KR20000050435A - Shear strain control device for lrb(lead rubber bearing) compensating thermal movement of super structure for bridge - Google Patents
Shear strain control device for lrb(lead rubber bearing) compensating thermal movement of super structure for bridge Download PDFInfo
- Publication number
- KR20000050435A KR20000050435A KR1019990000310A KR19990000310A KR20000050435A KR 20000050435 A KR20000050435 A KR 20000050435A KR 1019990000310 A KR1019990000310 A KR 1019990000310A KR 19990000310 A KR19990000310 A KR 19990000310A KR 20000050435 A KR20000050435 A KR 20000050435A
- Authority
- KR
- South Korea
- Prior art keywords
- bridge
- lrb
- pier
- shear
- control device
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/022—Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Environmental & Geological Engineering (AREA)
- Structural Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
최근 국내에서 설치 시공·건설 중인 교량에는 의무적으로 내진 설계를 하도록 규정하고 있다. 이는 구조물이 지진이나 외부 진동으로 인하여 구조적으로 문제가 발생될 경우인적·물적으로 상당히 많은 피해를 유발시키고 있기 때문이다.Recently, mandatory seismic design is required for bridges under construction and construction in Korea. This is because the structural damage caused by the earthquake or external vibration causes a great deal of human and physical damage.
본 발명의 목적은 최근 국내의 지진 발생 빈도가 높아지고 있고, 지진이 발생 될 경우 교량의 피해를 최소화하기 위해 설치되는 LRB의 사용온도에 다른 적절한 설치를 위한 장치에 대한 발명이다. 대형 교량에서는 제 1도, 져1 2도와 같은 충격 완화 및 흡수장치인 LRB를 사용하고 있다. 이 장치는 교각과 교량 상판사이에 설치하여 계절에 따른 온도 변화에 의해 발생되는 교량 상판의 수축 및 팽창을 흡수하고 외부에서 전달되는 지진과 진동을 적정한 수준으로 저감시키는 장치다. 이때 LRB는 제 3도와 같이 설치 시점의 주면 온도에 따른 변형량을 고려하여 제 2도의 ①의 변형량 조절장치를 이용하여 초기 변형 고정시킨 상태에서 제 7도, 제 8도, 제 9도 에서와 같이 교각과 교량의 상판 사이에 설치한다. 전단 변형량 조절 장치로는 제 2도 ①과 같이 턴 버클을 사용할 수 있고 작용 전단력에 따라 유압 장치를 사용할 수 있다.It is an object of the present invention to increase the frequency of earthquakes in Korea in recent years, and is an invention for a device for proper installation different from the operating temperature of the LRB is installed to minimize the damage of the bridge when an earthquake occurs. Large bridges use LRB, a shock absorber and absorber, such as 1st and 2nd jersey. This device is installed between the bridge and the bridge deck to absorb the contraction and expansion of the bridge deck caused by seasonal temperature changes and to reduce the seismic and vibration transmitted from the outside to an appropriate level. At this time, the LRB is pierted as shown in FIGS. 7, 8, and 9 in the state where the initial deformation is fixed by using the deformation amount adjusting device of ① of FIG. 2 in consideration of the deformation amount according to the main surface temperature at the time of installation as shown in FIG. Install between and the top plate of the bridge. As the shear deformation adjusting device, a turn buckle can be used as in Fig. 2 ①, and a hydraulic device can be used according to the action shear force.
교량의 시공 방법으로는 여러 공법이 있지만 크게 제작된 상판을 교각 위에 올리는 방법과 설치 현장의 여건상 이외 같이 시공할 수 없을 경우 교량의 한쪽 끝에서 지속적으로 상판을 제작 양생 시켜 밀어서 설치하는 공법( ILM 공법 )을 이용한다.There are many methods for the construction of the bridge, but the method of placing the large top plate on the pier and if it cannot be installed other than the conditions of the installation site, the method of continuously building and curing the top plate at one end of the bridge (ILM Public method).
lLM 공법을 이용하여 교량을 시공할 경우 제 1도의 ①과 같이 슬라이딩 플레이트를 이용하여 상판과 교각의 마찰력을 최소화한다.When constructing bridge using lLM method, minimize frictional force between top plate and pier by using sliding plate as ① of FIG.
그러나 상판을 밀어내어 설치하는 과정에서, 설치되어 있는 LRB에 제 7도, 제 8도와 같이 주 전단 방향으로 무리한 힘이 가해질 경우 LRB의 초기 변형 값(제 3도)이 변하거나, 변형 값을 조정할 수 있는 턴 버클이 파손되는 경우가 발생된다.However, in the process of pushing out the upper plate, if excessive force is applied to the installed LRB in the main shear direction as shown in Figs. 7 and 8, the initial deformation value (Fig. 3) of the LRB is changed or the deformation value is adjusted. It can happen that the turn buckle can be broken.
이러한 원인은 상판을 설치할 때 제 1도의 ① 슬라이딩 플레이트의 마찰력이 증가되거나 예정된 방향으로 상판이 밀려가지 않을 경우 발생된다.This cause occurs when the frictional force of the sliding plate of FIG. 1 when the top plate is installed increases or the top plate does not push in a predetermined direction.
더 큰 문제점은 제 1도 ⑤의 LRB와 교각을 체결시키고 있는 볼트에 무리한 힘이 가해져 파손을 유발시킨다는 점이다. 이러한 문제점을 해결하기 위하여 LRB의 초기 변형량 설정 단계에서부터 스트레인 게이지를 이용하여 응력을 측정하여 적정한 힘이 가해지도록 하는 장치다. 초기 설정에는 제 2도의 ①에 부착하여 변형량에 따른 전단력을 측정하고 LRB를 설치한 이후에는 동일한 방법으로 모니터링을 실시하여 전단력의 과다 발생을 확인하고, 이에 따른 슬라이딩 플레이트의 마찰력 상승으로 인한 볼트의 전단 및 교각에 무리한 힘이 전달되어 교각에 작용하는 전단하중에 의해 제 4,5도의 ⑥과 같은 교각의 파손 및 균열 등을 방지하기 위하여 스트레인게이지(Strain Gauge) 및 실시간 측정장치를 이용하는 장치로서 활용의 범위가 광범위하고 ILM 공법에 필수 적인 장치다.A further problem is that excessive force is applied to the bolts that fasten the pier to the LRB of FIG. In order to solve this problem, it is a device to measure the stress using the strain gauge from the initial deformation amount setting stage of the LRB so that an appropriate force is applied. In the initial setting, it is attached to ① of FIG. 2 to measure the shear force according to the deformation amount, and after the LRB is installed, monitoring is performed in the same manner to confirm the occurrence of excessive shear force, and accordingly, the shear of the bolt due to the increase of the frictional force of the sliding plate And strain gauges and real-time measuring devices to prevent breakage and cracking of bridge piers such as ⑥ of FIGS. 4 and 5 due to shear force acting on the piers due to excessive force being applied to the piers. It is extensive in scope and essential to the ILM process.
상기의 식별자가 없습니다.No identifier above
제 1도에서와 같이 교량을 포함한 대형 구조물의 면진장치로 사용되는 납 면진받침은 지진력에 의한 전단 변형량 뿐만 상부 구조물의 온도 변화에 따른 신축량을 포함한 전단변형을 허용할 수 있어야 한다. 특히, 설치조건상 외부에 노출된 교량에 적용할 경우, 설치시점의 온도에 따라서 교량 상부 구조물이 주변온도에 따른 신축량이 크기 때문에 필요한 전단 변형량을 확보하기 위해 LRB의 높이가 증가되고 충분한 교각의 설치 면적이 확보되어야 한다. 즉, 여름철에 LRB를 설치할 경우 지진력에 의한 전단 변형량에 교량 상부 구조물의 팽창량을 고려하여야 하며, 겨울철에 설치할 경우 지진력과 상부 구조물의 수축량을 감안하여 설치 하여야 한다. 따라서, 설치 시점의 온도에 따른 변형량을 계산하여 LRB를 전단 변형시킨 상태에서 설치하면 그만큼 설치 면적이 줄어든다.As shown in Figure 1, the lead seismic isolator used as a seismic isolator for large structures including bridges should be capable of permitting shear deformation including the amount of expansion due to the temperature change of the upper structure as well as the amount of shear deformation caused by seismic forces. In particular, when applied to bridges exposed to the outside due to the installation conditions, the height of the bridge upper structure is increased according to the ambient temperature, so the height of the LRB is increased to secure the required shear deformation and the installation area of the sufficient piers. Should be secured. In other words, when installing LRB in the summer, the expansion of the upper structure of the bridge should be considered in the shear deformation caused by the seismic force. Therefore, when the deformation amount is calculated in accordance with the temperature at the time of installation and the LRB is installed in a shear deformation state, the installation area is reduced by that amount.
시공현장에서 초기 변형을 주기 위해서는 횡 방향으로 큰 하중을 작용시켜야 하며, 제품의 특성에 따른 변형량과 횡 방향력을 정확하게 측정함으로써, 설치와 사용에 문제가 없어야 한다.To give the initial deformation at the construction site, a large load must be applied in the transverse direction, and by measuring the amount of deformation and the transverse force according to the characteristics of the product accurately, there should be no problem in installation and use.
이를 위하여 사용 온도에 따라 전단 변위를 산정하고, 계산된 전단 변위를 발생시키기 위하여 교각에 별도의 반력 구조물을 설치하여 LRB에 하중을 가해 전단 변형시키고있어 설치하기가 매우 번거롭다. 또한, 교량받침대 설치시 교각 위에 설치된 받침대 상부에 미끄럼 판을 사용하여 교량 상부구조물을 이웃한 교각위로 밀어내는 공법(ILM공법)을 사용하는 경우, 교량구조물의 좌우에 설치된 받침대에 균일한 하중이 작용하기가 현실적으로 어렵고, 매우 큰 힘이 작용하므로 교각에 과도한 전단력이 작용하여 교각의 파손을 야기할 수 있다. 따라서, 제품의 공장 출하 이전 전단력 작용에 의한 초기변형을 발생시킬 때, 정확하게 제품에 작용하는 전단하중을 측정하여 관리할 필요가 있으며, 교각 위에서 상부구조물의 시공시 교량받침대에 작용하는 하중을 실시간으로 측정하여 교각에 비틀림 하중이 최소화되고 또한 좌우의 교량받침대에 불 균일한 하중에 의한 제품의 파손 등을 최소화할 장치가 필요하다.To this end, the shear displacement is calculated according to the operating temperature, and in order to generate the calculated shear displacement, a separate reaction force structure is installed on the piers, and the shear load is applied to the LRB, which is very cumbersome to install. In addition, in the case of using the ILM method, which uses a sliding plate on the upper part of the pedestal installed on the pier to install the bridge support (ILM method), a uniform load is applied to the pedestals installed on the left and right sides of the bridge structure. It is practically difficult to do, and a very large force acts so that excessive shear force can act on the piers and cause breakage of the piers. Therefore, it is necessary to accurately measure and manage the shear load acting on the product when generating the initial deformation due to the shear force action before the product is shipped out of the factory, and in real time the load acting on the bridge support during the construction of the superstructure on the pier. By measuring the torsional load on the bridge piers and minimizing the damage of the product due to the uneven loading of the bridge supports on the left and right.
본 발명은 교량용 면진 받침의 설치시 필요한 전단 변형값을 설치되는 시점의 온도에 맞게 현장에서 조절 할 수 있도록 하였으며 제품의 공장 출하시 교각 위에서 교량 받침대을 통하여 상부구조물을 밀어 시공할 때(ILM공법), LRB에 작용하는 하중을 상시 확인하고 조절함으로써 과도한 추진력에 의한 LRB 및 교각의 파손을 방지 알 수 있도록 하는 장치에 대한 발명이다.The present invention was able to adjust the shear deformation value required for the installation of the seismic support for the bridge in the field according to the temperature at the time of installation and when pushing the upper structure through the bridge pedestal on the pier at the factory shipment of the product (ILM method) The present invention relates to a device for preventing damage to the LRB and piers caused by excessive propulsion by constantly checking and adjusting the load acting on the LRB.
2. 도면의 간단한 설명2. Brief description of the drawings
제 1도는:LRB의 형상(입체도)Figure 1 shows the shape of the LLB (stereogram)
제 2도는:LRB의 형상(종단면도)2 is the shape (LR) of the LLB
제 3도는:LRB의 전단 변형 방향과 전단후의 형상3 is the shear deformation direction of the LLB and the shape after the shear
제 4도는:대형 교량에서 LRB의 설치 예 ( 횡단면도 )4 is an example of the installation of LRB on a large bridge (cross section)
제 5도는:대형 교량에서 LRB의 설치 예 ( 종단면도 )5 is an example of mounting the LRB on a large bridge.
제 6도는:주파수 분석 시스템6 is: frequency analysis system
제 7도는:LRB 현장설치 예Figure 7: Example of LRB Field Installation
제 8도는:ILM에 의한 교량 시공 예8 is: Bridge construction example by ILM
제 9도는:상판의 온도 변형과 LRB 설치 부위9 is: temperature deformation of the top plate and the LRB installation site
제 1O도는:LRB의 현장 설치 상태Figure 10: Field Installation Status of the LLB
* 도면의 주요 부문에 대한 설명* Description of the main sections of the drawing
<제 1도><Figure 1>
① LRB 상부 플레이트 ② LRB 하부 플레이트① LRB top plate ② LRB bottom plate
③ ILM용 상·하부 플레이트 고정 블록 ④ LRB③ ILM upper and lower plate fixing block ④ LRB
⑤교각과 LRB 체결 볼트 ⑥ 납심 (LEAD PLUG)⑤ Pierce and LRB tightening bolt ⑥ Lead lead
⑦ 슬라이딩 플레이트 ⑧ 베이스 플레이트⑦ Sliding Plate ⑧ Base Plate
⑨ 앙카 볼트⑨ anchor bolt
<제 2도><Figure 2>
① LRB의 전단 변형 조절장치① Shear strain control device of LRB
<제 3도><Figure 3>
⑩ LRB 초기 설치시 설정되는 전단 변형 방향전단 Shear deformation direction set at initial installation of LRB
<제 4도, 제 5도><Figure 4, 5>
① 교량 상판 ② 교각① Bridge deck ② Pier
③ LRB 상부 플레이트 ④ LRB 하부 플레이트③ LRB top plate ④ LRB bottom plate
⑤ 교각과 플레이트 체결볼트 ⑥ 교각 예상 균열 부분⑤ Pier and plate fastening bolt ⑥ Pierce crack
<제 6도><Figure 6>
⑦ 시그널 케이블 ⑧ 주파수 분석 시스템⑦ Signal Cable ⑧ Frequency Analysis System
<제 7도> LRB 현장 설치 상태<Figure 7> LRB site installation state
① 교량 상판 ② 교량에 설치된 LRB① Bridge deck ② LRB installed on the bridge
③교각③ Pier
<제 8도><Figure 8>
① 교량 상판의 온도 및 하중에 따른 변화 방향(주 전단 변형 방향)① Change direction according to the temperature and load of the bridge deck (main shear deformation direction)
상기의 식별자가 없습니다.No identifier above
상기의 식별자가 없습니다.No identifier above
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990000310A KR100326406B1 (en) | 1999-01-08 | 1999-01-08 | Lead Rubber Bearing With Fix Block For Shear Strain Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990000310A KR100326406B1 (en) | 1999-01-08 | 1999-01-08 | Lead Rubber Bearing With Fix Block For Shear Strain Control |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000050435A true KR20000050435A (en) | 2000-08-05 |
KR100326406B1 KR100326406B1 (en) | 2002-03-02 |
Family
ID=19570876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990000310A KR100326406B1 (en) | 1999-01-08 | 1999-01-08 | Lead Rubber Bearing With Fix Block For Shear Strain Control |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100326406B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473479B1 (en) * | 2004-09-06 | 2005-03-14 | (주) 한국시설안전연구원 | Measure apparatus for safety check-up of bridge |
CN111794088A (en) * | 2020-07-03 | 2020-10-20 | 中铁大桥局集团有限公司 | Intelligence friction pendulum isolation bearing |
CN111999019A (en) * | 2020-08-26 | 2020-11-27 | 成都济通路桥科技有限公司 | Novel calibration method for bridge support device in operation period |
-
1999
- 1999-01-08 KR KR1019990000310A patent/KR100326406B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473479B1 (en) * | 2004-09-06 | 2005-03-14 | (주) 한국시설안전연구원 | Measure apparatus for safety check-up of bridge |
CN111794088A (en) * | 2020-07-03 | 2020-10-20 | 中铁大桥局集团有限公司 | Intelligence friction pendulum isolation bearing |
CN111999019A (en) * | 2020-08-26 | 2020-11-27 | 成都济通路桥科技有限公司 | Novel calibration method for bridge support device in operation period |
Also Published As
Publication number | Publication date |
---|---|
KR100326406B1 (en) | 2002-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6438904B1 (en) | Root wrapping type aseismic reinforcement construction and method for base of column member | |
Balendra et al. | An economical structural system for wind and earthquake loads | |
US20100320045A1 (en) | System and method for tuning the resonance frequency of an energy absorbing device for a structure in response to a disruptive force | |
CN101424071A (en) | Supporting system of long span stayed-cable bridge | |
CN110080589B (en) | Vertical shock isolation device and shock isolation and installation method thereof | |
US10267032B2 (en) | Resilient bearing | |
JPS6242192Y2 (en) | ||
NZ755659A (en) | A base isolation system | |
JPS58121337A (en) | Elastic element for elastically supporting machine | |
Kelly et al. | Earthquake simulator testing of a base isolated bridge deck | |
KR20000050435A (en) | Shear strain control device for lrb(lead rubber bearing) compensating thermal movement of super structure for bridge | |
Galindo et al. | Design, full-scale testing and CE certification of anti-seismic devices according to the New European Norm EN 15129: elastomeric isolators | |
JP3823241B2 (en) | Seismic isolation device installation method and installation structure | |
Ikonomou | Alexisismon isolation engineering for nuclear power plants | |
JP3946527B2 (en) | Function change repair method for existing elastic bearings | |
JPS6310013Y2 (en) | ||
CN215593662U (en) | Conversion type friction pendulum damping force-measuring support with height adjusting capability | |
EP2734675B1 (en) | Bearing preset system | |
US11499331B2 (en) | Ductile anchor attachment (DAA) mechanism | |
CN210066473U (en) | Bridge seismic isolation and reduction system | |
CN111549926A (en) | Horizontal damping device and method suitable for vertical vibration isolation structure of integral spring | |
Heldt et al. | Full scale experiments of a steel portal frame building | |
JP3146259B2 (en) | Bridge bearing device | |
CA1102833A (en) | Shock and vibration control system for forging hammer | |
JPS62125173A (en) | Fail safe apparatus of earthquake damping structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130215 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140219 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150209 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160211 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170201 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20180212 Year of fee payment: 17 |
|
EXPY | Expiration of term |