KR20000060877A - Optimal operation control method by predicated building load algorithm for ice storage system - Google Patents

Optimal operation control method by predicated building load algorithm for ice storage system Download PDF

Info

Publication number
KR20000060877A
KR20000060877A KR1019990009540A KR19990009540A KR20000060877A KR 20000060877 A KR20000060877 A KR 20000060877A KR 1019990009540 A KR1019990009540 A KR 1019990009540A KR 19990009540 A KR19990009540 A KR 19990009540A KR 20000060877 A KR20000060877 A KR 20000060877A
Authority
KR
South Korea
Prior art keywords
load
building load
building
storage tank
heat storage
Prior art date
Application number
KR1019990009540A
Other languages
Korean (ko)
Inventor
우동락
강한기
Original Assignee
권태웅
한국하니웰 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권태웅, 한국하니웰 주식회사 filed Critical 권태웅
Priority to KR1019990009540A priority Critical patent/KR20000060877A/en
Publication of KR20000060877A publication Critical patent/KR20000060877A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/80Electric charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: A method for controlling optimum operation of an ice storage thermal system by building load estimation algorithm is provided to improve the work following performance with relation to a change of real building loads for reducing operation time, thereby reducing power consumption and improving dynamic characteristics with relation to a rapid load change. CONSTITUTION: A method for controlling optimum operation of an ice storage thermal system by building load estimation algorithm includes the steps of estimating a real building load by measuring a temperature of brine recovered water at a heat exchanger when load cooling(S101), performing a sole operation of a heat accumulating tub if the estimated building load is below a predetermined limit (about 40%) of a maximum load(S102,S103), and performing a parallel operation if the estimated building load is higher than the predetermined limit, wherein a freezer and the heat accumulator are operated in parallel if the building load is in a predetermined limit (40%-70%)(S104,S105), and two freezer and the heat accumulator are operated in parallel if the building load is higher than the predetermined limit (over 70%)(S106,S107).

Description

건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법{OPTIMAL OPERATION CONTROL METHOD BY PREDICATED BUILDING LOAD ALGORITHM FOR ICE STORAGE SYSTEM}OPTIMAL OPERATION CONTROL METHOD BY PREDICATED BUILDING LOAD ALGORITHM FOR ICE STORAGE SYSTEM}

본 발명은 빙축열 시스템에서 냉방운전시, 최적 운전방법을 선택하여 운전비를 절감하고, 부하의 추종성을 향상시켜 쾌적한 실내를 유지시킬 수 있도록 한 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법에 관한 것으로, 특히 열교환기측의 환수온도를 비교하여 실내부하를 예측하여 축열조 및 냉동기를 최적으로 운전할 수 있도록 한 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법에 관한 것이다.The present invention relates to the optimal operation control method of the ice storage system by the building load prediction algorithm to reduce the operating cost by selecting the optimal operation method in the cooling heat storage system, and to maintain a comfortable room by improving the load followability In particular, the present invention relates to an optimal operation control method for an ice heat storage system by a building load prediction algorithm that can predict an indoor load by comparing a return temperature on the heat exchanger side and thus optimally operate a heat storage tank and a freezer.

빙축열 시스템은 70년도에 에너지오일 1차쇼크가 일어난 이후부터 발달된 공조, 냉동기술의 하나이다.Ice heat storage system is one of the air conditioning and refrigeration technology developed since the first energy shock in 1970.

빙축열 시스템은 야간에 남는 유효전력을 사용하여 축열조의 얼음을 얼려, 주간의 주거시에 얼음을 해빙하여 실내의 냉방부하를 담당하는 시스템이다.The ice heat storage system uses the active power remaining at night to freeze the ice in the heat storage tank, and thaw the ice during the daytime residence to handle indoor cooling loads.

빙축열 시스템은 크게 냉동기, 축열조, 열교환기, 그리고 냉각탑으로 구성되어 있다.The ice storage system consists of a refrigerator, a heat storage tank, a heat exchanger, and a cooling tower.

이 시스템은 일반적으로 운전하는 형태는 시간 스케줄운전 방식으로 축열조 단독운전, 냉동기 단독운전 그리고 축열조와 냉동기의 병렬운전방식으로 되어 있다.In general, this system is a time-scheduled operation, which consists of a single storage tank operation, a refrigeration operation alone, and a parallel operation of the storage tank and the refrigerator.

그러나, 사용자가 운전방식을 선택할 수 있는 수동모드가 아닌, 자동모드에서는 각 운전방식을 선택할 수 있는 기준이 모호하여 각 운전방식들이 적절하게 선택되지 않고 운전되어 불필요한 에너지가 낭비되고 있을 뿐만아니라 실내의 요구조건을 충족시키지 못하는 결과를 초래하고 있다.However, in the automatic mode rather than the manual mode in which the user can select a driving method, the criteria for selecting each driving method are ambiguous, and each operation method is not properly selected, and unnecessary energy is wasted. This results in failure to meet the requirements.

따라서 본 발명에서는 이와 같은 문제점을 해결하기 위하여 열교환기측의 3방밸브 하류에 온도센서를 설치하여 열매체인 브라인의 환수온도를 감시함으로서 실내부하를 예측하고, 그 부하에 맞게 축열조 및 냉동기를 운전함으로서 불필요한 에너지를 절감하고 급격한 건물부하변동에 대한 추종성 향상으로 더욱 더 쾌적한 실내를 유지할 수 있는 최적 운전제어 방법을 개발하였다.Therefore, in the present invention, in order to solve this problem, by installing a temperature sensor downstream of the three-way valve on the heat exchanger side, by monitoring the return temperature of the heat chain brine, the indoor load is predicted, and by operating the heat storage tank and the freezer according to the load, it is unnecessary. We have developed an optimal operation control method that can maintain a more comfortable interior by saving energy and improving the followability to rapid building load changes.

이와같은 발명에 대하여는 뒤에 설명하기로 한다.Such an invention will be described later.

도 1은 일반적인 빙축열 시스템에 대한 회로도로서, 이에 도시된 바와같이, 제1열교환기(40)의 냉매출구에 3방밸브(3V1)를 통해 제1냉동기(10)의 냉매입구에 연결하고, 제2열교환기(50)의 냉매출구에 3방밸브(3V2)를 통해 제2냉동기(20)의 냉매입구에 연결하고, 상기 제1,제2냉동기(10)(20)의 냉매출구에 2방밸브(2V1)를 통해 축열조(30)의 냉매입구에 연결함과 동시에 2방밸브(2V2)를 통해 브라인 펌프(BP)의 입력측에 연결하고, 상기 제1,제2냉동기(10)(20)의 또 다른 냉매출구에 각각 제1,제2냉각탑(CT1)(CT2)과 냉각수 펌프(CWP1)(CWP2)를 순차적으로 통과하여 상기 제1,제2냉동기(10)(20)의 또 다른 냉매입구에 연결하고, 상기 브라인 펌프(BP)의 출력측은 3방밸브(3V1)(3V2)의 또 다른 입구에 연결함과 아울러 상기 제1,제2열교환기(40)(50)의 냉매입구에 연결하여 구성한다.FIG. 1 is a circuit diagram of a typical ice heat storage system. As shown in FIG. 1, the refrigerant outlet of the first heat exchanger 40 is connected to the refrigerant inlet of the first refrigerator 10 through a three-way valve 3V1. It is connected to the refrigerant inlet of the second refrigerator 20 via a three-way valve (3V2) to the refrigerant outlet of the two heat exchangers 50, and two ways to the refrigerant outlets of the first and second refrigerators 10 and 20. It is connected to the refrigerant inlet of the heat storage tank 30 through the valve (2V1) and at the same time connected to the input side of the brine pump (BP) through the two-way valve (2V2), the first and second coolers (10, 20) Another coolant of the first and second coolers 10 and 20 by sequentially passing through the first and second cooling towers CT1 and CT2 and the coolant pump CWP1 and CWP2, respectively, at the outlet of the refrigerant. The inlet, and the output side of the brine pump (BP) is connected to another inlet of the three-way valve (3V1) (3V2) and to the refrigerant inlet of the first, second heat exchanger (40) (50) Connect and configure.

이와같이 구성된 종래기술에 대하여 살펴보면 다음과 같다.Looking at the prior art configured as described above is as follows.

먼저, 냉동기 단독운전시 3방밸브(3V1)(3V2)와 2방밸브(2V2)만 온되고, 2방밸브(2V1)는 오프상태가 된다.First, only the three-way valve (3V1) (3V2) and the two-way valve (2V2) is on, and the two-way valve (2V1) is off.

제1, 제2열교환기(40)(50)의 냉매입구에 저온 전압의 냉매가 공급되면 주위의 열을 빼앗아 증발하므로 차가운 공기가 부하측으로 송출된다.When a low temperature voltage refrigerant is supplied to the refrigerant inlets of the first and second heat exchangers 40 and 50, the surrounding heat is taken away and evaporated so that cool air is sent to the load side.

증발된 냉매는 3방밸브(3V1)(3V2)를 통과하여 제1,제2냉동기(10)(20)로 공급된다.The evaporated refrigerant is supplied to the first and second refrigerators 10 and 20 through the three-way valve 3V1 and 3V2.

그러면 상기 제1,제2냉동기(10)(20)는 제1,제2냉각탑(CWP1)(CWP2)에 의해 순환되는 냉각수에 의해 냉매를 냉각시켜 2방밸브(2V2)로 공급한다.Then, the first and second refrigerators 10 and 20 cool the refrigerant by the cooling water circulated by the first and second cooling towers CWP1 and CWP2 to supply the two-way valve 2V2.

이때 브라인 펌프(BP)는 펌핑동작을 행하여 2방밸브(2V2)를 통과하는 냉매를 상기 제1,제2열교환기(40)(50)의 냉매입구로 공급한다.At this time, the brine pump BP performs a pumping operation to supply the refrigerant passing through the two-way valve 2V2 to the refrigerant inlets of the first and second heat exchangers 40 and 50.

이와같은 동작에 의해 부하를 냉방시킨다.The load is cooled by this operation.

그리고, 축열조 단독 운전시,단독운전시 3방밸브(3V1)(3V2)와 2방밸브(2V1)만 온되고, 2방밸브(2V2)는 오프상태가 된다.In addition, only the three-way valve (3V1) (3V2) and the two-way valve (2V1) are on, and the two-way valve (2V2) is turned off during the heat storage tank alone operation and the single operation.

제1, 제2열교환기(40)(50)의 냉매입구에 저온 전압의 냉매가 공급되면 주위의 열을 빼앗아 증발하므로 차가운 공기가 부하측으로 송출된다.When a low temperature voltage refrigerant is supplied to the refrigerant inlets of the first and second heat exchangers 40 and 50, the surrounding heat is taken away and evaporated so that cool air is sent to the load side.

상기에서 증발된 냉매는 3방밸브(3V1)(3V2)와 제1,제2냉동기(10)(20), 그리고 2방밸브(2V1)를 순차적으로 통과하여 축열조(30)로 공급된다.The refrigerant evaporated above passes through the three-way valve (3V1) (3V2), the first and second refrigerators 10 and 20, and the two-way valve (2V1) in order to be supplied to the heat storage tank (30).

그러면 상기 축열조(30)는 냉매를 이용하여 얼음을 얼리거나 얼려져 있는 얼음을 해빙시켜 실내의 냉방부하를 담당한다.Then, the heat storage tank 30 is responsible for cooling the indoor load by freezing the ice using the refrigerant or thawing the frozen ice.

상기에서 얼음을 얼릴 경우, 상기 축열조(30)에서 배출되는 냉매를 브라인 펌프(BP)가 3방밸브(3V1)(3V2)의 다른쪽 입구로 공급한다.When the ice is frozen in the above, the brine pump (BP) is supplied to the other inlet of the three-way valve (3V1) (3V2) the refrigerant discharged from the heat storage tank (30).

이 공급된 냉매는 다시 제1,제2냉동기(10)(20)와 2방밸브(2V1)를 통과하여 상기 축열조(30)로 공급되면, 상기에서와 같은 동작에 의해 얼음을 얼린다.When the supplied refrigerant is again supplied to the heat storage tank 30 through the first and second refrigerators 10 and 20 and the two-way valve 2V1, the ice is frozen by the same operation as described above.

그리고 해빙시에는 축열조(30)가 그 내부의 얼음을 녹이면서 냉각된 냉매를 브라인 펌프(BP)가 제1,제2열교환기(40)(50)의 냉매입구로 공급한다.During thawing, the brine pump BP supplies the cooled refrigerant to the refrigerant inlets of the first and second heat exchangers 40 and 50 while the heat storage tank 30 melts the ice therein.

그러면 부하측의 공기는 냉매에 의해 열을 빼앗기고, 이에따라 차가워진 공기는 부하측으로 공급됨에 따라 냉방이 이루어진다.Then, the air on the load side is deprived of heat by the refrigerant, and thus the cooled air is cooled as it is supplied to the load side.

열을 빼앗아 고온 고압이 된 냉매는 다시 3방밸브(3V1)(3V2)와, 제1,제2냉동기(10)(20) 및 2방밸브(2V1)를 거쳐 축열조(30)로 공급되고, 상기에서와 같은 동작을 반복하다.The refrigerant, which is deprived of heat and becomes high temperature and high pressure, is again supplied to the heat storage tank 30 through the three-way valve (3V1) (3V2), the first and second refrigerators 10 and 20, and the two-way valve (2V1). Repeat the same operation as above.

그리고, 축열조와 냉동기의 병렬운전은 2방밸브(2V1)(2V2)의 온/오프동작을 제어하여 축열조와 냉동기를 번갈아가면서 운전시킨다.In addition, the parallel operation of the heat storage tank and the freezer controls the on / off operation of the two-way valve 2V1 (2V2) to operate the heat storage tank and the refrigerator alternately.

그리고, 냉동기의 냉매입구와 냉매출구, 열교환기의 냉매입구, 축열조의 냉매입구와 냉매출구에서 냉각수 또는 부라인의 온도를 감지하기 위한 온도센서가 각각 설치되어 있다.In addition, a temperature sensor for sensing the temperature of the coolant or the sub-line at the refrigerant inlet and the refrigerant outlet of the refrigerator, the refrigerant inlet of the heat exchanger, the refrigerant inlet and the refrigerant outlet of the heat storage tank is respectively installed.

이상에서와 같은 방식으로 운전되는 빙축열 시스템의 전체 운전제어에 대하여 도 2에 의거하여 살펴보면, 빙축열 시스템 운행시 열교환기 입구 브라인 온도(Ti)를 측정하여 미리 설정해둔 설정온도(Tset)와 비교한다.The overall operation control of the ice heat storage system operated in the same manner as described above will be described with reference to FIG. 2, and the heat exchanger inlet brine temperature Ti is measured during operation of the ice heat storage system and compared with a preset temperature Tset.

비교 결과, 상기 열교환기 입구 브라인 온도(Ti)가 설정온도(Tset) 보다 높으면 냉동기를 온시켜 동작시키고, 상기 열교환기 입구 브라인 온도(Ti)가 설정온도(Tset) 보다 낮으면 축열조를 온시켜 동작시킨다.As a result, when the heat exchanger inlet brine temperature Ti is higher than the set temperature Tset, the refrigerator is turned on, and when the heat exchanger inlet brine temperature Ti is lower than the set temperature Tset, the heat storage tank is turned on. Let's do it.

이와같은 동작은 냉동기와 축열조를 병렬운전할 경우에 해당한다.This operation corresponds to the parallel operation of the refrigerator and the heat storage tank.

상기 동작을 시스템 에러가 발생할 때 까지 수행하다가 에러가 발생하면 정지시킨다.The operation is performed until a system error occurs and stops when an error occurs.

그러나 상기에서와 같은 종래기술에 있어서, 냉동기 우선방식은 냉동기를 24시간 운전하므로 에너지 절약효과가 적고, 냉동기가 담당하는 부하가 크고, 특히 부하가 적을 경우에 축열된 얼음을 모두 해빙하지 못하는 문제가 발생되는 경우가 있고, 부하가 많은 경우에는 피크부하를 충족시키지 못하므로 냉동기를 과대운전하여야 하는 문제점이 있다. 그리고 축열조 우선방식은 제빙시간 동안 일정한 양을 제빙하여 해빙시간에 따라 일정하게 축열조를 해빙하게 되며, 시간 스케줄에 따라 냉동기를 동시에 작동하게 되어 있는데 이러한 방식은 부하의 변화에 따라 제어되지 않으며, 부하가 큰 시간때에는 축열조 단독운전만으로는 부하가 제거되지 않으므로 냉동기 여러대를 동시에 작옹시켜야 하는 단점이 있다. 즉 부하에 대한 추종성이 떨어지므로 실내의 부하를 적절하게 제어할 수 없는 문제점이 있다.However, in the prior art as described above, the freezer priority method has a low energy saving effect because the freezer is operated for 24 hours, and the load that the freezer is responsible for, especially when the load is low, cannot thaw all of the regenerated ice. In some cases, if the load is large, the peak load may not be satisfied, and thus the refrigerator needs to be overdriven. And the storage tank priority method is to defrost a certain amount of ice during the ice making time and to thaw the storage tank uniformly according to the thawing time, and to operate the refrigerator simultaneously according to the time schedule, and this method is not controlled according to the load change. In a large time, the load is not removed only by the operation of the heat storage tank alone. That is, there is a problem that can not properly control the load of the room because the trackability to the load is poor.

따라서 상기에서와 같은 문제점을 해결하기 위한 본 발명은 열교환기측 브라인의 환수온도를 측정하여 실제 건물부하를 예측하고, 그에따른 각각의 시스템을 적절하게 운전시키기 위한 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법을 제공함에 있다.Therefore, the present invention for solving the above problems is to estimate the actual building load by measuring the return temperature of the heat exchanger side brine, and to optimize the ice heat storage system by the building load prediction algorithm to properly operate each system accordingly. An operation control method is provided.

본 발명의 다른 목적은 예측한 건물부하가 최대부하의 일정한도(대략 40%) 이하인 경우에는 축열조 단독운전, 일정한도 이상(대약 40% 이상)인 경우에는 병렬운전을 수행하도록 하여 불필요한 에너지 소비를 줄이도록 한 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법을 제공함에 있다.Another object of the present invention is to perform the operation of the heat storage tank alone when the predicted building load is below a certain degree (approximately 40%) of the maximum load, and to perform parallel operation when it is above a certain degree (approximately 40% or more) to reduce unnecessary energy consumption. The present invention provides an optimal operation control method for an ice storage system by using a building load prediction algorithm.

본 발명의 또 다른 목적은 급격한 부하변동에 대한 동적특성을 좋게하여 실내를 더욱 더 쾌적하게 유지할 수 있도록 한 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법을 제공함에 있다.It is another object of the present invention to provide an optimal operation control method for an ice storage system by a building load prediction algorithm to improve the dynamic characteristics against sudden load fluctuation so as to keep the room more comfortable.

도 1은 일반적인 빙축열 시스템에 대한 회로 구성도.1 is a circuit diagram of a typical ice heat storage system.

도 2는 종래 부하에 따른 빙축열 시스템의 운전 제어방법에 대한 동작 흐름도.2 is a flowchart illustrating an operation control method of an ice heat storage system according to a conventional load.

도 3은 본 발명 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법에 대한 동작 흐름도.3 is a flowchart illustrating an optimal operation control method for an ice storage system according to the present invention building load prediction algorithm.

***** 도면의 주요 부분에 대한 부호의 설명 ********** Explanation of symbols for the main parts of the drawing *****

10,20 : 냉동기 30 : 축열조10,20: refrigerator 30: heat storage tank

40,50 : 열교환기 BP : 브라인 펌프40,50: heat exchanger BP: brine pump

CT : 냉각탑 CWP : 냉각수 펌프CT: Cooling Tower CWP: Coolant Pump

2V1,2V2 : 2방 밸브 3V1,3V2 : 3방 밸브2V1,2V2: 2 way valve 3V1,3V2: 3 way valve

상기 목적을 달성하기 위한 본 발명은 부하 냉방시 열교환기측의 브라인 환수온도를 측정하여 실제의 건물부하를 예측하는 제1단계와, 상기 제1단계에서 예측한 건물부하가 최대부하의 일정한도 이하이면 축열조 단독운전을 행하는 제2단계와, 상기 제1단계에서 예측한 건물부하가 최대부하의 일정한도 이상이면 병렬운전을 행하는 제3단계로 이루어진 것을 특징으로 한다.The present invention for achieving the above object is a first step of predicting the actual building load by measuring the brine return temperature of the heat exchanger side during load cooling, and if the building load predicted in the first step is less than a certain degree of the maximum load And a third step of performing parallel operation if the building load predicted in the first step and the building load predicted in the first step are greater than or equal to a certain degree of maximum load.

이하, 첨부한 도면에 의거하여 상세히 살펴보면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법에 대한 동작 흐름도로서, 이에 도시한 바와같이, 부하 냉방시 열교환기측의 브라인 환수온도를 측정하여 실제의 건물부하를 예측하는 제1단계와, 상기 제1단계에서 예측한 건물부하가 최대부하의 40% 이하이면 축열조 단독운전을 행하는 제2단계(S102-S103)와, 상기 제1단계에서 예측한 건물부하가 최대부하의 40%-70% 내인 경우 축열조와 냉동기 1대로 병렬운전을 행하는 제3단계(S104-S105)와, 상기 제1단계에서 예측한 건물부하가 최대부하의 70% 이상인 경우 축열조와 냉동기 2대로 병렬 운전을 행하는 제4단계(S106-S107)와, 시스템에서 에러발생시 냉동기, 냉각탑, 냉각수 펌프 및 브라인 펌프를 오프시켜 정지시키는 제5단계(S108-S109)로 이루어진다.FIG. 3 is a flowchart illustrating an optimal operation control method of an ice heat storage system using a building load prediction algorithm according to an embodiment of the present invention. As shown in FIG. 3, a method for predicting an actual building load by measuring a brine return temperature at a heat exchanger side during load cooling is shown. Step 1 and the second step (S102-S103) of performing the heat storage tank alone when the building load predicted in the first step is 40% or less of the maximum load, and the building load predicted in the first step is 40 of the maximum load. If it is within% -70%, the third step (S104-S105) performs parallel operation with one heat storage tank and a freezer, and if the building load predicted in the first step is 70% or more of the maximum load, the parallel operation with a heat storage tank and two freezers is performed. The fourth step (S106-S107) is performed, and the fifth step (S108-S109) for turning off the freezer, cooling tower, cooling water pump, and brine pump when an error occurs in the system.

이와같이 각 단계로 이루어진 본 발명의 동작 및 작용 효과에 대하여 상세히 설명하면 다음과 같다.When described in detail with respect to the operation and effect of the present invention made of each step as follows.

도 1에서와 같은 빙축열 시스템이 구동될 때, 축열조 우선방식에서 해빙모드가 시작되면 미도시된 씨피유는 브라인 펌프(BP)를 작동시키고, 냉동기와 3방 밸브 사이에 설치되어 있는 온도센서를 통해 열교환기(40) 또는 (50)를 통과한 브라인의 환수온도(TO)를 측정한다.When the ice heat storage system as shown in FIG. 1 is driven, when the sea ice mode is started in the heat storage tank priority method, CPI not shown operates the brine pump (BP), and heat exchanges through a temperature sensor installed between the freezer and the three-way valve. Measure the return temperature (TO) of the brine passing through the group 40 or (50).

이렇게 측정한 브라인의 환수온도(TO)로서 건물부하를 예측한다.(S101)Thus, the building load is predicted as the return temperature (TO) of the brine (S101).

상기에서 예측한 건물부하가 최대부하(설계부하)의 40% 이하에 해당하는지(S102), 40%-70% 사이에 해당하는지(S104), 아니면 70% 이상에 해당하는지(S106)를 각각 판단한다.Determine whether the estimated building load corresponds to 40% or less of the maximum load (design load) (S102), 40% to 70% (S104), or 70% or more (S106). do.

판단 결과, 예측한 건물부하가 최대부하의 40% 이하에 해당하면, 축열조 단독운전을 행하도록 한다.(S103)If the predicted building load corresponds to 40% or less of the maximum load, the storage tank is operated alone.

상기 축열조(30)를 단독으로 운전시키기 위해서는 종래에서 설명한 바와같이 2방밸브(2V1)는 온시키고, 2방밸브(2V2)는 오프시켜 동작시킨다.In order to operate the heat storage tank 30 alone, the two-way valve 2V1 is turned on and the two-way valve 2V2 is turned off as described in the related art.

그리고, 상기 S101 단계에서 예측한 건물부하가 최대부하의 40%-70% 사이에 해당하면 축열조와 냉동기 1대만을 이용하여 병행하여 운전하도록 한다.(S105)If the building load predicted in step S101 falls between 40% and 70% of the maximum load, the building load and the refrigerator are used to operate in parallel. (S105)

또한 상기 S101 단계에서 예측한 건물부하가 최대부하의 70% 이상이면, 부하가 큰 경우이므로 축열조와 냉동기 2대을 모두 이용하여 병행하여 운전하도록 함으로써 냉동기만 과대운전하는 것을 방지한다.(S107)In addition, if the building load predicted in the step S101 is 70% or more of the maximum load, the load is a large case, so that the refrigerator is operated in parallel by using both the heat storage tank and the two refrigerators to prevent excessive operation of the refrigerator.

이상에서와 같은 방법으로 건물부하를 예측하고, 그에따른 빙축열 시스템의 운영을 제어한다.As described above, the building load is predicted and the operation of the ice storage system is controlled accordingly.

이상에서 상세히 설명한 바와같이 실제 건물부하변동에 대한 추종성이 향상되어 잉여의 운전시간이 줄어듦으로 하여 불필요한 에너지 소비를 줄일 수 있을 뿐만아니라 급격한 부하변동에 대한 동적 특성도 좋아져서 실내를 더욱 더 쾌적하게 유지할 수 있도록 한 효과가 있다.As described in detail above, following the actual load change of the building is improved to reduce the unnecessary operating time by reducing the surplus operation time, as well as to improve the dynamic characteristics of the sudden load change to keep the room more comfortable One effect is to make it work.

Claims (2)

부하 냉방시 열교환기측의 브라인 환수온도를 측정하여 실제의 건물부하를 예측하는 제1단계와, 상기 제1단계에서 예측한 건물부하가 최대부하의 일정한도(약 40%) 이하이면 축열조 단독운전을 행하는 제2단계와, 상기 제1단계에서 예측한 건물부하가 최대부하의 일정한도 이상이면 병렬운전을 행하는 제3단계로 이루어진 것을 특징으로 하는 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법.The first step of predicting the actual building load by measuring the brine return temperature on the heat exchanger side during load cooling, and if the building load predicted in the first step is below a certain degree (about 40%) of the maximum load, the operation of the storage tank alone is performed. And a third step of performing a parallel operation if the building load predicted in the first step is equal to or greater than a certain degree of the maximum load. 제1항에 있어서, 제3단계는 건물부하가 일정한도내(40%-70%)인 경우 냉동기 1대와 축열조를 병렬운전시키는 제1과정과, 상기 건물부하가 일정한도 이상(70%)인 경우 냉동기 2대와 축열조를 병렬운전시키는 제2과정으로 이루어진 것을 특징으로 하는 건물부하 예측 알고리즘에 의한 빙축열 시스템의 최적 운전 제어방법.The method of claim 1, wherein the third step is a first process of parallel operation of a refrigerator and a heat storage tank when the building load is within a certain range (40% -70%), and the building load is greater than a certain level (70%). In this case, the optimum operation control method of the ice storage system by building load prediction algorithm, characterized in that the second step of parallel operation of the two refrigerators and the heat storage tank.
KR1019990009540A 1999-03-20 1999-03-20 Optimal operation control method by predicated building load algorithm for ice storage system KR20000060877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990009540A KR20000060877A (en) 1999-03-20 1999-03-20 Optimal operation control method by predicated building load algorithm for ice storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990009540A KR20000060877A (en) 1999-03-20 1999-03-20 Optimal operation control method by predicated building load algorithm for ice storage system

Publications (1)

Publication Number Publication Date
KR20000060877A true KR20000060877A (en) 2000-10-16

Family

ID=19577180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990009540A KR20000060877A (en) 1999-03-20 1999-03-20 Optimal operation control method by predicated building load algorithm for ice storage system

Country Status (1)

Country Link
KR (1) KR20000060877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384217B1 (en) * 2012-08-08 2014-04-21 주식회사 코엑스 System for operating complex refrigerator
KR102196868B1 (en) * 2019-09-27 2020-12-30 (주)에프티에너지 Operation method of ice storage tank by setting temperature difference between water temperature in ice container and brine temperature
CN114018069A (en) * 2021-11-10 2022-02-08 新疆天池能源有限责任公司 Shutter adjusting system and method of indirect air cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384217B1 (en) * 2012-08-08 2014-04-21 주식회사 코엑스 System for operating complex refrigerator
KR102196868B1 (en) * 2019-09-27 2020-12-30 (주)에프티에너지 Operation method of ice storage tank by setting temperature difference between water temperature in ice container and brine temperature
CN114018069A (en) * 2021-11-10 2022-02-08 新疆天池能源有限责任公司 Shutter adjusting system and method of indirect air cooling system
CN114018069B (en) * 2021-11-10 2024-03-22 新疆天池能源有限责任公司 Shutter adjusting system and method of indirect air cooling system

Similar Documents

Publication Publication Date Title
US11509007B2 (en) Refrigeration cycle device for cooling battery
EP2397782B1 (en) Hot water supply device associated with heat pump
JP4934349B2 (en) Operation control method of ice heat storage system
EP1182410B1 (en) Refrigerator and method of controlling the same
KR960010634B1 (en) Heat storage type air-conditioning apparatus
CN105258445A (en) Refrigerator control method and system adopting frequency conversion compressor
WO2008002048A1 (en) High efficiency refrigeration system for saving energy and control method the same
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
KR100556519B1 (en) A refrigerator with separated multi-way cooling circuit in parallel and controlling method thereof
KR20000060877A (en) Optimal operation control method by predicated building load algorithm for ice storage system
JP4528755B2 (en) refrigerator
JP3304010B2 (en) Ice storage refrigerator and operation method
JP2004092954A (en) Centralized control system for refrigeration facility and air conditioning facility
JP3552625B2 (en) Heat storage device
JP3583869B2 (en) Thermal storage air conditioning system device and its control method
JP6460187B1 (en) Snow and ice use air conditioning system, its snow and ice cooling system
JP4188461B2 (en) Complex refrigerant circuit equipment
RU2000108131A (en) METHOD FOR OPERATION OF A REFRIGERATING UNIT WITH COLD ACCUMULATION AND A SYSTEM FOR ITS IMPLEMENTATION
CN117299251B (en) Working condition switching method and device for high-low temperature test box and high-low temperature test box
CN113790541B (en) Refrigeration system, control method and refrigeration equipment
JP2010071599A (en) Ice thermal storage system
JPH1089730A (en) Operation control method for ice heat storage type air-conditioning equipment
JP3853965B2 (en) Heat storage system
JP2006207886A (en) Heat storage type refrigerating device
CN111397273A (en) Double-system refrigerator

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination