KR20000047105A - Bubbler level maintenance device - Google Patents
Bubbler level maintenance device Download PDFInfo
- Publication number
- KR20000047105A KR20000047105A KR1019980063869A KR19980063869A KR20000047105A KR 20000047105 A KR20000047105 A KR 20000047105A KR 1019980063869 A KR1019980063869 A KR 1019980063869A KR 19980063869 A KR19980063869 A KR 19980063869A KR 20000047105 A KR20000047105 A KR 20000047105A
- Authority
- KR
- South Korea
- Prior art keywords
- bubbler
- chemical
- chemicals
- filled
- level
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/07—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/01433—Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
- C03B37/01838—Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
본 발명은 광섬유 모재를 증착하기 위한 소정의 화학물질을 공급해 주는 버블러의 레벨 유지장치에 관한 것으로서, 더욱 상세하게는 버블러 내에 충진된 화학물질의 수위를 측정하여 일정한 레벨이 유지되도록 보충해 주는 버블러의 레벨 유지장치에 관한 것이다.The present invention relates to a bubbler level maintaining device for supplying a predetermined chemical for depositing an optical fiber base material, and more particularly, to measure a level of chemicals filled in the bubbler to supplement a level to be maintained. The leveler of the bubbler.
일반적으로, 광통신은 광섬유를 통해 빛을 전송하여 정보를 교환하는 것으로, 현재의 동축케이블에 의한 전기 통신에 비해 수만배의 정보를 전송할 수 있다.In general, optical communication is to exchange information by transmitting light through an optical fiber, and can transmit tens of thousands of times of information compared to electric communication by current coaxial cable.
또한, 외부로부터의 전파 및 자기장의 영향을 전혀 받지 않아 정보의 전송상태가 양호하므로 현재 통신분야에서 많이 활용되고 있으며, 그 사용 범위는 점차 타분야로 확대되고 있는 추세이다.In addition, since the transmission state of information is good because it is not influenced by radio waves from the outside at all, it is widely used in the communication field, and its use range is gradually expanding to other fields.
전술한 바와 같은 광통신은 상기 광섬유를 제조함에 있어 프리폼 즉, 모재로부터 125㎛의 가는 직경을 갖는 광섬유를 인발하게 되며, 이어서 코팅 및 칼라링(Coloring) 작업을 통해 광섬유 제작이 완료된다.In the optical communication as described above, the fiber is drawn from the preform, that is, the optical fiber having a small diameter of 125 μm from the base material, and then the optical fiber is manufactured through coating and coloring.
이와 같이 광섬유를 제작하기 위해서는 광섬유 제작용 모재가 필요로 하기 때문에 모재를 제작하는 과정이 선행되게 된다.As such, since a base material for manufacturing an optical fiber is required to manufacture the optical fiber, a process of manufacturing the base material is preceded.
모재를 제작하기 위한 공정으로는 크게 3가지 형태로 구분될 수 있는데, 그 하나는 OVD(Outside Vapor Deposition)공법이고, 둘째로는 VAD(Vapor Axial Deposition)공법이 있으며, 셋째로는 MCVD(Modified Chemical Vapor Deposition)공법이 있다.The process for manufacturing the base material can be largely classified into three types, one of which is the OVD (Outside Vapor Deposition) method, the second is the VAD (Vapor Axial Deposition) method, and the third is the MCVD (Modified Chemical) method. Vapor Deposition).
상술한 각 공법에 따른 모재 제작공정을 참고적으로 설명하면 다음과 같다.Referring to the base material manufacturing process according to each of the above-described method for reference as follows.
먼저, OVD공법은 타겟로드(Target Rod, 알루미나 봉)에 버너의 화염을 분사시켜 가열함과 동시에 화학물질(Chemical)을 공급하여 열영동 현상(Thermophoresis)에 의해 화학물질이 타겟로드의 표면에 증착되도록 하는 것으로, 초기에는 타겟로드의 표면에 코어층을 형성하기 위해 코어층 형성용 화학물질을 공급하고, 이어서 이러한 코어층의 표면에 클래드층(Clad Layer)을 형성하기 위해 다시 화학물질을 공급한다.First, the OVD method injects the flame of the burner to the target rod (Target Rod, Alumina rod) and supplies the chemical at the same time to supply the chemical (CVD) by thermal phenomena (Thermophoresis) deposited on the surface of the target rod Initially, a chemical for forming a core layer is supplied to form a core layer on the surface of the target rod, and then a chemical is supplied again to form a clad layer on the surface of the core layer. .
이상에서 알 수 있는 바와 같이, 모재를 제작하는 공정이 타겟로드의 둘레에 점진적으로 증착되도록 하여 코어층을 먼저 만들고 그 위에 클래드층을 만드는 것이 OVD공법의 특징이다.As can be seen from the above, it is a feature of the OVD method that the process of manufacturing the base material is gradually deposited around the target rod to make the core layer first and then the cladding layer thereon.
이와 달리, 전술한 바와 같은 MCVD(Modified Chemical Vapor Deposition)공법은 석영관의 둘레를 가열함과 동시에 그 내부로 전술한 바와 같은 화학물질을 불어넣으면 열영동 현상에 의해 석영관의 내면에 클래드층(3)이 생성되게 되며, 이후 클래드층의 내면에 코어층을 형성하기 위한 화학물질을 전술한 바와 같이 불어넣어 코어층을 생성시킨다.On the contrary, in the above-described Modified Chemical Vapor Deposition (MCVD) method, the cladding layer is formed on the inner surface of the quartz tube by thermal phenomena by heating the circumference of the quartz tube and blowing the chemical substance as described above into the inside thereof. 3) is generated, and then a chemical for forming the core layer is blown on the inner surface of the clad layer as described above to generate the core layer.
VAD(Vapor Axial Deposition)공법은 수직 방향의 타겟로드에 각각의 버너를 이용하여 상부의 버너는 코어층을 증착시키고, 하부의 버너는 클래드층을 증착시키는 방법으로 동시에 코어층과 클래드층을 형성하는 것을 특징으로 한다.VAD (Vapor Axial Deposition) is a method of forming the core layer and the clad layer at the same time by depositing the core layer on the upper burner and the cladding layer on the lower burner by using each burner on the target rod in the vertical direction. It is characterized by.
본 발명은 전술한 각각의 공법중 MCVD공법과 밀접한 관계가 있는 것으로, MCVD공법에 따른 모재 제작과정을 보다 상세히 설명한다The present invention has a close relationship with the MCVD method of each of the above-described methods, it will be described in more detail the base material manufacturing process according to the MCVD method
상기 MCVD공법은 소정의 튜브 내부로 GeCl4, H2, 아르곤 혹은 질소 가스 및 O2를 통과시키면서 버너를 통해 상기 튜브를 가열하여 튜브 내에서 GeCl4(기체)는 O2(기체)와 반응하여 GeO2(고체)+2Cl2(기체)가 생성된다.The MCVD method heats the tube through a burner while passing GeCl 4 , H 2 , argon or nitrogen gas and O 2 into a predetermined tube, and GeCl 4 (gas) reacts with O 2 (gas) in the tube. GeO 2 (solid) + 2Cl 2 (gas) is produced.
따라서, GeO2는 버너의 토출팁의 주위의 분위기 온도(대략 1,700∼1,800℃)에 의해 입자(Particle)가 튜브 벽면에 증착된다.Therefore, GeO 2 deposits particles on the tube wall by the ambient temperature (approximately 1,700-1,800 ° C.) around the discharge tip of the burner.
아울러, 클래드층을 생성시키기 위해서는 전술한 튜브 내부에 SiCl4를 투입하게 되는데 그 반응식은 아래와 같다.In addition, in order to generate a cladding layer, SiCl 4 is introduced into the above-described tube. The reaction scheme is as follows.
SiCl4(기체)+O2(기체) 〓 SiO2(고체) + 2Cl2(기체)SiCl 4 (gas) + O 2 (gas) 〓 SiO 2 (solid) + 2Cl 2 (gas)
위 반응식에 따라 생성된 SiO2는 전술한 열영동 현상에 의해 튜브의 내벽면에 증착된다.SiO 2 generated according to the above scheme is deposited on the inner wall surface of the tube by the above-mentioned thermophoretic phenomenon.
완성된 모재는 드로잉 타워(Drawing Tower)에 걸어 광섬유를 인발(Drawing)하게 된다.The completed base material is hung on the drawing tower to draw the optical fiber.
도 1은 종래의 버블러의 모습을 보인 단면도이다.1 is a cross-sectional view showing a state of a conventional bubbler.
이를 참조하면, 상기 버블러(10)는 그 내부에 SiCl4(액체) 또는 GeCl4(액체)가 충진된 상태에서 내부로 연결된 소정의 관(50)에 의해 외부로부터 산소(기체)가 공급되어 충진된 화학물질을 SiCl4(기체) 또는 GeCl4(기체) 형태로 증발시켜 소정의 증착장치로 공급해 주는 장치이다.Referring to this, the bubbler 10 is supplied with oxygen (gas) from the outside by a predetermined tube 50 connected therein with SiCl 4 (liquid) or GeCl 4 (liquid) filled therein. Filled chemicals are evaporated in the form of SiCl 4 (gas) or GeCl 4 (gas) and supplied to a predetermined deposition apparatus.
그러나, 상기 버블러(10)의 용량은 보통 3~5ℓ정도이며, 약 2~3회의 증착 공정을 마치게 되면 내부에 화학물질 다시 채워 넣어야 하는 등 작업이 매우 불편하다.However, the capacity of the bubbler 10 is usually about 3 to 5L, and when the deposition process is completed about 2 to 3 times, it is very inconvenient to refill the chemicals therein.
또한, 상기 버블러(10) 내부에 화학물질의 양이 변동되면, 동일량의 산소를 공급하더라도 증발되는 화학물질의 양이 감소되므로, 광섬유 모재의 증착량이 달라지며, 모재의 기하학적인 구조가 불량해 진다.In addition, when the amount of the chemical is changed in the bubbler 10, even if the same amount of oxygen is supplied, since the amount of the evaporated chemical is reduced, the deposition amount of the optical fiber base material is changed, and the geometric structure of the base material is poor. It becomes
본 발명의 주된 목적은 버블러 내에 충진된 화학물질의 수위를 일정하게 유지시켜 주므로써, 버블러로부터 생성되는 화학물질의 양이 일정하게 유지되도록 하며, 작업 도중에 버블러 내부에 화학물질을 채워 자주 넣어야 하는 불편함을 해소할 수 있도록 된 버블러의 레벨 유지장치를 제공하는 것이다.The main object of the present invention is to keep the level of chemicals filled in the bubbler constant, so that the amount of chemical generated from the bubbler is kept constant, and often fills the chemical inside the bubbler during operation. It is to provide a leveler of the bubbler that can eliminate the inconvenience to put.
도 1은 종래의 버블러의 모습을 보인 단면도,1 is a cross-sectional view showing a state of a conventional bubbler,
도 2는 본 발명에 따른 버블러의 레벨 유지장치를 도시한 단면도이다.2 is a cross-sectional view showing a level holding device of a bubbler according to the present invention.
*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***
10 : 버블러 20 : 보조탱크10: bubbler 20: auxiliary tank
25 : 파이프 30 : 마이크로 프로세서25 pipe 30 microprocessor
35 : 솔레노이드 밸브 40 : 감지수단35 solenoid valve 40 sensing means
41 : 광원생성부 42 : 아이솔레이트41: light source generation section 42: isolate
43 : 광센서 45 : 광전변환부43: light sensor 45: photoelectric conversion unit
50 : 관50: tube
본 발명은 버블러 내의 액체 화학물질을 산소로 증발시켜 튜브내에 입자를 증착시키도록 하는 광섬유 모재 증착장치에 있어서, 소정의 파이프에 의해 상기 버블러와 연통되도록 설치되어 충진된 화학물질을 상기 버블러 내에 보충해 주는 보조 탱크와, 상기 파이프상에 설치되어 보조탱크로부터 버블러 내부로 유입되는 화학물질의 유량을 제어하는 밸브와, 상기 버블러 내에 고정 설치되어 버블러 내에 충진된 화학물질의 수위를 감지하는 감지수단과, 상기 감지수단에 전기적으로 연결되어 감지수단으로부터 전달된 전기적인 신호를 근거로 하여 상기 밸브를 제어하는 제어수단으로 이루어진 특징을 갖는다.In the optical fiber matrix deposition apparatus for evaporating a liquid chemical in a bubbler with oxygen to deposit particles in a tube, the bubbler is filled with a chemical filled and installed to communicate with the bubbler by a predetermined pipe. An auxiliary tank for replenishing the inside, a valve installed on the pipe to control the flow rate of the chemical flowing into the bubbler from the auxiliary tank, and a fixed level of the chemical filled in the bubbler And sensing means for sensing and controlling means for controlling the valve based on an electrical signal transmitted from the sensing means electrically connected to the sensing means.
도 2는 본 발명에 따른 버블러의 레벨 유지장치를 도시한 단면도이다.2 is a cross-sectional view showing a level holding device of a bubbler according to the present invention.
이를 참조하면, 상기 버블러의 레벨 유지장치는 소정의 파이프(25)에 의해 상기 버블러(10)와 연통되도록 설치되어 충진된 화학물질을 상기 버블러(10) 내에 보충해 주는 보조탱크(20)와, 상기 파이프(25)상에 설치되어 보조탱크(20)로부터 버블러(10) 내부로 유입되는 화학물질의 유량을 제어하는 솔레노이드 밸브(35)와, 상기 버블러(10) 내에 고정 설치되어 버블러(10) 내에 충진된 화학물질의 수위를 감지하는 감지수단(40)과, 상기 감지수단(40)에 전기적으로 연결되어 감지수단(40)으로부터 전달된 전기적인 신호를 근거로 하여 상기 솔레노이드 밸브(35)를 제어하는 제어수단으로 이루어진다.Referring to this, the level holding device of the bubbler is installed to communicate with the bubbler 10 by a predetermined pipe 25 to supplement the filled chemicals in the bubbler 10. And a solenoid valve (35) installed on the pipe (25) to control the flow rate of chemicals flowing from the auxiliary tank (20) into the bubbler (10), and fixedly installed in the bubbler (10). And sensing means 40 for sensing the level of chemicals filled in the bubbler 10 and based on an electrical signal transmitted from the sensing means 40 electrically connected to the sensing means 40. Control means for controlling the solenoid valve 35.
상기 버블러(10) 내에는 SiCl4(액체) 또는 GeCl4(액체)가 충진된 상태에서 내부로 연결된 소정의 관(50)에 의해 외부로부터 산소(기체)가 공급되어 충진된 화학물질을 SiCl4(기체) 또는 GeCl4(기체) 형태로 증발시켜 소정의 증착장치로 공급해 주는 장치이다.In the bubbler 10, SiCl 4 (liquid) or GeCl 4 (liquid) is filled with a chemical material filled with oxygen (gas) supplied from outside by a predetermined tube 50 connected therein. It is a device that evaporates in the form of 4 (gas) or GeCl 4 (gas) and supplies it to a predetermined deposition apparatus.
상기 보조탱크(20)는 내부에 SiCl4(액체) 또는 GeCl4(액체)가 충진된 상태에서 그 하단부에는 상기 버블러(10)와 연결된 소정의 파이프(25)가 설치되어 상기 버블러(10) 내부에 화학물질의 수위를 일정하게 유지하도록 하는 장치이며, 상기 파이프(25)상에는 내장된 마이크로 프로세서(30)와 전기적으로 연결되어 유량을 제어하는 솔레노이드 밸브(35)가 설치된다.The auxiliary tank 20 is provided with a predetermined pipe 25 connected to the bubbler 10 at a lower end thereof in a state in which SiCl 4 (liquid) or GeCl 4 (liquid) is filled therein, thereby providing the bubbler 10. ) Is a device for maintaining a constant level of the chemical inside, and the pipe 25 is provided with a solenoid valve 35 that is electrically connected to the built-in microprocessor 30 to control the flow rate.
상기 감지수단(40)은 일정 길이의 광섬유(47) 내에 소정의 광신호가 입사되도록 하는 광원생성부(41)와, 상기 광섬유(47)의 끝단부에 설치되어 전송된 광신호를 버블러(10) 내부로 조사시키고, 반사되어 오는 광신호를 수광하여 상기 광섬유(47)를 따라 역방향으로 전송시키는 광센서(43)와, 상기 광섬유(47) 중간 부분에 설치되어 버블러(10) 내부에서 반사되어 오는 광신호가 역행되는 것을 방지해 주는 아이솔레이터(isolater)(42)와, 상기 아이솔레이터(42) 하단부에서 분기된 광섬유 끝단에 설치되어 버블러(10) 내부에서 반사되어 온 광신호를 소정의 전기적인 신호로 변환시켜 주는 광전변환부(45)로 이루어진다.The sensing means 40 is a light source generator 41 for allowing a predetermined optical signal to enter the optical fiber 47 of a predetermined length, and an optical signal installed at the end of the optical fiber 47 and transmitted to the bubbler 10. And an optical sensor 43 for receiving the reflected optical signal and transmitting the optical signal in the reverse direction along the optical fiber 47, and is installed in the middle of the optical fiber 47 and reflected inside the bubbler 10. An isolator 42 which prevents a reversed optical signal from being reversed, and an optical signal which is installed at the end of the optical fiber branched from the lower end of the isolator 42 and reflected from the bubbler 10 to a predetermined electrical It consists of a photoelectric conversion unit 45 for converting into a signal.
상기 제어수단은 광전변환부(45)로부터 전달되는 소정의 전기적인 신호를 근거로 하여 상기 파이프(25) 상에 설치된 솔레노이드 밸브(35)를 제어하는 마이크로 프로세서(30)로 이루어진다.The control means comprises a microprocessor 30 for controlling the solenoid valve 35 installed on the pipe 25 based on a predetermined electrical signal transmitted from the photoelectric conversion unit 45.
이상의 구성에 의한 본 발명의 작동예에 대해 첨부된 도면에 의거하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings for the operation example of the present invention by the above configuration as follows.
이를 참조하면, 상기 버블러 레벨 유지장치는 소정의 화학물질을 담고 있는 보조탱크(20)와 버블러(10)가 소정의 파이프(25)에 의해 연결되고, 상기 버블러(10)상에는 충진된 화학물질 수위를 감지하여 소정의 전기적인 신호를 발생시켜 주는 감지수단(40)이 설치되고, 상기 감지수단(40)은 마이크로 프로세서(30)에 연결되어 상기 파이프(25)상에 설치된 솔레노이드 밸브(35)를 제어하게 된다.Referring to this, the bubbler level maintaining device is connected to the auxiliary tank 20 and the bubbler 10 containing a predetermined chemical by a predetermined pipe 25, and filled on the bubbler 10 Sensing means 40 is installed to detect the level of the chemical to generate a predetermined electrical signal, the sensing means 40 is connected to the microprocessor 30 is a solenoid valve installed on the pipe 25 ( 35).
이때, 상기 감지수단(40)의 작동은 광원생성부(41)로부터 생성된 소정의 광신호가 광섬유(47)를 따라 전달되어 광섬유(47) 끝단의 광센서(43)에 의해 버블러(10) 내부로 조사되면, 상기 광신호는 화학물질의 수면에서 다시 반사되어 상기 광센서(43)에 입력되어 상기 광섬유(47)를 따라 역행하여 전달된다.At this time, the operation of the sensing means 40 is a predetermined optical signal generated from the light source generation unit 41 is transmitted along the optical fiber 47 and the bubbler 10 by the optical sensor 43 at the end of the optical fiber 47. When irradiated inside, the optical signal is reflected back from the surface of the chemical and input to the optical sensor 43, and is transmitted backward along the optical fiber 47.
이와 같이 역행되는 광신호는 분기된 다른 광섬유를 따라 광전변환부(45)로 전달되어 상기 광전변환부(45)로부터 소정의 전기적인 신호로 변환되어 내장된 마이크로 프로세서(30)에 전달된다.The retrograde optical signal is transmitted to the photoelectric conversion unit 45 along another branched optical fiber, converted into a predetermined electrical signal from the photoelectric conversion unit 45, and transmitted to the embedded microprocessor 30.
이러한 과정에서 상기 광센서(43)는 버블러(10) 내부의 소정 높이에 고정 설치되므로, 화학물질의 수면으로부터 반사되어 오는 광신호의 광량은 상기 화학물질의 수위가 변동됨에 따라 변화되고, 이러한 광신호를 입력받은 광전변환부(45)는 대응되는 전기적인 신호를 내장된 마이크로 프로세서(30)에 전달하여 주어 이를 근거로 하여 상기 솔레노이드 밸브(35)를 개폐시키게 된다.In this process, since the optical sensor 43 is fixedly installed at a predetermined height inside the bubbler 10, the light amount of the optical signal reflected from the surface of the chemical is changed as the level of the chemical is changed. The photoelectric converter 45 receiving the optical signal transmits a corresponding electrical signal to the built-in microprocessor 30 to open and close the solenoid valve 35 based on this.
상기 마이크로 프로세서(30)는 광전변환부(45)로부터 전달되어 온 소정의 전기적인 신호가 설정치 이하일 경우 상기 파이프(25) 상에 설치된 솔레노이드 밸브(35)를 개방시키고, 설정값 이상일 경우에는 솔레노이드 밸브(35)를 차단시키게 된다.The microprocessor 30 opens the solenoid valve 35 installed on the pipe 25 when a predetermined electric signal transmitted from the photoelectric conversion unit 45 is less than or equal to a predetermined value, and when the microprocessor 30 is greater than or equal to the predetermined value, the solenoid valve. (35) will be blocked.
이상의 본 발명을 적용하게 되면, 상기 버블러 레벨 유지장치는 버블러 내에 화학물질의 수위가 변동되면, 상기 광센서로부터 반사되어 오는 광량이 변동되므로, 이를 근거로 하여 내장된 마이크로 프로세서에 의해 솔레노이드가 개폐되면서 버블러 내부의 화학물질의 양을 일정하게 유지시켜 주므로, 버블러 내부에서 생성되는 화학물질의 양이 일정하게 유지되며, 작업 도중에 버블러 내부에 화학물질을 채워 넣어야 하는 불편함이 해소된다.According to the present invention, the bubbler level maintaining device is the amount of light reflected from the optical sensor when the level of the chemical in the bubbler is changed, so that the solenoid is built by the built-in microprocessor Since the amount of chemicals inside the bubbler is kept constant while opening and closing, the amount of chemicals generated inside the bubbler is kept constant, and the inconvenience of having to fill the inside of the bubbler during operation is eliminated. .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980063869A KR20000047105A (en) | 1998-12-31 | 1998-12-31 | Bubbler level maintenance device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980063869A KR20000047105A (en) | 1998-12-31 | 1998-12-31 | Bubbler level maintenance device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000047105A true KR20000047105A (en) | 2000-07-25 |
Family
ID=19570411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980063869A KR20000047105A (en) | 1998-12-31 | 1998-12-31 | Bubbler level maintenance device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000047105A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005332A1 (en) * | 2003-07-11 | 2005-01-20 | Lg Cable Ltd. | Outside vapor deposition apparatus for manufacturing optical fiber preform and method for manufacturing optical fiber preform using the same |
KR100897438B1 (en) | 2007-09-07 | 2009-05-14 | 주식회사 녹색기술연구소 | Control apparatus for Sewage treatment system |
US7969808B2 (en) | 2007-07-20 | 2011-06-28 | Samsung Electronics Co., Ltd. | Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same |
-
1998
- 1998-12-31 KR KR1019980063869A patent/KR20000047105A/en not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005332A1 (en) * | 2003-07-11 | 2005-01-20 | Lg Cable Ltd. | Outside vapor deposition apparatus for manufacturing optical fiber preform and method for manufacturing optical fiber preform using the same |
US7969808B2 (en) | 2007-07-20 | 2011-06-28 | Samsung Electronics Co., Ltd. | Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same |
KR100897438B1 (en) | 2007-09-07 | 2009-05-14 | 주식회사 녹색기술연구소 | Control apparatus for Sewage treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102515501B (en) | Method for manufacturing doped optical fibre preform by MCVD (modified chemical vapour deposition) | |
US7363776B2 (en) | Method for forming fused quartz using deuterium | |
CN1129558C (en) | Method of making a tubular member for optical fiber production using plasma outside vapor deposition | |
US4529427A (en) | Method for making low-loss optical waveguides on an industrial scale | |
US4188089A (en) | Optical fibers having high infrared transmittancy | |
US4909816A (en) | Optical fiber fabrication and resulting product | |
US8460408B2 (en) | Hydrogen supply equipment | |
US20240270624A1 (en) | Enhanced particle deposition system and method | |
US4414164A (en) | Process and apparatus for producing preforms for optical fibers | |
CN105492399A (en) | A process for fabrication of ytterbium doped optical fiber | |
KR20040034947A (en) | Method and apparatus for deposited particle control in fabrication of optical fiber preform in OVD | |
CN106219962B (en) | A method of preparing preform | |
JPH0781965A (en) | Gas producer, method for producing optical waveguide and optical fiber preform and device therefor | |
KR20000047105A (en) | Bubbler level maintenance device | |
KR20040000689A (en) | Raw material providing device for chemical vapor deposition process | |
JPH04317431A (en) | Method of manufacturing optical fiber transmission path | |
EP1016636B1 (en) | Method for manufacturing optical fiber preform and method for manufacturing optical fiber | |
Geisler et al. | Optical Fibres: EPO Applied Technology Series | |
CN104045233A (en) | Large Core Multimode Optical Fibers | |
US20060112734A1 (en) | Modified chemical vapor deposition device for manufacturing optical fiber preform | |
JP2003252635A (en) | Method and apparatus for manufacturing porous base material | |
KR100426394B1 (en) | The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition | |
JP2004331495A (en) | Method for modifying ovality of optical fiber preform | |
EP0059564A1 (en) | Manufacture of optical fibre preforms | |
CN211946812U (en) | All-gas-phase doping device for preparing rare earth doped optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
WITN | Withdrawal due to no request for examination |