KR20000051912A - Aaaaa - Google Patents

Aaaaa Download PDF

Info

Publication number
KR20000051912A
KR20000051912A KR1019990002619A KR19990002619A KR20000051912A KR 20000051912 A KR20000051912 A KR 20000051912A KR 1019990002619 A KR1019990002619 A KR 1019990002619A KR 19990002619 A KR19990002619 A KR 19990002619A KR 20000051912 A KR20000051912 A KR 20000051912A
Authority
KR
South Korea
Prior art keywords
heat
refrigerant
coolant
distillation
tube
Prior art date
Application number
KR1019990002619A
Other languages
Korean (ko)
Inventor
이현희
Original Assignee
이현희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이현희 filed Critical 이현희
Priority to KR1019990002619A priority Critical patent/KR20000051912A/en
Publication of KR20000051912A publication Critical patent/KR20000051912A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • B01D3/101Recirculation of the fluid used as fluid working medium in a vacuum creating device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE: A method for distillation that changes the vaporization heat and condensation heat of a material to be distilled into the vaporization heat and condensation heat of a coolant to carry out indirect heat conduction is provided to improve efficiency of energy. CONSTITUTION: A method for purifying by distillation according to the present invention is characterized in that a compressed coolant vapor which is compressed to a predetermined pressure is introduced to the inner part of a heat exchanger tube positioned at the base of distillation tank containing a material to be distilled, condensation heat is conducted to the material through the tube, the condensated coolant is introduced to liquid collector and if the collector is filled with a certain quantity of liquid, then the liquid is to flow into the outer space of the coolant vaporizer tube, the material to be distilled contained in the distillation tank is vaporized by the condensation heat of the coolant under vacuum state, the evaporated vapor is introduced to a tube positioned in the coolant vaporizer, condensated therein, flown and stored in a condensate storing tank, the coolant provided with the vapor condensation heat from the coolant vaporizer is vaporized, sucked into a suction port of a compressor or root pump, compressed to a predetermined pressure, discharged out of the compressor or root pump, introduced to the inner part of a tube in the coolant condensation device positioned at the inner part of the distillation tank and condensated with conducting the heat to the material to be distilled.

Description

냉매의 증발열과 응축열을 간접적으로 이용한 증류방법{AAAAA}Distillation using indirect and evaporative heat of refrigerant {AAAAA}

본인이 특허출원신청한 "기화된 증류물질의 응축열을 기화열로 이용하는 증류방법"에서 root 펌프를 이용해 증류물질에서 기화된 증기를 흡입해 일정압력으로 압축한후, 이 압축된 증기의 열을 열교환기를 통해 증류물질로 전달시키며 응축시키는데, 이 압축증기의 응축열을 증류물질의 기화열로 사용하는 원리이다.In my patent application "Distillation method using condensation heat of vaporized distillate as vaporization heat", the vaporized vapor from the distillate is sucked by the root pump and compressed to a certain pressure, and the heat of the compressed steam is converted into a heat exchanger. The condensation heat of the compressed steam is used as the heat of vaporization of the distillate.

그러나 증류정제 시에 root 펌프를 이용한 이 원리를 적용할수 없는 경우도 있는데, 그것은 root펌프로서 사용할 수 없는 특수한 화학물질의 정제를할 때나 또는 증류장치를 대형화할 경우 root펌프의 크기는 한계가 있으므로 root 펌프의 크기를 무시한 채 증류장치를 대형화하여 만들 수 없다. 본 발명에 있어서는 증류물질의 기화열과 응축열을 냉매의 응축열과 기화열로 바꾸어 간접열전달을 하되, 에너지 사용의 효율면에서 root펌프를 이용한 증류방법과 동일한 효과가 있는 방법을 발명하게 되었다.However, this principle of using a root pump in distillation purification may not be applicable, because the size of the root pump is limited when refining special chemicals that cannot be used as a root pump or when the distillation apparatus is enlarged. It is not possible to make a distillation apparatus large in size while ignoring the size of the pump. In the present invention, the heat of vaporization and the heat of condensation of the distillation material is converted into the heat of condensation and the heat of vaporization to indirect heat transfer, but invented a method having the same effect as the distillation method using a root pump in terms of efficiency of energy use.

발명이 이루고자하는 기술적 과제 누락Missing technical challenges for invention

본 도면은 본 장치의 장치도임.This figure is a device diagram of the device.

a:압축기 b:냉매응축기 c:냉매증발기 d:수액기a: compressor b: refrigerant condenser c: refrigerant evaporator d: receiver

e:응축액저장탱크 f:증류물질e: condensate storage tank f: distillate

도면에 보이는 바처럼 증류물질(f)이 들어 있는 증류탱크의 내부밑면에 냉매응축기(b)가 장치되어 있으며, 이 냉매 응축기의 열전달 표면을 형성하는 튜브의 내부에는 냉매가 흐르며 튜브외부는 증류물질과 닿아 있다. 이 냉매응축기의 좌측 밑부분은 증류탱크의 외부에 위치한 수액기(d)와 연결된 관이 있으며, 이 수액기의 밑부분에는 수액기의 밑에 위치한 냉매증발기(c)와 연결되는 관이 있다. 이 냉매증발기(c)의 내부에는 액냉매가 일정한 수위로 차있으며, 냉매 증발기(c)의 윗부분에는 기화된 냉매가 유입되는 압축기(a)의 입구와 연결된 관이 연결되어 있으며, 이 압축기(a)의 배기구는 증류탱크의 내부에 있는 냉매응축기(b)의 좌측 부분과 연결되어 있다. 본장치를 이용한 증류방법은 다음과 같다.As shown in the drawing, a refrigerant condenser (b) is installed on the inner bottom of the distillation tank containing the distillation material (f). A refrigerant flows inside the tube forming the heat transfer surface of the refrigerant condenser and the outside of the tube is distilled material. Touches The lower left part of the refrigerant condenser has a tube connected to the receiver (d) located outside the distillation tank, and the bottom of the receiver has a tube connected to the refrigerant evaporator (c) located below the receiver. The refrigerant evaporator (c) is filled with a liquid refrigerant at a constant water level, and the upper part of the refrigerant evaporator (c) is connected to a pipe connected to the inlet of the compressor (a) into which the vaporized refrigerant is introduced. The exhaust port of) is connected to the left part of the refrigerant condenser (b) inside the distillation tank. Distillation method using this apparatus is as follows.

증류탱크에 들어있는 물질이 편의상 물이라 가정하고 진공조건에서 35℃ 에 증발을 시킨다고 할 때 열 전달 물질인 냉매의 선정은 비점이 31℃이하이면 된다. 그것은 압축냉매의 응축온도에 관계된 것으로 냉매와 정제물질간의 열전달면을 고려하여 정제물질의 기화온도점보다 약 4℃ 이상 낮은 조건에서 압축냉매의 응축온도를 유지해야 되며, 냉매의 응축온도는 냉매의 비점보다 높아야 응축압력이 1㎏/㎠이상이 되기 때문이다.Assuming that the material in the distillation tank is water for convenience, evaporation at 35 ° C under vacuum conditions requires that the refrigerant, the heat transfer material, has a boiling point of 31 ° C or less. It is related to the condensation temperature of the compressed refrigerant. In consideration of the heat transfer surface between the refrigerant and the purified material, the condensation temperature of the compressed refrigerant should be maintained at about 4 ° C or lower than the vaporization temperature point of the purified material. This is because the condensation pressure must be higher than the boiling point to be 1 kg / cm 2 or more.

먼저 압축기(a)를 작동하여 냉매증발기(c)에서 기화된 냉매를 흡입해 압축한후 냉매응축기(b)로 보낸다. 압축되어 냉매응축기로 들어간 냉매는 튜브를 통해 증류물질에 응축열을 전도해 주고 응축되어 수액기(d)로 들어간다. 이때 압축된 냉매의 응축온도는 냉매응측기를 이루는 구성요소인 튜브의 단위면적당 열 전달되는 열 전달량의 많고 적음에 의해 결정되는데, 증류물질의 기화에 필요한 열량을 제공해줄 때 열전달 조건이 우량하면, 증류물질의 온도와 냉매의 응축온도와의 차이가 적게 되어지므로 응축온도는 낮게된다.First, the compressor (a) is operated to suck and compress the vaporized refrigerant from the refrigerant evaporator (c), and then send the refrigerant to the refrigerant condenser (b). The refrigerant, which is compressed and enters the refrigerant condenser, conducts heat of condensation to the distillate through the tube, and condenses and enters the receiver (d). At this time, the condensation temperature of the compressed refrigerant is determined by the high and low heat transfer amount per unit area of the tube, which is a component of the refrigerant condenser, and when the heat transfer condition is excellent when providing the amount of heat required for vaporization of the distillate, Since the difference between the temperature of the distillate and the condensation temperature of the refrigerant is reduced, the condensation temperature is low.

응축온도가 낮을수록 냉매의 응축압력이 낮아지고 따라서 압축기의 압축압력이 낮아지게 되므로 압축기의 구동에너지 소비가 적어지게되며, 본장치에 있어서 사용되는 에너지는 압축기의 구동에너지뿐이므로 압축기의 구동에너지를 절감하기 위해서는 냉매의 응축온도를 낮게 유지해야 한다.The lower the condensation temperature, the lower the condensation pressure of the refrigerant, and thus the lower the compression pressure of the compressor. Therefore, the driving energy consumption of the compressor is reduced. The energy used in this apparatus is only the driving energy of the compressor. To save, the refrigerant's condensation temperature must be kept low.

한편 증류물질은 냉매의 응축열을 전달받아서 기화하게 되며 이 기화된 증기는 냉매증발기(c)의 튜브내부로 유입된다. 이곳에서 증기는 응축되며 이 응축열을 튜브외부 부분에 차있는 냉매액에 빼앗기게 되며, 냉매액은 이 응축열을 빼앗아 기화하게 되면서 압축기의 흡입구로 유입된다. 냉매증발기 (c)의 튜브내부에서 응축된 증류물질은 냉매증발기 (c) 의 밑면에 위치한 응축저장탱크(e)에 유입된다.Meanwhile, the distillate is vaporized by receiving the heat of condensation of the refrigerant, and the vaporized vapor is introduced into the tube of the refrigerant evaporator (c). Here, the steam condenses and the heat of condensation is lost to the coolant liquid filling the outer part of the tube, and the coolant liquid is taken into the inlet of the compressor as the condensation heat is taken away and vaporized. The distillate condensed inside the tube of the refrigerant evaporator (c) flows into the condensation storage tank (e) located at the bottom of the refrigerant evaporator (c).

냉매응축기(b)에서 응축된후 수액기(d)로 유입되어 저장된 냉매액은 일정량이 수액기에 채워지면 냉매 증발기로 들어가도록 되어있다. 즉 냉매는 냉매 증발기(c)에서 증발되어 압축기로 들어가는데, 그 증발열은 증류 정제할 증기의 응축열에서 열교환을 받아서 이용되며, 압축기(a)로 들어간 냉매증기는 일정 압력으로 압축되어 냉매응축기(b)로 들어가며 이곳에서 응축되는데, 이 응축열을 증류 물질에 열교환시키고 응축된 냉매액은 수액기(d)에 유입되고 수액기에서 냉매증발기로 유입된다.The refrigerant liquid condensed in the refrigerant condenser (b) and flowed into the receiver (d) is stored in the refrigerant evaporator when a predetermined amount is filled in the receiver. That is, the refrigerant evaporates from the refrigerant evaporator (c) and enters the compressor. The heat of evaporation is used by receiving heat exchange from the heat of condensation of the steam to be distilled and purified, and the refrigerant vapor entering the compressor (a) is compressed to a predetermined pressure to condense the refrigerant condenser (b). The condensation heat is exchanged to the distillation material and the condensed refrigerant liquid flows into the receiver (d) and from the receiver to the refrigerant evaporator.

냉매 응축열을 교환받은 증류물질은 기화하게 되며, 이처럼 기화된 증기는 냉매증발기의 튜브내부로 들어가며 이 곳에서 응축되어 응축액저장탱크(e)로 유입되면서 저장된다. 여기서 증류물질의 기화열은 냉매응축열을 교환받아 이용되어지고, 증류물질의 응축열은 냉매의 기화열로 이용되어 지므로 실제사용된 에너지는 냉매를 압축하는 압축기의 구동에너지가 된다.The distillate exchanged with the refrigerant condensation heat is vaporized, and the vaporized vapor enters into the tube of the refrigerant evaporator, where it is condensed and stored in the condensate storage tank (e). Here, the heat of vaporization of the distillate is used to exchange the refrigerant condensation heat, and the heat of condensation of the distillate is used as the heat of vaporization of the refrigerant, so the actual energy used is the driving energy of the compressor for compressing the refrigerant.

냉매를 압축하는 압축기의 사용은 경우에 따라서 압축기가 아닌 root형 진공펌프를 사용해도 되는데, 냉매를 선정함에 있어서 사용되는 냉매의 응축조건 면에서 응축압력이 1kg/㎠이하일 경우 즉 증류물질에 전달되는 응축열의 온도보다 비점이 높은 종류의 냉매를 사용할 때 냉매의 응축압력은 1kg/㎠이하가 되므로 이때는 root형 진공펌프를 사용할수 있다.In the case of using a compressor to compress the refrigerant, a root type vacuum pump may be used instead of the compressor. When the refrigerant is selected, the condensation pressure is 1kg / cm2 or less in terms of the condensation conditions of the refrigerant used. When using a refrigerant having a boiling point higher than the temperature of the condensation heat, the condensation pressure of the refrigerant is 1 kg / cm 2 or less, so a root type vacuum pump can be used.

정제물질인 기화된 증기를 root펌프로 흡입해 일정압력으로 압축하여 정제물질에 열을 전달해주는 열교환기에 유입시켜서, 그 증기의 응축열을 직접 기화열로 이용하는 방법을 적용할수 없는 증류정제시켜야 할 특정물질을 증류정제 시킴에 있어서, 정제물질의 응축열에서 냉매의 기화열로 열교환받는 방법을 이용함으로써, 직접적으로 증류물질의 증기를 압축해 그 응축열을 증류물질의 기화열로 이용하는 방법에서 와 비슷한 크기의 에너지 절감효과를 보며 증류물질을 증류 정제할 수 있다.The vaporized vapor, which is a refined substance, is sucked into the root pump and compressed to a certain pressure to be introduced into a heat exchanger that transfers heat to the refined substance, and the specific substance to be purified by distillation cannot be applied. In the distillation purification process, the heat exchange from the heat of condensation of the purified material to the heat of vaporization of the refrigerant is used to compress the vapor of the distillate directly and use the heat of vaporization of the distillate as the vaporization heat of the distillate. The distillate can be distilled and purified.

root형 진공펌프를 이용해 정제물질에서 증발된 증기를 압축해 이 증기의 응축열을 정제물질의 증발열로 사용하는 방법에 있어서, root형 펌프는 크기의 한계가 있으므로 일정한 크기 이상의 대형화된 정제장치를 만들 수 없다. 즉 root펌프의 큰 규모로는 240m3/min의 펌프가 있는데 이 펌프를 사용할 경우, 수분을 4Otorr에서 흡입한다면 분당 증발열량은 5887kca1/min이 되며, 같은 조건일 때 분당 증발열량을 5887kca1/min이상의 크기로 정제장치를 만들 경우 root형 펌프를 이용할 수 없다. 그러나 40torr에서 수분을 증발시키는 같은 조건에서 5887kca1/min이상의 증발열량을 필요로 하는 정제장치를 만드는 것은 본 장치를 사용할 때는 가능하다. 그것은 냉매의 압축열을 이용하므로 냉매를 압축하는 5887kca1/min 이상의 증발열량을 교환해 줄 크기의 압축기는 상용화되어 있다.In the method of compressing the vapor evaporated from the purified material by using a root type vacuum pump and using the heat of condensation of the vapor as the evaporation heat of the purified material, the root type pump has a limitation in size, thus making it possible to make a large-sized refiner of a certain size or more. none. In other words, a large root pump has a pump of 240m3 / min. If this pump is used, the evaporation heat per minute will be 5887kca1 / min if water is inhaled at 4 Otorr. Root-type pumps cannot be used to make furnaces. However, it is possible to make a purification device that requires more than 5887 kca1 / min of evaporation heat under the same conditions to evaporate water at 40 torr. Since it uses the heat of compression of the refrigerant, a compressor of a size that can exchange the amount of evaporation heat of 5887 kca1 / min or more that compresses the refrigerant is commercially available.

Claims (1)

증류물질이 들이있는 증류탱크의 밑면에 장치된 열교환기의 튜브내부에일정한 압력으로 압축된 압축냉매증기를 유입시켜, 튜브를 통해 증류물질에 응축열을 전도하고 응축된 냉매는 수액기로 유입되어 일정한 양이 담겨지면 냉매증발기의 튜브의 외부공간에 흘러들어가게되며, 증류탱크에 들어있는 증류물질은 진공상태에서 냉매의 응축열을 전달 받아서 기화가 이루어지며, 이 기화된 증기는 냉매증발기에 장치된 튜브내부로 유입되며 이곳에서 응축되면서 응축액저장탱크로 흘러들어가 저장되며, 냉매증발기에서 증기응축열을 전달받은 냉매는 기화하여, 압축기나 또는 root펌프의 흡입구로 흡입되어 일정한 압력으로 압축된후, 압축기나 또는 root펌프의 밖으로 배출되면서 증류탱크의 내부에 장치된 냉매응축기의 튜브내부로 들어가서, 증류물질에 열을 전도해주고 응축되는 연속적인 공정을 특징으로한 증류정제물질의 증류정제방법Compressed refrigerant vapor compressed at a constant pressure is introduced into the tube of the heat exchanger installed at the bottom of the distillation tank containing the distillate, and the condensed heat is conducted to the distillate through the tube. When it is contained, it flows into the outer space of the tube of the refrigerant evaporator, and the distillate in the distillation tank is vaporized by receiving the heat of condensation of the refrigerant in a vacuum state, and the vaporized vapor is transferred into the tube installed in the refrigerant evaporator. After entering the condensate storage tank, the condensate storage tank flows into the condensate storage tank. The refrigerant, which receives the steam condensation heat from the evaporator, is vaporized, sucked into the inlet of the compressor or the root pump, compressed to a constant pressure, and then the compressor or the root pump. Distillation out into the tube of the refrigerant condenser installed inside the distillation tank Distillation and purification method of distillation and purification material characterized by a continuous process of conducting heat and condensing the material
KR1019990002619A 1999-01-27 1999-01-27 Aaaaa KR20000051912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990002619A KR20000051912A (en) 1999-01-27 1999-01-27 Aaaaa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990002619A KR20000051912A (en) 1999-01-27 1999-01-27 Aaaaa

Publications (1)

Publication Number Publication Date
KR20000051912A true KR20000051912A (en) 2000-08-16

Family

ID=19572550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990002619A KR20000051912A (en) 1999-01-27 1999-01-27 Aaaaa

Country Status (1)

Country Link
KR (1) KR20000051912A (en)

Similar Documents

Publication Publication Date Title
US6010599A (en) Compact vacuum distillation device
AU618509B2 (en) Absorption refrigeration method and apparatus
CN201384862Y (en) Indirect vapor recompression evaporation system
KR950702508A (en) A water distillation system
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant
CN111747468B (en) Vacuum low-temperature evaporation and concentration system of heat pump
CN213657178U (en) Small-size movable low temperature evaporation plant
KR20000051912A (en) Aaaaa
CN109824105A (en) A kind of vacuum heat pump distillation and concentration system
CN206152375U (en) Multi-heat source vacuum distillation device
CN102020327A (en) Ammonia nitrogen waste water treatment equipment
CN212198569U (en) Low-energy-consumption wastewater evaporation separation device based on refrigerant circulation
CN211158626U (en) High-efficient single-effect evaporation process system
JPS60153986A (en) Distillation method and apparatus
CN215691749U (en) Falling film type heat pump distiller
CN206518904U (en) A kind of low-boiling-point substance retracting device
CN220939131U (en) Crystallization device combining MVR evaporation and single-effect evaporation
CN111252834A (en) Low-energy-consumption wastewater evaporation separation method based on refrigerant circulation
CN111747469B (en) Improved generation heat pump vacuum low temperature evaporation concentration system
CN202170253U (en) Treatment equipment for wastewater containing acrylon with high concentration
KR101642842B1 (en) System for seawater concentrating and scale crystallizing
CN1140307C (en) Distiller and drinking water machine
CN216512949U (en) Industrial waste water heat pump distiller
CN219185834U (en) Two-section MVR evaporator
CN1205647A (en) Small compact vacuum distillation appts.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application