알칼리 또는 암모니아염의 형태의 것들이 있다. 본 발명에서도 이러한 통상의 분산제를 이용한다. 이러한 분산제의 함유량은 상기 부식방지성분과 관석방지성분과의 상호작용을 고려하여 0.3∼0.8%로 하는 것이 좋다.Dispersants are added to soften the surface of the capstone forming particles to make it difficult to attach to the cooling tube, and various polymers or copolymers (Co, ter-polymer) are commonly used. For example in the form of acrylic acid polymers or copolymers, alkali or ammonia salts thereof. This conventional dispersant is also used in this invention. The content of such a dispersant is preferably 0.3 to 0.8% in consideration of the interaction between the corrosion preventing component and the capstone preventing component.

(d)구리방식방지제(d) Copper anticorrosive

스테이브 냉각수에 노출되는 펌프 등의 재질이 구리(Cu)합금이고, 이의 부식방지가 요구될 경우는 냉각수 처리제에는 동합금 부식방지제가 포함하는 것이 좋다. 본 발명에서 사용하는 구리합금 부식방지제는 머켑토벤조티아플(mercaptobenzothiazole), 벤조트리아플(benzotriazole) 또는 톨릴트리아졸(tolytriazole)을 사용한다. 이들 화학물질은 구리합금에 흡착되어 전기화학적반응이 구리의 부식을 방지한다. 이러한 구리합금 본 발명의 냉각수 처리제에 0.1∼0.3% 함유될 수 있다.If the material of the pump or the like exposed to the stave cooling water is copper (Cu) alloy, the corrosion of the cooling water treatment agent is preferably included a copper alloy corrosion inhibitor. The copper alloy corrosion inhibitor used in the present invention uses mercaptobenzothiazole, benzotriazole or tolytriazole. These chemicals are adsorbed onto the copper alloy and the electrochemical reaction prevents the corrosion of the copper. Such a copper alloy may be contained 0.1 to 0.3% in the cooling water treatment agent of the present invention.

[냉각수 처리제의 투입방법][How to add coolant treatment agent]

일반적으로 노체에는 노체의 냉각을 위해 스테이브 쿨러를 채용하고 있으며, 이 스테이브 쿨러에는 도 1과 같이 냉각수가 흐르는 냉각관이 내장되어 있다. 냉각관의 냉각수는 누수 및 증발로 인한 손실분을 보충하기 위해 매일 10∼30%정도의 냉각수가 보충수배관을 통해 공급된다. 기존의 냉각수처리제의 투입방법은 냉각관에 냉각수 처리제를 필요량 투입하고, 후에 냉각수가 부족하면 보충수를 공급한 다음, 간헐적으로 냉각수의 pH, 경도성분, 용존산소농도등 수질을 분석하여 필요한 약품을 적절히 투입히였다. 따라서, 냉각수에 냉각수처리제의 농도관리가 정확하지 않다는 단점이 있었다. 본 발명에서는 상기한 본 발명의 냉각수 처리제를 가장 효과적으로 투입하기 위해 다각적으로 검토한 결과, 본 발명의 냉각수처리제의 특성을 감안하여 냉각수처리제의 투입량의 설정과, 그 농도관리방법의 설정을 통해 보다 효과적으로 냉각관의 부식과 관석을 방지할 수 있는 방법을 도출하였는데, 그 방법은 다음과 같다.In general, the furnace body employs a stave cooler for cooling the furnace body, and the stave cooler includes a cooling tube through which cooling water flows as shown in FIG. 1. Cooling water in the cooling pipe is supplied through the supplemental water pipe by 10 ~ 30% of the cooling water every day to make up for the loss due to leakage and evaporation. In the conventional method of adding the coolant treatment agent, the required amount of the coolant treatment agent is added to the cooling tube.If the coolant is insufficient, the supplemental water is supplied. Appropriately put in. Therefore, there is a disadvantage that the concentration control of the coolant treatment agent in the coolant is not accurate. In the present invention, as a result of various examinations for the most effective addition of the coolant treatment agent of the present invention, in consideration of the characteristics of the coolant treatment agent of the present invention, the amount of the coolant treatment agent is set more effectively through the setting of the concentration and the concentration management method thereof. A method to prevent corrosion of the cooling tube and capstone was derived. The method is as follows.

먼저, 본 발명에 따라 스테이브 쿨러에 내장된 냉각관의 냉각수에 본 발명의 냉각수처리제를 그 농도가 5000ppm이상 바람직하게는 5000∼6000ppm이 되도록 투입한다. 이는 냉각수에 냉각수처리제가 5000ppm이상으로 투입되면 중요설비의 부식방지기준치를 만족하나, 6000ppm이상 첨가되어도 그 효과가 크지 않아 경제적이지 못하기 때문이다.First, the cooling water treatment agent of the present invention is added to the cooling water of the cooling tube built into the stave cooler according to the present invention so that its concentration is 5000 ppm or more, preferably 5000 to 6000 ppm. This is because when the coolant treatment agent is added to the cooling water of 5000ppm or more, it satisfies the corrosion protection standard of the critical equipment, but even if it is added more than 6000ppm, the effect is not so large that it is not economical.

그런 다음, 냉각관의 냉각수에 NO2이온의 농도를 실시간으로 측정한다. 조업의 진행과 더불어 냉각수의 부족분에 대한 보충이 필요하게 되는데, 이때에는 NO2이온의 농도가 600∼1200ppm을 만족할 수 있는 냉각수처리제의 양을 설정하고, 이 양을 보충수배관에 투입하여 보충수와 함께 냉각관에 공급한다. 이는 냉각수에 NO2이온의 농도가 600∼1200ppm을 만족하면 냉각수중에 냉각수처리제가 5000∼6000ppm이 되도록 관리하기 때문이다. 따라서, 종래에는 pH, 경도성분, 용존산소농도 등 10여개 이상의 수질항목을 별개로 관리하였으나, 본 발명에서는 NO2농도만을 관리하면 되므로 냉각수 관리를 훨씬 간편하게 할 수 있다.Then, the concentration of NO 2 ions in the cooling water of the cooling tube is measured in real time. As the operation progresses, replenishment of the shortage of cooling water is necessary. In this case, the amount of cooling water treatment agent that can satisfy the concentration of NO 2 ions of 600 to 1200 ppm is set, and this amount is added to the replenishment water pipe. To the cooling tube together. This is because if the concentration of NO 2 ions in the cooling water satisfies 600 to 1200 ppm, the cooling water treatment agent is managed to be 5000 to 6000 ppm in the cooling water. Therefore, in the past, more than 10 water quality items such as pH, hardness component, and dissolved oxygen concentration were separately managed. However, in the present invention, only the NO 2 concentration needs to be managed, so that the cooling water can be managed more easily.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

종래약품Ⅰ(수산화나트륨:125ppm, 인산나트륨:720ppm, 아황산나트륨:20ppm), 종래약품Ⅱ(인산나트륨:158ppm, 하이드라진:80ppm, 분산제(폴리아크릴산):60ppm)) 그리고, 본 발명 약품(아질산나트륨:1250ppm, 유기인산염(PBTC):40ppm, 분산제(폴리아크릴산):25ppm, 톨리트리아졸:10ppm))을 수질이 동일한 냉각수에 각각 투입하여 부식 및 관석형성에 관한 실험을 행하였다. 실험은 도 2와 같이 가열판(20), 공통갈이 맞춤구간 냉각기(21)와 회전자석막대(23)가 있는 삼각플라스크(24)에 냉각수, 약품, 시편(25)을 넣고 회전자석막대의 회전을 이용해 10일간 냉각수를 휘저어 주면서 냉각수 온도가 40℃, 80℃가 유지될 수 있게 하였다. 실험에 사용된 냉각수는 경도(Ca+)성분 200ppm, Cl-농도가 350ppm이 되게 하였다.Conventional drug I (sodium hydroxide: 125ppm, sodium phosphate: 720ppm, sodium sulfite: 20ppm), conventional drug II (sodium phosphate: 158ppm, hydrazine: 80ppm, dispersant (polyacrylic acid): 60ppm)), and the present drug (sodium nitrite : 1250ppm, organophosphate (PBTC): 40ppm, dispersant (polyacrylic acid): 25ppm, tolytriazole: 10ppm)) were put into cooling water of the same water quality, and experiments on corrosion and capstone formation were performed. Experiment is to put the coolant, chemicals, the specimen 25 in the triangular flask 24 having the heating plate 20, the common grinding section cooler 21 and the rotating magnet bar 23 as shown in FIG. While stirring the cooling water for 10 days to maintain the cooling water temperature 40 ℃, 80 ℃. The cooling water used in the experiment was 200 ppm of hardness (Ca + ) component and 350 ppm of Cl concentration.

구분division 시편의 무게변화Weight change of specimen 비고Remarks 실험전(g)Before experiment (g) 실험후(g)After experiment (g) 중량변화(g)Weight change (g) 1One 11.234211.2342 11.454011.4540 +0.220+0.220 종래약품Ⅰ(40℃)Conventional Chemicals I (40 ℃) 22 11.298311.2983 11.499511.4995 +0.2012+0.2012 종래약품Ⅰ(80℃)Conventional Chemicals I (80 ℃) 33 11.299611.2996 11.071611.0716 -0.2280-0.2280 종래약품Ⅱ(40℃)Conventional Chemicals II (40 ℃) 44 11.292411.2924 11.087211.0872 -0.2052-0.2052 종래약품Ⅱ(80℃)Conventional Chemicals II (80 ℃) 55 11.271611.2716 11.272211.2722 +0.0008+0.0008 본 발명약품(40℃)Invention drug (40 ℃) 66 11.212811.2128 11.219011.2190 +0.0062+0.0062 본 발명약품(80℃)Invention drug (80 ℃)

구분division pHpH 경도성분(ppm)Hardness component (ppm) 전기전도도(mσ/cm)Electrical Conductivity (mσ / cm) Ca2+(ppm)Ca 2+ (ppm) Cl-(ppm)Cl - (ppm) 1One 7.317.31 107.8107.8 2.412.41 43.043.0 412412 22 6.436.43 72.972.9 1263.01263.0 29.129.1 419419 33 7.727.72 116.6116.6 2.352.35 46.546.5 402402 44 6.666.66 82.982.9 1247.01247.0 33.133.1 402402 55 7.977.97 270.4270.4 2.352.35 108.1108.1 406406 66 8.088.08 254.2254.2 2.322.32 101.6101.6 412412

표 1, 2로 부터 종래약품Ⅰ을 사용한 경우는 경도성분이 약품과 반응하여 관석을 형성하여 시편에 붙어 시편의 무게가 늘어났으며 냉각수가 엷은 우유빛을 나타냈다. 종래약품Ⅱ을 사용한 경우는 시편표면이 검붉은색을 나타내며 부식이 되었으며 무게가 줄어 들었으며 냉각수도 검붉은색을 나타냈다. 본 발명에 의해 약품은 본래 시편 표면색을 유지하였으며, 무게변화가 거의 없었다. 냉각수도 맑은 상태를 계속 유지하였다. 본 발명의 약품을 투입한 냉각수의 전기전도도가 높게 나타난 것은 투입한 약품의 냉각수중에 녹아 있거나 관석을 형성하는 Ca 또는 Mg성분이 본 발명의 약품에 의해 용해도가 증가하여 석출이 되지 못하고 냉각수중에 이온상태로 녹아 있기 때문이다.In the case of using the conventional drug I from Tables 1 and 2, the hardness component reacted with the drug to form a capstone, attached to the test specimen, and the weight of the test specimen increased, and the cooling water showed a light milky color. In case of using the conventional drug II, the surface of the specimen was dark red, corroded, the weight was reduced, and the cooling water was dark red. According to the present invention, the drug maintains the original specimen surface color and there is little change in weight. Cooling water also remained clear. The electrical conductivity of the coolant to which the chemical of the present invention was added was high. The Ca or Mg component dissolved in the cooling water of the chemical to which the chemical was added or the capstone was not dissolved due to an increase in solubility by the chemical of the present invention. Because it melts.

[실시예 2]Example 2

실제 고로에 상기 실시예1에tj 사용한 약품들을 적용하여 약품을 평가하였다. 실제 고로의 스테이브 쿨러와 쿨러사이클을 연결하는 냉각관을 절단하여 도 3과 같은 시편(25)이 내장된 테스트컬럼(26)을 설치하여 시편의 부식이나 관석의 부착성을 관찰하고 그 결과를 표 1에 나타내었다. 또한, 본 발명의 약품에 대해 40℃의 냉각수에서 투입량을 변화시키면서 부식도를 측정하고 그 결과를 표 3에 나타내었다.Drugs were evaluated by applying the tj used in Example 1 to the actual blast furnace. By cutting the cooling tube connecting the stave cooler and the cooler cycle of the actual blast furnace, install a test column (26) containing the specimen 25 as shown in Figure 3 to observe the corrosion of the specimen or adhesion of the capstone and the results Table 1 shows. In addition, the degree of corrosion was measured while varying the input amount in the cooling water of 40 ℃ for the chemical of the present invention and the results are shown in Table 3.

구분division 종래약품ⅠConventional Chemicals I 종래약품ⅡConventional Chemicals II 본 발명 약품Drug of the invention 부식도(MDD)Corrosion degree (MDD) 0.5∼30.5 to 3 16∼3716-37 0.3∼1.70.3-1.7 부착도(MCM)Adhesion (MCM) 0.03∼0.10.03 to 0.1 0.01∼0.50.01 to 0.5 0.01∼0.050.01 to 0.05

표 3에서 보는 바와 같이, 종래약품Ⅱ는 부식도 관리치가 5MDD를 훨씬 초과하는 것으로 나타났으며, 본 발명에 의한 약품은 부식도, 부착도가 종래약품 보다 탁월하게 우수한 것으로 나타났다. 표 3에서 부식도와 부착도의 차이는 시편의 조건과 냉각수의 온도에 따른 차이이다.As shown in Table 3, the conventional drug II was shown that the corrosion control value far exceeds 5MDD, the chemicals according to the present invention was found to be superior to the conventional corrosion resistance, adhesion. In Table 3, the difference between corrosion and adhesion depends on the specimen condition and cooling water temperature.

본 발명의 약품 투입량(ppm)Chemical dosage of the present invention (ppm) 부식도(MDD)Corrosion degree (MDD) 500500 4.44.4 10001000 8.28.2 20002000 5.45.4 30003000 3.13.1 40004000 1.21.2 50005000 0.610.61 60006000 0.580.58 70007000 0.370.37 80008000 0.260.26 90009000 0.220.22 1000010000 0.170.17

상기 표 4에서 알 수 있듯이, 본 발명의 약품이 냉각수에 5000ppm이상의 농도가 유지되도록 투입되면 부식도가 1MDD이하를 만족하는 것으로 나타났다.As can be seen in Table 4, when the chemical of the present invention is added to maintain the concentration of more than 5000ppm in the cooling water, the corrosion degree was found to satisfy 1MDD or less.

상술한 바와 같이, 본 발명은 부식이나 관석을 크게 줄일 수 있는 냉각수처리제를 제공할 수 있으며, 이러한 냉각수처리제를 적절히 실제 노체에 적용하면 냉각수 수질관리가 용이한 효과가 있다.As described above, the present invention can provide a cooling water treatment agent that can greatly reduce corrosion and capstone, and when such cooling water treatment agent is properly applied to an actual furnace, cooling water quality management can be easily performed.

Claims (3)

중량%로 아질산염:20∼30%, 유기인산염 또는 폴리올에스터:0.5∼1.6%, 분산제:0.3∼0.8%, 나머지 물로 이루어지는 노체 스테이브 냉각수 처리제.A nitrite: 20 to 30% by weight, organophosphate or polyol ester: 0.5 to 1.6%, dispersant: 0.3 to 0.8%, the furnace stave cooling water treatment agent which consists of remaining water. 제 1항에 있어서, 상기 유기인산염은 트리에탄올아민포스페이트, 아미노트리스메틸렌포스포닉산, 1-하이드록시에틸리덴-1,1-디포스포닉산, 2-포스포노부탄-1,2,4-트리카복실린산의 그룹으로 부터 선택된 1종임을 특징으로 하는 노체 스테이브 냉각수 처리제.The method of claim 1, wherein the organophosphate is triethanolamine phosphate, aminotrismethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tri Furnace stave cooling water treatment agent, characterized in that one selected from the group of carboxylic acid. 스테이브 쿨러에 내장된 냉각관의 냉각수에 청구범위 1항의 냉각수 처리제의 농도가 5000∼6000ppm가 되도록 투입하는 단계;Injecting the cooling water of the cooling tube embedded in the stave cooler so that the concentration of the cooling water treatment agent of claim 1 is 5000 to 6000 ppm; 상기 냉각관의 냉각수에 NO2이온의 농도를 실시간으로 측정하는 단계;Measuring the concentration of NO 2 ions in the cooling water of the cooling tube in real time; 측정되는 NO2이온의 농도가 600∼1200ppm을 만족하도록 상기 냉각수 처리제를 보충수에 투입하여 냉각관에 공급하는 단계;를 포함하여 이루어지는 노체 스테이브에 냉각수 처리제 투입방법.And supplying the cooling water treatment agent to the supplemental water so that the measured concentration of NO 2 ions satisfies 600 to 1200 ppm, and supplying the cooling water treatment agent to the cooling tube.
KR10-1999-0015482A 1999-04-29 1999-04-29 Method For feeding Cooling water inhibitor in a stave cooler system KR100431837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0015482A KR100431837B1 (en) 1999-04-29 1999-04-29 Method For feeding Cooling water inhibitor in a stave cooler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0015482A KR100431837B1 (en) 1999-04-29 1999-04-29 Method For feeding Cooling water inhibitor in a stave cooler system

Publications (2)

Publication Number Publication Date
KR20000067566A true KR20000067566A (en) 2000-11-25
KR100431837B1 KR100431837B1 (en) 2004-05-20

Family

ID=19582988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0015482A KR100431837B1 (en) 1999-04-29 1999-04-29 Method For feeding Cooling water inhibitor in a stave cooler system

Country Status (1)

Country Link
KR (1) KR100431837B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357278A (en) * 2019-07-19 2019-10-22 河北省科学院能源研究所 A kind of alkaline corrosion inhibitor and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586849A (en) * 1978-12-26 1980-07-01 Nippon Paint Co Ltd Rustproofing, metal-coating composition
GB2084128B (en) * 1980-09-25 1983-11-16 Dearborn Chemicals Ltd Inhibiting corrosion in aqueous systems
DK0451434T3 (en) * 1990-04-13 1994-12-05 Grace Dearborn N V Process for controlling deposits and corrosion in water treatment systems
KR100315438B1 (en) * 1997-08-28 2002-02-28 조민호 Water treatment composition for preventing scale and corrosion in enclosed circulation cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357278A (en) * 2019-07-19 2019-10-22 河北省科学院能源研究所 A kind of alkaline corrosion inhibitor and its preparation method and application

Also Published As

Publication number Publication date
KR100431837B1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US4443340A (en) Control of iron induced fouling in water systems
US4663053A (en) Method for inhibiting corrosion and deposition in aqueous systems
US4497713A (en) Method of inhibiting corrosion and deposition in aqueous systems
CA1131436A (en) Corrosion inhibition treatments and method
EP0599485B1 (en) Method of inhibiting corrosion in aqueous systems
US3960576A (en) Silicate-based corrosion inhibitor
KR960000311B1 (en) Use of aminophosphonic acids to inhibit scale formation and corrosion caused by manganese in water systems
EP0714859A2 (en) Methods for controlling scale formation in aqueous systems
EP0479572A2 (en) Inhibition of corrosion of copper or copper-bearing metals
US4387027A (en) Control of iron induced fouling in water systems
GB2084128A (en) Inhibiting corrosion in aqueous systems
US4298568A (en) Method and composition for inhibiting corrosion of nonferrous metals in contact with water
KR100549298B1 (en) Corrosion inhibitor and its feeding method in cooling system
EP0396243A1 (en) The inhibition of corrosion in aqueous systems
US5378390A (en) Composition for controlling scale formation in aqueous systems
KR100431837B1 (en) Method For feeding Cooling water inhibitor in a stave cooler system
US5002697A (en) Molybdate-containing corrosion inhibitors
US6379587B1 (en) Inhibition of corrosion in aqueous systems
KR970001009B1 (en) Method and composition for inhibiting general and pitting corrosion in cooling tower water
US3868217A (en) Corrosion inhibition
CN108911188A (en) A kind of alkaline boiler antisludging agent
KR100315438B1 (en) Water treatment composition for preventing scale and corrosion in enclosed circulation cooling system
CN1023207C (en) Deoxidizer for boiler water and producting thereof
CA1340659C (en) Anti-scale and corrosion inhibitor
EP0218798A2 (en) Process and composition for inhibiting corrosion and incrustation in water systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140508

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150428

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee