KR20000055274A - Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents - Google Patents

Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents Download PDF

Info

Publication number
KR20000055274A
KR20000055274A KR1019990003801A KR19990003801A KR20000055274A KR 20000055274 A KR20000055274 A KR 20000055274A KR 1019990003801 A KR1019990003801 A KR 1019990003801A KR 19990003801 A KR19990003801 A KR 19990003801A KR 20000055274 A KR20000055274 A KR 20000055274A
Authority
KR
South Korea
Prior art keywords
foaming
phr
resin particles
styrene resin
foaming agent
Prior art date
Application number
KR1019990003801A
Other languages
Korean (ko)
Other versions
KR100524320B1 (en
Inventor
송강일
정동춘
김명철
Original Assignee
유현식
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 제일모직 주식회사 filed Critical 유현식
Priority to KR10-1999-0003801A priority Critical patent/KR100524320B1/en
Publication of KR20000055274A publication Critical patent/KR20000055274A/en
Application granted granted Critical
Publication of KR100524320B1 publication Critical patent/KR100524320B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE: A method is provided to manufacture an excellent low-foaming agent and high-foaming styrenic resin particle having an affinity to the environment with the foaming agent of a low content of less than 4% and excellent in anti-lumping effects and heat-stability when a high-foaming is happened. CONSTITUTION: A manufacturing method for a low-foaming agent and high-foaming styrenic resin particle comprises the next followings. A dispersion step dissolves Glyceryl tristearate (GTS) of 0.05 to 1.0 phr and Ethylene vinyl acetate-alcohol copolymer (EVA-Copolymer) of 0.01 to 0.05 phr in styrenic monomer. Tertiary dodecyl mercaptane (TDDM) of 0.05 to 0.5 phr is gradually added until a suspension rate is reached to 30 to 50% of the suspension reactant from a starting point of the reaction. A foaming agent is added at the point of that the suspension rate is 30 to 50%. And Zinc-stearate (Zn-St) of 0.01 to 0.5 phr is added after manufacturing the foaming styrenic resin particle.

Description

저발포제 고발포성 스티렌 수지 입자의 제조방법{METHOD FOR PREPARING STYRENIC RESIN PARTICLES WITH HIGH DEGREE OF EXPANSION USING A SMALL AMOUNT OF BLOWING AGENTS}METHOD FOR PREPARING STYRENIC RESIN PARTICLES WITH HIGH DEGREE OF EXPANSION USING A SMALL AMOUNT OF BLOWING AGENTS}

본 발명은 발포제 함량이 4% 이하로 환경친화적이며 고온,고압 발포시 안티-럼핑 효과가 탁월하고 열안정성이 우수한 저발포제 고발포성 스티렌수지 입자의 제조방법에 관한 것으로, 더욱 상세하게는 VOCS(휘발성유기화학물질류)로 규정되어 사용량이 제한되는 펜탄, 부탄등의 발포제 함량이 3∼4%로 매우 적으면서도 최대 발포성은 100배로 제품 적용성에 거의 제한이 없고 열안정성이 우수한 저발포제 고발포성 스티렌수지 입자의 제조방법에 관한 것이다.The present invention relates to an environment-friendly foaming agent content of 4% or less, and to a method for producing a low-foaming foamed styrene resin particles having excellent anti-lumping effect and excellent thermal stability at high temperature and high pressure foaming, and more specifically, VOC S ( Low foaming agent and high foaming styrene with excellent thermal stability and almost no limit on product applicability as it has very low content of 3 ~ 4% of foaming agent such as pentane and butane, which is limited as usage. It relates to a method for producing resin particles.

일반적으로 발포성 폴리스티렌 수지는 대표적인 발포수지로 발포가공되어 단열재, 방음재등의 건축자재 및 농수산물이나 가전제품의 포장재 또는 1회용 용기로 널리 사용되고 있다.In general, the expandable polystyrene resin is foamed as a representative foaming resin and is widely used as a building material such as insulation, soundproofing material, packaging for agricultural and marine products or home appliances, or disposable containers.

이와 같은 용도로 사용되는 발포성 폴리스티렌 수지입자의 제조방법으로는 보통 저비점 탄화수소를 가진 폴리스티렌모노머 93중량%에 발포제로 펜탄 또는 부탄가스 7중량%를 주입하여 발포입자를 제조하는 방법이 현재까지 사용되고 있다. 그러나 발포제로 사용되는 펜탄이나 부탄가스는 VOCs 즉, 유기휘발성 화학물질류로 규정되어 사용에 제한을 받고 있으며, 그러한 예로는 발포제품내에 가스함량이 4% 이상일 경우에는 그에 따른 환경부담금이 별도로 부과되어 당업계에서는 발포제의 함량을 낮추면서 발포성을 향상시킬 수 있는 방법의 개발이 요구되고 있는 실정이다. 또한, 환경문제에 민감한 미국 등 선진국에서도 상기와 같은 노력이 진행되고 있으며 특히 BASF사, ARCO사 등 선진업체에서 많은 기술적인 노력이 행해지고 있다.As a method for preparing expandable polystyrene resin particles used for such a purpose, a method of preparing expanded particles by injecting 7% by weight of pentane or butane gas into a blowing agent to 93% by weight of a polystyrene monomer having a low boiling hydrocarbon is usually used. However, pentane or butane gas, which is used as a blowing agent, is restricted to use because it is defined as VOCs, or organic volatile chemicals. For example, when the gas content in the foamed product is 4% or more, an environmental burden is charged separately. There is a need in the art for the development of a method that can improve the foamability while lowering the content of the blowing agent. In addition, the above-mentioned efforts are being made in developed countries such as the United States, which are sensitive to environmental issues, and many technical efforts have been made in developed companies such as BASF and ARCO.

저발포제 고발포성 스티렌 수지 입자의 제조방법에 관련된 기술로 미합중국 특허 5,112,875호 또는 동 5,110,524호에서는 저발포제 고발포성 스티렌 수지입자의 제조를 위하여 특수한 사슬이동제(chain transfer agent)를 사용하여 폴리머내에 올리고머의 생성을 유도하여 가소제로 사용하는 방법을 제시하였고, 이러한 신규물질 사용을 통한 분자량 분포 최적화를 획득함으로써 저함량 발포제로서도 원하는 발포성을 획득할 수 있게 되었다.As a technique related to the production of high foaming styrene resin particles with low foaming agent, US Pat. No. 5,112,875 or 5,110,524 describes the production of oligomers in polymers by using a special chain transfer agent for the production of high foaming styrene resin particles. By introducing a method for use as a plasticizer, by obtaining the optimization of the molecular weight distribution through the use of these new materials it is possible to obtain the desired foamability as a low content blowing agent.

그러나, 발포성 스티렌 수지 입자의 제조에 관한 종래의 기술 대부분의 경우는 발포성 스티렌 수지 입자의 제조에 사용되는 발포제의 함량에 관한 특별한 언급이 없으며 일부 함량에 대한 언급이 있기는 하나 대략 4∼8중량%로 저함량에 해당하는 기술적 제안은 아니었다. 이러한 이유는 저발포제로 일반적인 발포성을 지니기 위해서는 새로운 기술을 통한 발포성 향상이 이루어져야 하기 때문이며 상기에서 언급한 사슬이동제를 이용한 발포성 향상기술 등의 개발이 최근에야 이루어졌기 때문이다.However, in the prior art relating to the production of expandable styrene resin particles, in most cases, there is no special mention regarding the content of the blowing agent used in the production of the expandable styrene resin particles, although there is a reference to some content, it is approximately 4 to 8% by weight. It was not a technical proposal for the low content. The reason for this is that low foaming agents have general foaming properties, and thus the foaming properties should be improved through a new technology, and the development of foaming techniques using the above-mentioned chain transfer agent has only recently been made.

최근 VOCs 대기 방출에 대한 환경문제가 대두되면서 발포성 스티렌 수지의 발포제 함량에 관한 관심이 점차로 고조되고 있는 상황으로 이와 관련된 기술개발이 활발히 진행되고 있으며 이러한 규제에 적합한 저발포제 고발포성을 지닌 상업화된 제품개발이 가능하기 위해서는 고발포성 열안정성 및 우수한 성형 사이클 타임 등의 물성확보가 필수적이다.Recently, as the environmental problem of VOCs emission is on the rise, the interest in the foaming agent content of the expandable styrene resin is gradually increasing. Therefore, the related technology development is actively progressed. To achieve this, it is necessary to secure physical properties such as high foaming thermal stability and excellent molding cycle time.

본 발명의 목적은 상기와 같은 종래 문제점을 해결하기 위한 것으로, 신규의 안정한 현탁중합계를 적용한 발포제 효율 최적화 프로세스 개발, 글리세릴트리스테아레이트의 발포보조제 적용, 중합시작부터 중합율이 30∼50%가 될때까지 TDDM(t-dodecyl mercaptane)을 점증적으로 투입하는 단계의 조합을 통하여 발포제 함량이 최대 4%로 매우 적으면서도 최대 발포성은 100배로 향상시키고, 에틸렌비닐아세테이트-알코올 코폴리머의 수지입자 표면개질 및 징크스테아레이트의 혼용 사용을 통하여 고온고압 발포시에도 럼핑(Lumping)이 거의 없은 우수한 열안정성을 지닌 저발포제 고발포성 스티렌수지 입자의 제조방법을 제공하는 것이다.An object of the present invention is to solve the conventional problems as described above, development of foaming agent efficiency optimization process applying a new stable suspension polymerization system, the application of foaming aid of glyceryl tristearate, the polymerization rate 30-50% from the start of polymerization Through the combination of incremental addition of TDDM (t-dodecyl mercaptane) until it reaches a maximum of 4% of the foaming agent content while increasing the foamability of the resin particles of the ethylene vinyl acetate-alcohol copolymer The present invention provides a method for producing a low-foaming, highly foamable styrene resin particle having excellent thermal stability with little lumping even at high temperature and high pressure foaming through the use of modified and zinc stearate.

즉, 본 발명은 발포성 스티렌계 수지를 제조함에 있어서, 0.05∼1.0phr의 글리세릴트리스테아레이트와 0.01∼0.5phr의 에틸렌비닐아세테이트-알코올 코폴리머를 스티렌 단량체에 용해하여 분산시키는 단계와; 중합반응물에 반응개시점부터 중합율 30∼50%에 이를 때까지 0.05∼0.5phr의 터셔리도데실머캅탄을 점증적으로 첨가하는 단계와; 중합율이 30∼50%에 이르렀을 때 발포제를 첨가하는 단계와; 발포성 스티렌계 수지입자 제조후 0.01∼0.5phr의 징크스테아레이트를 첨가하는 단계를 포함하는 저발포제 고발포성 스티렌 수지 입자의 제조방법을 제공하는 것이다.That is, the present invention comprises the steps of dissolving and dispersing 0.05 to 1.0 phr of glyceryl tristearate and 0.01 to 0.5 phr of ethylene vinyl acetate-alcohol copolymer in a styrene monomer to prepare an expandable styrene resin; Incrementally adding 0.05 to 0.5 phr of tertiarydecyl mercaptan from the start of the reaction to the polymerization rate of 30 to 50%; Adding a blowing agent when the polymerization rate reaches 30 to 50%; It is to provide a low-foaming agent high foaming styrene resin particles comprising the step of adding 0.01 to 0.5phr of zinc stearate after the production of foamed styrene resin particles.

도 1은 본 발명에 따른 발포성 스티렌 수지 입자의 시간 발포성을 나타낸 그래프이고,1 is a graph showing the time foamability of the expandable styrene resin particles according to the present invention,

도 2는 본 발명에 따른 발포성 스티렌 수지 입자의 럼핑효과를 나타낸 그래프이고,2 is a graph showing the lumping effect of the expandable styrene resin particles according to the present invention,

도 3은 본 발명에 따른 발포성 스티렌 수지 입자의 사이클-타임을 나타낸 그래프이다.3 is a graph showing the cycle-time of the expandable styrene resin particles according to the present invention.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 저발포제로 고발포성을 얻기 위하여 비휘발물질인 글리세릴트리스테아레이트 0.05phr∼1.0phr(이하 본 발명에서 단위 phr(parts per hundred parts of styrenic monomer)은 스티렌 단량체 100부에 대한 부수로 정의한다.)을 발포보조제로 사용한다. 이를 위하여 중합이 진행되기 전에 글리세릴트리스테아레이트를 스티렌 단량체에 용해시킨 후 중합을 진행함으로써 글리세릴트리스테아레이트가 균일하게 분산된 스티렌 수지를 획득할 수 있었으며 이를 통하여 수지의 열안정성 저하없이 고발포성이 가능한 스티렌수지 입자를 얻을 수 있게된다. 글리세릴트리스테아레이트 0.1phr당 약 3배의 발포성 향상을 얻을 수 있으며, 1.0phr를 초과하는 경우는 발포성 향상보다는 열안정성 저하가 현저하여 바람직하지 못하다.In the present invention, in order to obtain a high foaming property with a low foaming agent, glyceryl tristearate of 0.05 phr to 1.0 phr (hereinafter referred to as the unit phr (parts per hundred parts of styrenic monomer in the present invention) is an incidental to 100 parts of styrene monomer Define as a foaming aid. To this end, by dissolving glyceryl tristearate in the styrene monomer before the polymerization proceeds, the polymerization proceeds to obtain a styrene resin in which glyceryl tristearate is uniformly dispersed, thereby high foamability without deteriorating the thermal stability of the resin. This makes it possible to obtain styrene resin particles. About 3 times the foamability improvement can be obtained per 0.1 phr of glyceryl tristearate, and when it exceeds 1.0 phr, the thermal stability decreases rather than the foamability improvement, which is not preferable.

본 발명은 발포시 럼핑이 거의 없는 뛰어난 열안정성을 달성하기 위하여 에틸렌비닐아세테이트-알코올코폴리머를 0.01∼0.5phr의 범위로 스티렌단량체에 용해시킨 후 중합함으로써 발포성 스티렌 수지 입자표면이 에틸렌비닐아세테이트-알코올코폴리머에 의하여 전환되도록 하였고 징크스테아레이트 0.01∼0.5phr을 발포성 스티렌 중합체에 분말상태로 혼합함으로써 발포시 스팀에 의한 발포입자간 럼핑 발생이 일어나지 않는 뛰어난 열안정성을 얻을 수 있게된다.In order to achieve excellent thermal stability with little lumping during foaming, the present invention dissolves ethylene vinyl acetate-alcohol copolymer in a styrene monomer in the range of 0.01 to 0.5 phr, and then polymerizes the surface of the foamed styrene resin particle by ethylene vinyl acetate-alcohol. The copolymer is converted into copolymer and 0.01 to 0.5 phr of zinc stearate is mixed with the expandable styrene polymer in the form of powder so that excellent thermal stability is achieved in which foaming does not occur between foam particles by steam during foaming.

고온, 고압의 발포 조건속에서도 럼핑이 발생되지 않는 이러한 효과는 고온, 고압의 발포조건과 같이 설비적으로 추가적인 발포성 향상을 가능케하며 상업적인 적용성도 매우 높아 더욱 높은 발포성을 필요로 하는 용도로써도 사용 될 수 있다.This effect, which does not cause lumping even under high temperature and high pressure foaming conditions, enables additional foamability improvement in terms of high temperature and high pressure foaming conditions, and can be used for applications requiring higher foamability due to its high commercial applicability. .

본 발명은 일차적으로 최대 4중량% 이하의 저함량 발포제로서 최대 발포성 100배를 나타내는 우수한 발포성을 특징으로 하고 있다.The present invention is primarily characterized by excellent foamability, which exhibits up to 100 times the maximum foamability as a low content foaming agent of up to 4% by weight.

이를 위하여 본 발명은 평균분자량이 15만~20만이며 PDI(Poly Dispersity Index)가 3∼4인 스티렌 수지 입자를 발포성 수지의 기본 수지로 한다.To this end, in the present invention, styrene resin particles having an average molecular weight of 150,000 to 200,000 and a PDI (Poly Dispersity Index) of 3 to 4 are used as the basic resin of the expandable resin.

이러한 이유는 이보다 높은 분자량을 지닌 스티렌 수지를 기본 폴리머로 할 경우 최대 발포성 100배 수준의 고발포성을 얻기 위하여 상기에서 제안하는 4중량% 이상의 발포제가 요구되기 때문이며, 분자량이 이보다 낮으면 열안정성이 크게 저하되어 상업적으로 적용이 용이하지 않기 때문이다.This is because when the styrene resin having a higher molecular weight is used as the base polymer, a foaming agent of 4% by weight or more proposed above is required in order to obtain a high foaming capacity of 100 times the maximum foamability. This is because it is lowered and not easily applied commercially.

또한, PDI 3∼4 수준의 분자량 분포를 가지는 스티렌 수지를 개발하기 위하여 중합 시작부터 중합율이 30∼50% 진행될때까지 TDDM(t-dodecyl mercaptane)을 점증적으로 투입하는 것을 특징으로 한다. 이와 같이 제조된 분자량 분포를 가지는 기본 폴리머를 발포성 수지로 활용하였을 때 저분자량의 폴리머가 가소제로서 작용하기 때문에 높은 발포성을 얻는데 매우 유용하게 된다In addition, in order to develop a styrene resin having a molecular weight distribution of PDI 3-4 level, TDDM (t-dodecyl mercaptane) is gradually added from the start of polymerization until the polymerization rate is 30 to 50%. When the base polymer having the molecular weight distribution thus prepared is utilized as the foamable resin, the low molecular weight polymer acts as a plasticizer, which is very useful for obtaining high foamability.

본 발명은 저발포제로 고발포성을 얻기 위한 추가 기술로서 신규의 안정한 현탁중합방식을 이용하여 50% 이하의 낮은 중합율에서 발포제를 안정적으로 투입하한다. 중합율이 이보다 더 진행된 상태에서의 발포제 투입은 함침효율(발포력/발포제)이 상대적으로 낮기 때문에 본 발명에서 제안하는 범위가 가장 바람직하다. 종래의 경우, 발포제 투입시기는 중합율이 70% 이상 충분히 진행된 상태이며 이러한 이유는 낮은 중합율에서 발포제를 투입하면 투입된 발포제로 인하여 수지입자의 표면이 연화되고 수지입자간 뭉침이 심하게 발생되기 때문이다.The present invention uses a novel stable suspension polymerization method as a further technique for obtaining a high foaming property with a low foaming agent to stably add a blowing agent at a low polymerization rate of 50% or less. In the state where the polymerization rate is further advanced, the addition of the blowing agent is most preferable because the impregnation efficiency (foaming force / foaming agent) is relatively low. In the conventional case, when the blowing agent is in a state in which the polymerization rate is sufficiently advanced to 70% or more, this is because when the blowing agent is added at a low polymerization rate, the surface of the resin particles is softened due to the blowing agent and agglomeration between the resin particles is severely generated. .

그러나, 본 발명은 고체미분말, 전해질, 계면흡착성고분자, 수용성과산화염으로 이루어진 현탁안정제의 조합을 특징으로 하는 신규의 현탁중합법을 적용하였으며 이를 통하여 중합의 시작부터 중합이 완료될때까지 입자의 성장이 일어나지 않는 매우 안정한 분산계를 획득하였고 이를 통하여 50% 이하의 낮은 중합율에서도 수지입자간 뭉침없이 발포제를 투입할 수 있게 된다. 낮은 중합 전환율에서의 발포제 투입은 비드내 발포제 함침이 용이할뿐 아니라 낮은 함량의 발포제로서도 높은 발포성을 얻는데 매우 중요한 역할을 수행하게 된다.However, the present invention applies a novel suspension polymerization method characterized by a combination of a suspension stabilizer consisting of a solid fine powder, an electrolyte, an interfacial adsorptive polymer, and a water-soluble peroxide salt, whereby the growth of particles from the start of the polymerization until the completion of the polymerization is applied. A very stable dispersion system that does not occur is obtained and through this, it is possible to add a blowing agent without aggregation between resin particles even at a low polymerization rate of 50% or less. The addition of blowing agent at low polymerization conversion not only facilitates impregnation of the blowing agent in the beads but also plays a very important role in obtaining high foamability even with a low content of blowing agent.

본 발명은 발포제로서 휘발성유기화합물(CNH2N+2) 가장 바람직하게는 4중량% 이하의 펜탄만을 사용하면서 최대 발포성은 100배 수준의 고발포성이 가능하고 고온고압의 발포조건에서도 럼핑이 거의 없는 우수한 열안정성을 나타내며 성형시에는 일반적인 발포제를 지니고 있는 제품보다 30% 이상 사이클타임이 빨라 경제성이 우수하여 농·수산물포장재, 가전포장재, 단열재등 기존의 발포스티렌수지의 모든 적용분야에 대체 적용될 수 있다.The present invention uses a volatile organic compound (C N H 2 N + 2 ) as the blowing agent, most preferably 4 wt% or less of pentane, and has a maximum foaming property of 100 times that of high foaming and almost no lumping even under high temperature and high pressure foaming conditions. It has excellent thermal stability, and at the time of molding, it has more than 30% faster cycle time than the product with general foaming agent, so it is economical and can be applied to all applications of existing foamed styrene resins such as agricultural and marine product packaging materials, home appliance packaging materials, and insulation materials. have.

이하, 실시예 및 비교예를 들어 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

실시예 1Example 1

예비용해조 1에서 스티렌 단량체 10㎏을 넣고 110rpm으로 교반하면서 폴리에틸렌왁스 50g, 글리세릴트리스테아레이트 20g, 에틸렌비닐아세테이트-알코올 코폴리머 20g을 넣은 후 70℃로 승온하고 60분간 유지하여 투입한 왁스 및 첨가를 용해시킨 후 상온에 방치하여 냉각시킨다.In the pre-dissolution tank 1, 10 kg of styrene monomer was added, and 50 g of polyethylene wax, 20 g of glyceryl tristearate, and 20 g of ethylene vinyl acetate-alcohol copolymer were added while stirring at 110 rpm. The temperature was raised to 70 ° C. and maintained for 60 minutes. After dissolving the solution, it is allowed to stand at room temperature and cooled.

예비용해조 2에서는 벤조일퍼옥사이드 160g과 t-부틸퍼벤조에이트 100g을 스티렌 단량체 30㎏에 넣고 30분에 걸쳐 용해시킨 후 예비 용해조 1에서 만든 용액을 붇고 다시 30분간 교반하여 분산액을 제조한다.In the pre-dissolution tank 2, 160 g of benzoyl peroxide and 100 g of t-butylperbenzoate are added to 30 kg of styrene monomer, and dissolved over 30 minutes. The solution made in the preliminary dissolution tank 1 is quenched and stirred for 30 minutes to prepare a dispersion.

별도로, 100ℓ 내압 반응조에서는 순수 40㎏을 넣고 분산제로 트리칼슘포스페이트 150g, 질산나트륨 60g, 도데실벤젠설포네이트 15g, 마그네슘퍼설페이트 8.0g을 가하여 현탁액을 제조한 후 예비용해조 2에서 만든 분산액을 넣고 60분간 110rpm으로 교반시킨다. 그 후 반응기의 온도를 90℃로 승온한 후 유지시키면서 TDDM(t-dedecyl mercaptane) 120g을 중합율이 40%가 될때까지 점증적으로 투입하며 중합시킨다. 그 후 반응조를 밀폐한 후 1500g의 펜탄을 1g/분의 속도로 90분간 일정량씩 투입한다.Separately, in a 100-l pressure vessel, 40 kg of pure water was added and 150 g of tricalcium phosphate, 60 g of sodium nitrate, 15 g of dodecylbenzenesulfonate, and 8.0 g of magnesium persulfate were added to prepare a suspension. Stir at 110 rpm for minutes. Thereafter, the temperature of the reactor was increased to 90 ° C., and then 120 g of TDDM (t-dedecyl mercaptane) was gradually added until the polymerization rate reached 40%, followed by polymerization. After that, the reactor is sealed and 1500 g of pentane is introduced at a rate of 1 g / min for 90 minutes.

다음으로 110℃로 70분간 승온시키고 120℃ 온도에서 5시간 유지시켜 미 반응된 스티렌 단량체의 함량이 1000ppm 이하까지 되도록 한다.Next, the temperature is raised to 110 ° C. for 70 minutes and maintained at 120 ° C. for 5 hours so that the content of unreacted styrene monomer is up to 1000 ppm or less.

이때 투입된 발포제는 유리전이된 폴리스티렌 수지 입자내에 함침되어 발포성 스티렌 수지 입자로 만들어지게 된다.In this case, the introduced blowing agent is impregnated into the glass transition polystyrene resin particles to be made of expandable styrene resin particles.

이후 45℃ 이하까지 냉각시킨 후 잔류 발포제를 방출시킨다. 이때 반응조의 압력이 상압까지 떨어지면 배출하여 슬러리 상태로 발포성 스티렌 수지 입자를 수득 할 수 있다.After cooling to 45 ° C. or less, the residual blowing agent is released. At this time, when the pressure of the reactor drops to normal pressure, it can be discharged to obtain expandable styrene resin particles in a slurry state.

수득된 중합물은 탈수를 통하여 물과 분리시킨후 유동층 건조를 통하여 입자 표면의 물기를 0.3% 이하까지 제거시킨 다음 입자 크기별로 선별한다.The obtained polymer is separated from water by dehydration, and then dried on a fluidized bed to remove water on the surface of the particles by 0.3% or less, and then sorted by particle size.

그 중 입자 크기가 0.5∼1.2㎜인 중합물 1㎏을 믹서에 넣고 징크스테아레이트 0.5g, 글리세릴모노스테아레이트 0.5g, 글리세릴트리스테아레이트 0.5g을 첨가한 후 30분간 교반시켜서 저발포제 고발포성 발포성스티렌수지 입자를 최종적으로 완성한다.Among them, 1 kg of a polymer having a particle size of 0.5 to 1.2 mm is placed in a mixer, and 0.5 g of zinc stearate, 0.5 g of glyceryl monostearate, and 0.5 g of glyceryl tristearate are added, followed by stirring for 30 minutes. Finally, the expandable styrene resin particles are completed.

이와같이 얻어진 최종물의 분자량 및 발포제(펜탄) 함량을 점도관 및 가스크로마토그래피(Gas Chromatography)를 이용하여 측정한 후 표 2에 나타내었다.The molecular weight and the blowing agent (pentane) content of the final product thus obtained were measured using a viscosity tube and gas chromatography (Gas Chromatography), and are shown in Table 2.

또한, 입경 0.5∼1.2㎜로 선별된 최종물을 (주)대공에서 특수 제작한 시간발포기를 사용하여 시간발포성 및 최대발포성(통상 9분발포성)을 측정하여 표 3 및 도 1에 나타내었다.In addition, the final product sorted to a particle size of 0.5 ~ 1.2㎜ was measured using a time foamer specially manufactured by Daegong Co., Ltd. to measure the time and maximum foaming properties (usually 9 minutes foaming) is shown in Table 3 and FIG.

발포 및 성형물성의 측정을 위하여 (주)대공에서 특수 제작한 배치발포기(모델명:HLC-901)를 사용하여 60배의 배율로 발포한 후 럼핑등 발포 물성를 표 4 및 도 2에 나타내었고, (주)대공에서 특수 제작한 성형기(모델명:DKM 90VS)를 사용하여 성형 사이클-타임등 성형물성을 측정하여 표 5 및 도 3에 나타내었다.In order to measure the foaming and molding properties, after foaming at a magnification of 60 times using a batch foaming machine (model name: HLC-901) specially manufactured by Daegong, foaming properties such as rumping are shown in Table 4 and FIG. The molding properties such as molding cycle-time were measured using a molding machine (model name: DKM 90VS) specially manufactured by Daegong Co., Ltd. and are shown in Table 5 and FIG. 3.

비교예 1Comparative Example 1

전체적으로 실시예 1과 동일하게 진행하되 TDDM(t-dodecyl mercaptane) 120g을 반응기 온도를 90℃로 승온한 후 한 번에 투입하였다.In the same manner as in Example 1, but 120g TDDM (t-dodecyl mercaptane) was added to the reactor after raising the temperature to 90 ℃.

비교예 2Comparative Example 2

전체적으로 실시예 1과 동일하게 진행하되 TDDM(t-dodecyl mercaptane) 120g을 첨가하지 않고 중합하였다.In the same manner as in Example 1, the polymerization was performed without adding 120 g of t-dodecyl mercaptane (TDDM).

비교예 3Comparative Example 3

예비용해조 1에서 스티렌 단량체 10㎏을 넣고 110rpm으로 교반하면서 폴리에틸렌왁스 50g, 에틸렌비닐아세테이트-알코올 코폴리머 20g을 넣은 후 70℃로 승온하고 60분 유지함으로써 투입한 왁스 및 첨가물을 용해시킨 후 상온에 방치하여 냉각시킨다.10 kg of styrene monomer was added in the pre-dissolution tank 1, and 50 g of polyethylene wax and 20 g of ethylene vinyl acetate-alcohol copolymer were added while stirring at 110 rpm. The temperature was raised to 70 ° C. and maintained for 60 minutes. To cool.

예비용해조 2에서 벤조일퍼옥사이드 110g과 t-부틸퍼벤조에이트 60g을 스티렌단량체 30㎏에 넣고 30분에 걸쳐 용해시킨 후 예비 용해조 1에서 만든 용액을 붇고 다시 30분간 교반하여 분산액을 제조한다.110 g of benzoyl peroxide and 60 g of t-butylperbenzoate were added to 30 kg of styrene monomer in the preliminary dissolution tank 2 and dissolved over 30 minutes. Then, the solution made in the preliminary dissolution tank 1 was quenched and stirred for 30 minutes to prepare a dispersion.

별도로, 100ℓ 내압 반응조에 순수 40㎏을 넣고 분산제로 트리칼슘포스페이트 150g, 질산나트륨 60g, 도데실벤젠설포네이트 15g, 마그네슘퍼설페이트 8.0g을 가하여 현탁액을 제조한 후 예비용해조 2에서 만든 분산액을 넣고 60분간 110rpm으로 교반시킨다. 그 후 반응기의 온도를 90℃로 승온한 후 유지시키면서 중합율이 75%가 될때까지 중합시킨다. 그 후 반응조를 밀폐한 후 110℃로 70분간 승온시키면서 3200g의 펜탄을 1g/분의 속도로 70분간 일정량씩 투입한다.Separately, 40 kg of pure water was added to a 100 L pressure reactor, and the suspension was prepared by adding 150 g of tricalcium phosphate, 60 g of sodium nitrate, 15 g of dodecylbenzenesulfonate, and 8.0 g of magnesium persulfate as a dispersant. Stir at 110 rpm for minutes. Thereafter, the temperature of the reactor is raised to 90 ° C. and maintained until the polymerization rate reaches 75% while maintaining the temperature. Thereafter, the reactor was sealed, and then heated at 110 ° C. for 70 minutes, and 3200 g of pentane was added at a constant amount of 70 minutes at a rate of 1 g / min.

다음으로 120℃ 온도에서 5시간 유지시켜 미반응된 스티렌 단량체의 함량이 1000ppm이하까지 되도록 하고 그 이하는 실시예 1과 동일하게 실시하였다.Next, the mixture was maintained at 120 ° C. for 5 hours so that the content of unreacted styrene monomer was less than or equal to 1000 ppm, and the same was carried out in the same manner as in Example 1.

비교예 4Comparative Example 4

실시예 1과 동일하게 실시하되 벤조일퍼옥사이드 함량을 110g으로 하였고 t-부틸퍼벤조에이트 함량을 60g으로 변경하였다.It carried out similarly to Example 1, but changed the benzoyl peroxide content to 110g, and changed the t-butylperbenzoate content to 60g.

비교예 5Comparative Example 5

실시예 1과 동일하게 실시하되 분산액 제조시 에틸렌비닐아세테이트-알코올 코폴리머를 첨가하지 않았고 최종 중합물 수득후 믹서에서 코팅제 첨가시 징크스테아레이트를 첨가하지 않았다.The same procedure as in Example 1 was carried out except that ethylene vinyl acetate-alcohol copolymer was not added in preparing the dispersion, and zinc stearate was not added in the mixer after the final polymer was obtained.

실시예 1 및 비교예 1∼5의 스티렌 수지입자 제조에 사용된 각 성분을 표 1에 나타내었다.Table 1 shows each component used in the preparation of the styrene resin particles of Example 1 and Comparative Examples 1 to 5.

조성(단위:phr)Composition (phr) 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 개시제Initiator BPOBPO 0.4000.400 0.4000.400 0.4000.400 0.2750.275 0.2750.275 0.4000.400 TBPBTBPB 0.2500.250 0.2500.250 0.2500.250 0.1500.150 0.1500.150 0.2500.250 발포제투입시기(Conversion)Conversion time of blowing agent 40 %40% 40 %40% 40 %40% 75 %75% 40 %40% 40 %40% TDDM 점증적 투입 유,무TDDM Incremental Input 0.300.30 0.30(일괄투입)0.30 (batch) -- -- 0.300.30 0.300.30 발포제(펜탄)Foaming Agent (Pentane) 3.753.75 3.753.75 3.753.75 8.008.00 3.753.75 3.753.75 Inner-GTSInner-GTS 0.500.50 0.500.50 0.500.50 -- 0.500.50 0.500.50 EVA-CopolymerEVA-Copolymer 0.500.50 0.500.50 0.500.50 0.500.50 0.500.50 -- 코팅coating Zn-StZn-St 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 -- GMSGMS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 GTSGTS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05

1. BPO(순도 75% ) : 디벤조일퍼옥사이드(Dibenzoyl peroxide)1.BPO (Purity 75%): Dibenzoyl peroxide

2. TBPB : t-부틸퍼벤조에이트(t-Butyl perbenzoate)2. TBPB: t-Butyl perbenzoate

3.Inner-GTS : 가소제로 사용된 글리세릴 트리아세테이트(Gryceryl3.Inner-GTS: Glyceryl triacetate used as plasticizer

tristearate)tristearate)

4. EVA-Copolymer : 에틸렌-비닐아세테이트-알콜 공중합체(Ethylene vinylEVA-Copolymer: Ethylene vinyl

acetate-alcohol copolymer)acetate-alcohol copolymer)

5. Zn-St : 징크-스테아레이트(Zinc-stearate)5.Zn-St: Zinc-Stearate

6. GMS : 글리세릴 모노스테아레이트(Glyceryl monostearate)6.GMS: Glyceryl monostearate

7. GTS : 코팅제로 사용된 글리세릴 트리스테아레이트(Glyceryl7. GTS: Glyceryl Tristearate Used as Coating

tristearate)tristearate)

8. TDDM : t-도데실머캅탄(t-Dodecyl Mercaptane) (사슬이동제)8.TDDM: t-Dodecyl Mercaptane (Chain Transfer Agent)

조성(단위:phr)Composition (phr) 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 개시제Initiator BPOBPO 0.4000.400 0.4000.400 0.4000.400 0.2750.275 0.2750.275 0.4000.400 TBPBTBPB 0.2500.250 0.2500.250 0.2500.250 0.1500.150 0.1500.150 0.2500.250 발포제투입시기(Conversion)Conversion time of blowing agent 40 %40% 40 %40% 40 %40% 75 %75% 40 %40% 40 %40% TDDM 점증적 투입 유,무TDDM Incremental Input 0.300.30 0.30(일괄투입)0.30 (batch) -- -- 0.300.30 0.300.30 발포제(펜탄)Foaming Agent (Pentane) 3.753.75 3.753.75 3.753.75 8.008.00 3.753.75 3.753.75 Inner-GTSInner-GTS 0.500.50 0.500.50 0.500.50 -- 0.500.50 0.500.50 EVA-CopolymerEVA-Copolymer 0.500.50 0.500.50 0.500.50 0.500.50 0.500.50 -- 코팅coating Zn-StZn-St 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 -- GMSGMS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 GTSGTS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 화학분석Chemical analysis 분자량(Mv)Molecular Weight (Mv) 175000175000 178000178000 185000185000 238000238000 241000241000 181000181000 PDIPDI 3.873.87 2.152.15 1.891.89 1.771.77 3.623.62 3.793.79 펜탄(%)Pentane (%) 3.513.51 3.343.34 3.423.42 6.236.23 3.433.43 3.453.45 시간발포성Time foamability 5분5 minutes 8383 7676 7272 6868 6969 8282 7분7 minutes 9494 8383 7777 7575 7777 9191 9분(최대)9 minutes (max) 103103 8888 8282 8080 8383 101101

시간발포성이란 스팀압력 0.2kgf/㎠로 스팀시간( 5분, 7분, 9분)에 따른 발포성을 측정한 것이다.Time-foaming property is a foaming pressure according to steam time (5 minutes, 7 minutes, 9 minutes) at a steam pressure of 0.2kgf / ㎠.

조성(단위:phr)Composition (phr) 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 개시제Initiator BPOBPO 0.4000.400 0.4000.400 0.4000.400 0.2750.275 0.2750.275 0.4000.400 TBPBTBPB 0.2500.250 0.2500.250 0.2500.250 0.1500.150 0.1500.150 0.2500.250 발포제투입시기(Conversion)Conversion time of blowing agent 40 %40% 40 %40% 40 %40% 75 %75% 40 %40% 40 %40% TDDM 점증적 투입 유,무TDDM Incremental Input 0.300.30 0.30(일괄투입)0.30 (batch) -- -- 0.300.30 0.300.30 발포제(펜탄)Foaming Agent (Pentane) 3.753.75 3.753.75 3.753.75 8.008.00 3.753.75 3.753.75 Inner-GTSInner-GTS 0.500.50 0.500.50 0.500.50 -- 0.500.50 0.500.50 EVA-CopolymerEVA-Copolymer 0.500.50 0.500.50 0.500.50 0.500.50 0.500.50 -- 코팅coating Zn-StZn-St 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 -- GMSGMS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 GTSGTS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 발포물성Foam property 배율Magnification 60 배60 times 60 배60 times 60 배60 times 60 배60 times 60 배60 times 60 배60 times 사이클-타임Cycle-time 40 sec40 sec 53 sec53 sec 69 sec69 sec 43 sec43 sec 58 sec58 sec 41 sec41 sec 럼핑Lumping 0.04 %0.04% 0.02 %0.02% 0.01 %0.01% 0.01 %0.01% 0.02 %0.02% 2.58 %2.58%

발포물성에 있어서 사이클-타임은 목표한 배율(상기 60배)로 발포하는데 소용되는 시간으로서 발포속도를 나타내는 것이다.In foaming properties, the cycle-time represents the foaming rate as the time spent foaming at the target magnification (60 times above).

럼핑은 초기에 투입한 비드에 대한 (발포시 열에 의하여) 발포립간 덩어리져서 깨지지 않는 발포립의 무게비로서 열안정성의 비교 데이터로 통상 사용되는 것이다.Lumping is a weight ratio of foaming particles which are not lumped and broken between the foaming granules (by heat during foaming) with respect to the initially charged beads, and is commonly used as comparative data of thermal stability.

조성Furtherance 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 숙성4HRAging 4HR 면압Surface pressure 1.341.34 1.361.36 1.381.38 1.391.39 1.381.38 1.341.34 진공냉각Vacuum cooling 3838 3333 3030 108108 5959 3636 성형시간Molding time 113113 108108 104104 179179 132132 111111 함수율Water content 6.456.45 6.636.63 6.786.78 4.474.47 6.396.39 6.746.74 융착Welding 9090 9090 8585 9090 8080 9090 압축강도Compressive strength 857857 849849 846846 876876 878878 852852 숙성24HRAging 24HR 면압Surface pressure 1.351.35 1.371.37 1.391.39 1.361.36 1.391.39 1.351.35 진공냉각Vacuum cooling 4040 3636 3131 9999 5555 3838 성형시간Molding time 115115 111111 105105 151151 127127 113113 함수율Water content 6.036.03 6.116.11 6.246.24 5.425.42 7.137.13 6.166.16 융착Welding 9595 9595 8585 8585 8080 9595 압축강도Compressive strength 871871 866866 867867 871871 875875 873873

1. 면압이란 발포립 충진이 완료된 후 스팀이 금형내로 투입이 완료되었을때의 금형내 최대압력을 나타낸다(단위 kgf/㎠).1. Surface pressure refers to the maximum pressure in the mold when steam is introduced into the mold after foam lip filling is completed (unit kgf / cm 2).

2. 진공냉각은 진공냉각시간을 의미한다(단위 sec).2. Vacuum cooling means vacuum cooling time (unit sec).

3. 성형시간은 충진부터 이형이 완료될때까지의 총성형시간이다(단위 sec).3. Molding time is the total molding time from filling to completion of release (unit sec).

4. 함수율은 성형직후의 성형품 중량에 대한 60℃에서 24hr 건조된 성형품의 중량비이다(단위%).4. The moisture content is the weight ratio of the molded part dried at 60 ° C for 24hr to the weight of the molded part immediately after molding (%).

5. 융착은 성형품을 파단하였을때 가로, 세로 단위 3㎠ 발포립의 수에 대한 단위면적내 찢어진 발포입자의 수를 나타낸다(단위 %).5. Fusion refers to the number of foam particles torn in the unit area relative to the number of 3 cm2 foam granules in horizontal and vertical units when the molded product is broken (unit%).

6. 제일모직 분석 표준법에 의한 상자압축강도이다(단위 kgf/㎠).6. Box compressive strength according to Cheil Industries Analysis Standard Method (unit kgf / ㎠).

이상에서 살펴본 바와 같이 본 발명에 따라 제조된 발포성 스티렌 수지입자는 VOCS(휘발성유기화학물질류)로 규정된 펜탄의 발포제 함량이 매우 낮아서 일반적인 발포성 수지입자와는 구별되는 환경친화적 제품이며, 낮은 발포제 함량에도 불구하고 발포시 최대 발포배율이 100배로 탁월하여 제품 적용성이 종래의 발포성 스티렌수지보다 우수하여 기존의 발포성 스티렌수지를 대체할 수 있으며, 뛰어난 열안정성, 빠른 성형 사이클-타임등 그 물성에 있어서도 우수하여 향후 그 적용범위의 확대가 기대된다.As described above, the expandable styrene resin particles prepared according to the present invention have an extremely low blowing agent content of pentane, which is defined as VOC S (volatile organic chemicals), and thus are environmentally friendly products that are distinguished from ordinary foaming resin particles. In spite of the content, the maximum expansion ratio is 100 times when foaming, so the applicability of the product is superior to that of conventional foaming styrene resin, so that it can replace existing foaming styrene resin, and it has excellent thermal stability and rapid molding cycle time. In addition, it is expected to expand its scope of application in the future.

Claims (4)

발포성 스티렌계 수지를 제조함에 있어서, 0.05∼1.0phr의 글리세릴트리스테아레이트와 0.01∼0.5phr의 에틸렌비닐아세테이트-알코올 코폴리머를 스티렌 단량체에 용해하여 분산시키는 단계와; 중합반응물에 반응개시점부터 중합율 30∼50%에 이를 때까지 0.05∼0.5phr의 터셔리도데실머캅탄을 점증적으로 첨가하는 단계와; 중합율이 30∼50%에 이르렀을 때 발포제를 첨가하는 단계와; 발포성 스티렌계 수지입자 제조후 0.01∼0.5phr의 징크스테아레이트를 첨가하는 단계를 포함하는 저발포제 고발포성 스티렌 수지 입자의 제조방법.In preparing a foamable styrene resin, dissolving and dispersing 0.05 to 1.0 phr of glyceryl tristearate and 0.01 to 0.5 phr of ethylene vinyl acetate-alcohol copolymer in styrene monomer; Incrementally adding 0.05 to 0.5 phr of tertiarydecyl mercaptan from the start of the reaction to the polymerization rate of 30 to 50%; Adding a blowing agent when the polymerization rate reaches 30 to 50%; A method of producing a low foaming agent highly foamable styrene resin particles comprising the step of adding 0.01 to 0.5 phr of zinc stearate after the production of foamable styrene resin particles. 제 1항에 있어서, 상기 발포제로서 휘발성유기화합물(CNH2N+2)을 4.0중량% 미만으로 첨가하는 것을 특징으로 하는 저발포제 고발포성 스티렌 수지 입자의 제조방법.The method of producing a low foaming agent highly foamable styrene resin particle according to claim 1, wherein a volatile organic compound (C N H 2N + 2 ) is added at less than 4.0% by weight as the blowing agent. 제 5항에 있어서, 상기 휘발성유기화합물(CNH2N+2) 발포제는 펜탄인 것을 특징으로 하는 저발포제 고발포성 스티렌 수지 입자의 제조방법.The method of claim 5, wherein the volatile organic compound (C N H 2 N + 2 ) blowing agent is pentane. 제 1항에 있어서, 상기 발포성 스티렌 입자는 평균분자량이 15만~20만이며 PDI(Poly Dispersity Index)가 3∼4인 것을 특징을 하는 저발포제 고발포성 스티렌 수지 입자의 제조방법.The method of claim 1, wherein the expandable styrene particles have an average molecular weight of 150,000 to 200,000 and a PDI (Poly Dispersity Index) of 3 to 4.
KR10-1999-0003801A 1999-02-04 1999-02-04 Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents KR100524320B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0003801A KR100524320B1 (en) 1999-02-04 1999-02-04 Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0003801A KR100524320B1 (en) 1999-02-04 1999-02-04 Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents

Publications (2)

Publication Number Publication Date
KR20000055274A true KR20000055274A (en) 2000-09-05
KR100524320B1 KR100524320B1 (en) 2005-10-26

Family

ID=19573396

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0003801A KR100524320B1 (en) 1999-02-04 1999-02-04 Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents

Country Status (1)

Country Link
KR (1) KR100524320B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972843A (en) * 1972-11-11 1976-08-03 Chemische Werke Huls Aktiengesellschaft Expandable styrene polymers suitable for the production of quickly moldable cellular bodies
JP2760361B2 (en) * 1990-05-28 1998-05-28 積水化成品工業株式会社 Method for producing expandable styrene-modified polyolefin resin particles
US5225451A (en) * 1992-08-27 1993-07-06 Astro-Valcour, Inc. Ultra low density polyolefin foam, foamable polyolefin compositions and process for making same
JP3171001B2 (en) * 1994-04-28 2001-05-28 三菱化学フォームプラスティック株式会社 Styrenic expandable resin particles and suspension polymerization method for obtaining the same

Also Published As

Publication number Publication date
KR100524320B1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US3192169A (en) Method of making expandable polymeric styrene particles
US3503908A (en) Method of making expandable polymers
US4539335A (en) Expandable thermoplastic resin particles and process for preparing the same
KR100524320B1 (en) Method for preparing styrenic resin particles with high degree of expansion using a small amount of blowing agents
KR100536087B1 (en) Method for preparing styrenic resin particles with high degree of expansion
KR100622807B1 (en) Process for the production of expandable polystyrene
EP3149074B1 (en) Water expandable polymer beads
KR100536089B1 (en) Method for Preparing Flame-Retardant Styrenic Resin with High Degree of Expansion Using a Small Amount of Blowing Agents
US6153658A (en) Process for the preparation of polymer particles
JPS6338063B2 (en)
JP2611355B2 (en) Method for producing expandable thermoplastic resin particles
KR20100071371A (en) Method for producing expandable polystyrene beads which have excellent flammable capability
KR100659450B1 (en) Colored expandable polystyrene resin having high strength, method for producing therof, and expandable molded product using the same
US5686497A (en) Expandable beads based on a polymer of a vinylaromatic compound containing blowing agent and plasticizer
JPS6129615B2 (en)
KR100759187B1 (en) Expandable poly-styrene resin and method for preparing thereof
KR100742946B1 (en) Foaming styrene resin particles with a good strength, preparation method thereof and molded foam product prepared from the above particles
JP3399065B2 (en) Method for producing expandable styrene resin particles
JP2000143857A (en) Manufacture of expandable styrene resin particle
KR100280214B1 (en) Process for preparing expandable styrene polymer resin beads
EP0764186A1 (en) Coating composition for expandable beads
KR100372803B1 (en) Method of Preparing Polystyrene Beads with High Degree of Expansion
JPS619432A (en) Production of spherical propylene resin particle
JPH04202443A (en) Production of expandable vinyl resin particle
KR100280215B1 (en) Process for preparing expandable styrene polymer resin beads

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20120924

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee