KR20000042706A - Method for producing oriented electric steel plate by heating slab at low temperature - Google Patents
Method for producing oriented electric steel plate by heating slab at low temperature Download PDFInfo
- Publication number
- KR20000042706A KR20000042706A KR1019980058972A KR19980058972A KR20000042706A KR 20000042706 A KR20000042706 A KR 20000042706A KR 1019980058972 A KR1019980058972 A KR 1019980058972A KR 19980058972 A KR19980058972 A KR 19980058972A KR 20000042706 A KR20000042706 A KR 20000042706A
- Authority
- KR
- South Korea
- Prior art keywords
- annealing
- temperature
- slab
- grain
- heating
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
본 발명은 변압기, 발전기 및 기타 전기기기 등의 철심재료로 사용되는 방향성 전기강판 제조방법에 관한 것으로, 보다 상세하게는 저온 슬라브 가열이 가능하도록 제어된 특정 성분을 첨가하고 2차재결정 안정화 공정을 거침으로써 종래에 비해 공정 단축이 가능한 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, generators, and other electrical equipment, and more particularly, adding a specific component controlled to enable low-temperature slab heating and undergoing a second recrystallization stabilization process. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet capable of shortening a process as compared with the related art.
방향성 전기강판은 결정립의 방위가 (110)[001] 방향으로 정렬된 집합조직을 가지는 강판으로, 냉간압연 방향으로 우수한 자기적 특성을 갖는다.A grain-oriented electrical steel sheet is a steel sheet having an aggregate structure in which grain orientations are aligned in the (110) [001] direction and has excellent magnetic properties in the cold rolling direction.
방향성 전기강판의 자기적 특성은 주로 자속밀도와 철손으로 나타나는데, 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도(B10)로, 철손은 일정한 주파수 50Hz의 교류에 의해 1.7 Tesla의 자속밀도가 얻어지도록 할 때 철심내에서 열 등으로 낭비되는 에너지 손실(W17/50)로 평가하고 있다.The magnetic properties of oriented electrical steel are mainly represented by magnetic flux density and iron loss. The magnetic flux density is the magnetic flux density (B10) that is induced in the iron core by the magnetic field of 1000A / m, and the iron loss is 1.7 Tesla by the alternating frequency of 50Hz. When the magnetic flux density is obtained, it is evaluated as energy loss (W17 / 50) that is wasted by heat in the iron core.
자속밀도가 높은 소재를 사용하게 되면 소형, 고성능의 전기기기의 제작이 가능하게 되며, 철손이 적으면 적을수록 전기 에너지 손실을 대폭 줄일 수 있다.The use of materials with high magnetic flux density enables the manufacture of small, high-performance electrical devices. The smaller the iron loss, the greater the loss of electrical energy.
상기 (110)[001] 집합조직은 2차재결정 현상을 이용하여 얻어지는데, 2차재결정은 보통의 1차재결정에 의해 생긴 미세한 결정립들 중에서 특정 방위의 결정립, 소위 고스(Goss) 방위라 불리우는 (110)[001]의 방위를 가진 결정립(통상 2차재결정의 핵이라 칭함)이 시편 전체로 이상성장(Abnormal growth)한 것으로, 이러한 2차재결정이 완전히 일어나고 그 방향성이 우수할 때 자속밀도가 우수하게 되는 것으로 알려져 있다.The (110) [001] texture is obtained by using a secondary recrystallization phenomenon. Secondary recrystallization is a crystal grain of a specific orientation among fine grains produced by ordinary primary recrystallization, called a Goss orientation ( 110) [001] The grains (usually referred to as the nucleus of the secondary recrystallization) are abnormally grown throughout the specimen, and the magnetic flux density is excellent when the secondary recrystallization occurs completely and its orientation is excellent. It is known to be done.
2차재결정을 안정화하기 위해서는 1차재결정립들의 크기가 균일함과 동시에 1차재결정립들의 방위(이후 1차재결정 집합조직으로 기술함)가 2차재결정의 핵에 잘 잠식될 뿐만 아니라 2차재결정의 성장과정에서 2차재결정이 이상적인 [001] 방향을 고수하는데, 즉 우수한 방향성을 갖는 2차재결정립을 발달시키는데 유리한 것이어야 하는 것으로 알려져 있다.In order to stabilize the secondary recrystallization, the primary recrystallized grains are uniform in size, and the orientation of the primary recrystallized grains (hereinafter referred to as the primary recrystallized aggregate) is not only eroded into the nucleus of the secondary recrystallization but also the secondary recrystallization. It is known that secondary recrystallization adheres to the ideal [001] direction during the growth process, that is, it should be advantageous to develop secondary recrystallized grains having excellent directionality.
이러한 목적을 달성하기 위해서는 적절한 함금설계 및 이에 따른 적절한 공정제어로 적절한 1차재결정 집합조직을 형성시키는 것이 필요하다. 예컨데, 최종 두께로 압연전 미세한 탄화물등 경질입자(Hard Particle)를 적정량 형성시킨 후 냉간압연을 행함으로써 2차재결정에 유리한 {111}[112]등이 1차재결정 집합조직의 주성분이 되게 만들 수 있다.To achieve these objectives, it is necessary to form the appropriate primary recrystallization aggregate structure with proper alloy design and appropriate process control. For example, by forming an appropriate amount of hard particles such as fine carbide before rolling to the final thickness and performing cold rolling, {111} [112], etc., which is advantageous for secondary recrystallization, can be the main component of the primary recrystallization texture. have.
이는 압연중 전위(Dislocation)들이 경질입자에 의해 고착되면 냉간압연 집합조직이 달라지기 때문인 것으로 알려져 있다.This is known because the cold rolling texture changes when dislocations are stuck by hard particles during rolling.
한편, 이에 못지 않게 중요한 것으로 2차재결정이 일어나기 전까지 1차재결정립의 성장을 억제하는 것이 필요하다. 이를 위한 입성장 억제제로는 MnS, MnSe, AlN, Cu2S 등과 같은 석출물이 알려져 있으며, 일반적으로 상기 석출물에 의한 입성장 억제력이 강할수록 2차재결정이 안정화된다.Equally important, it is necessary to restrain the growth of primary recrystallized grains before secondary recrystallization occurs. As a grain growth inhibitor for this, precipitates such as MnS, MnSe, AlN, Cu 2 S, and the like are known, and in general, the stronger the grain growth inhibition by the precipitates, the more the secondary recrystallization is stabilized.
그러나 강한 입성장 억제력을 얻기 위해서는 석출물의 양 및 크기, 그리고 분포를 잘 제어해야 하는데, 수백 내지 2000Å 크기의 미세한 석출물들이 가능한한 많은 양 균일하게 분포되면 이에 상응하여 입성장 억제력이 증가하는 것으로 알려져 있다.However, in order to obtain strong grain growth inhibition, the amount, size, and distribution of the precipitates must be well controlled. It is known that the grain growth inhibitory force is increased when the fine precipitates of several hundred to 2000 microns are uniformly distributed as much as possible. .
이러한 적절한 석출물 분포 제어를 위해 재래식 방향성 전기강판 제조의 경우는 제강단계에서 적정량의 석출물 형성원소를 첨가하고, 연속주조후 슬라브내에 형성된 조대한 석출물을 슬라브 가열에 의해 완전히 고용시키고, 후속되는 열간압연 공정에서 석출물들이 미세하고 균일하게 분포되도록 제어하는 데 비중을 두고 있다.In the case of conventional grain-oriented electrical steel sheet manufacturing for proper control of the precipitate distribution, an appropriate amount of precipitate forming element is added in the steelmaking step, and the coarse precipitate formed in the slab after continuous casting is completely dissolved by slab heating, followed by a hot rolling process. The emphasis is on controlling the precipitates to be finely and uniformly distributed.
이를 위해, 상기 재래식 공정에서는 1200℃ 정도에서 5시간 정도의 슬라브 가열을 실시해야 하는 바, 이 때 고온의 슬라브 표면에서는 공기와의 산화반응으로 Si 및 Fe가 복잡한 파얄라이트(Fayalite)라는 산화물이 형성 되며, 이 산화물은 융점이 낮아 슬라브 표면온도가 1330℃ 정도만 되어도 표면에서부터 쇳물이 녹아내리는 현상이 발생한다.To this end, in the conventional process, the slab heating should be performed at about 1200 ° C. for about 5 hours. At this time, an oxide called faylite is formed on the surface of the hot slab by the oxidation reaction with air. The oxide has a low melting point, so that even when the slab surface temperature is about 1330 ° C, the molten metal melts from the surface.
이때 녹아내리는 쇳물(Slag)은 외측으로 흘러내리게 설계되어 있지만 일부는 가열로내의 지지대 등에 축적되어 작업종료시 응고 스케일 제거등을 위한 내부보수를 필요로 하게 되어, 연속작업을 특징으로 하는 제철소에서는 작업성 불량, 생산성 감소, 원가상승등의 상당한 비용부담을 안게 된다.At this time, the molten slag is designed to flow outward, but some of it accumulates in the support in the furnace and requires internal repair to remove the solidification scale at the end of the work. There is a significant cost burden such as poor quality, reduced productivity, and higher costs.
따라서 슬라브가 녹지 않는 온도인 1320℃ 이하의 온도에서 슬라브를 가열하는 것이 가능하다면 매우 큰 이익을 기대할 수 있다.Therefore, if it is possible to heat the slab at a temperature of 1320 ° C. or less, at which the slab does not melt, very large profits can be expected.
슬라브 가열온도를 낮추기 위한 노력은 선진 제조사를 중심으로 총력적으로 경주되고 있으며, 주로 기본성분계의 조정, 즉 저온 슬라브 가열시에도 석출물의 고용을 가능하게 하는 입성장 억제제의 선정과, 슬라브 가열 및 열간압연 공정에서 석출물을 제어하지 않고 후속공정에서 부가적인 석출물 관리를 실시하는 것을 특징으로 하는 기법이 공지되고 있다.Efforts to lower the slab heating temperature are intensively driven by leading manufacturers, mainly by adjusting the basic component system, namely selecting grain growth inhibitors that enable the employment of precipitates even at low temperature slab heating, slab heating and hot rolling. Techniques are known which carry out additional precipitate management in subsequent processes without controlling the precipitates in the rolling process.
이들 방법들은 소강성분에 포함되어 있는 원소들만에 의해 억제제인 석출물을 형성시키는 것이 아니라 일련의 제조공정중 적당한 공정에서 석출물을 만들어 주는 방법이다.These methods do not form precipitates that are inhibitors based solely on the elements contained in the cast steel, but rather in the appropriate steps of a series of manufacturing processes.
이러한 방법으로는 일본특허 공보(평)1-283324호에 제시된 바와 같이 질화처리방법이 알려져 있는데, 이는 탈탄공정에서 균열처리후 질화능이 있는 가스분위기에서 강판을 질화처리하는 방법이다.As such a method, a nitriding treatment method is known, as shown in Japanese Patent Application Laid-Open No. 1-283324, which is a nitriding treatment of a steel sheet in a gas atmosphere having nitriding ability after cracking in a decarburization process.
그러나 이들 발명은 탈탄소둔 후 질소부화(또는 침질) 소둔을 추가적으로 실시해야 하기 때문에 추가 로설비를 필요로 하거나 2회의 소둔(기존 소둔로를 이용할 경우)을 행해야하는 등 원가상승을 감수해야 한다.However, since these inventions require additional nitrogen enrichment (or sedimentation) annealing after decarbonization annealing, additional cost is required such as additional equipment or two annealing (if using an existing annealing furnace).
이에 본 발명자들은 상기한 문제를 해결하기 위해, 강성분계 변화 및 예비소둔(열연판 소둔)의 조건변화 등 수많은 실험을 행한 결과, 제강단계에서 적정량의 Cr을 첨가하고, Cr의 함량에 따라 적절한 싸이클로 예비소둔을 행하게 되면 적절한 크기 및 분포를 갖는 AlN 및 Al(Si)N 등의 질화 석출물을 얻을 수 있고, 미세한 탄화물 등 경질입자의 형성에 의해 2차재결정에 유리한 1차재결정 집합조직을 얻을 수 있게 되어 침질소둔 없이도 안정하게 2차재결정을 일으킬 수 있고, 이에 따라 저온 슬라브 가열 방식으로 방향성 전기강판을 제조할 수 있음을 발견하게 되었다.In order to solve the above problems, the present inventors have conducted numerous experiments such as changing the steel composition and changing the conditions of pre-annealing (hot-rolled sheet annealing). As a result, an appropriate amount of Cr is added in the steelmaking step, and according to the content of Cr, When pre-annealed, nitride precipitates such as AlN and Al (Si) N having appropriate sizes and distributions can be obtained, and primary recrystallized textures advantageous for secondary recrystallization can be obtained by formation of hard particles such as fine carbides. As a result, it was found that the secondary recrystallization can be stably performed without annealing, and thus, a grain-oriented electrical steel sheet can be manufactured by low temperature slab heating.
본 발명은 상기 질화 석출물과 하드 파티클을 예비소둔시 적절히 형성시키기 위해 적정량의 Cr을 첨가하고, Cr의 함량에 따라 적정 조건의 싸이클로 예비소둔하는 것을 특징으로 하며, 이로부터 저온 슬라브 가열의 잇점을 상실하지 않으면서도 동시에, 상기 공지기술에 비해 단축된 제조공정으로 방향성 전기강판을 안정하게 제조할 수 있는 방법을 제공하는 데 그 목적이 있다.The present invention is characterized in that an appropriate amount of Cr is added to properly form the nitride precipitate and hard particles during pre-annealing, and pre-annealed with a cycle of an appropriate condition according to the content of Cr, thereby losing the advantages of low-temperature slab heating. At the same time, the object of the present invention is to provide a method for stably producing a grain-oriented electrical steel sheet by a shorter manufacturing process compared to the known art.
상기 목적을 달성하기 위한 본 발명의 방향성 전기강판 제조방법은, 규소강 슬라브를 가열한 후 열간압연한 다음, 예비소둔한 후, 1회 냉간압연에 의해 최종 두께의 냉연판을 만든 다음, 상기 냉연판을 탈탄소둔한 후, 소둔분리제를 도포한 다음, 마무리 고온소둔하는 공정을 포함하는 방향성 전기강판의 제조방법에 있어서, 상기 규소강 슬라브는 중량%로, C:0.03∼0.08%, Si:2.90∼3.30%, Mn:0.05∼0.30%, S≤0.007%, 산가용성 Al:0.010∼0.040%, N:0.03∼0.10%, P:0.01∼0.04%, Cr:0.05∼0.20% 및 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지고; 상기 규소강 슬라브의 가열온도는 1100∼1250℃이고; 그리고, 상기 예비소둔공정은 열간압연시 형성된 조대한 질화 석출물을 재고용시키기 위해서 T1=1000+(1400/Cr)1/2±5(℃)[여기서, T1:적정 1차균열온도, Cr:Cr함량(%)]을 만족하는 온도에서 5초∼1분간 1차균열하고, 상기 석출물을 재석출 및 적정 크기로 제어하기 위해 850∼950℃에서 30초∼10분간 2차균열하고, 이어서 미세한 경질입자들을 형성시키기 위해 VC=15(Cr/0.0014)1/2±1(℃/초)[여기서, VC:적정 냉각속도, Cr:Cr함량(%)]을 만족하는 냉각속도로 700∼800℃까지 냉각한 다음, 상온까지 수냉하는 열처리 싸이클로 행하여지는 것을 특징으로 하는 구성이다.In the method for producing a grain-oriented electrical steel sheet of the present invention for achieving the above object, after the silicon steel slab is heated and hot rolled, then pre-annealed, by cold rolling once to make a cold rolled plate of the final thickness, the cold rolling In the method for producing a grain-oriented electrical steel sheet comprising the step of decarbonizing the plate, applying an annealing separator, and then finishing high temperature annealing, the silicon steel slab is in weight%, C: 0.03 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.05 to 0.30%, S≤0.007%, acid soluble Al: 0.010 to 0.040%, N: 0.03 to 0.10%, P: 0.01 to 0.04%, Cr: 0.05 to 0.20% and the balance Fe and Other inevitably contained impurities; The heating temperature of the silicon steel slab is 1100 to 1250 ° C; In addition, the pre-annealing step is used to regenerate the coarse nitride precipitate formed during hot rolling, T 1 = 1000 + (1400 / Cr) 1/2 ± 5 (° C.) [where T 1 : proper primary crack temperature, Cr : First crack at 5 seconds to 1 minute at a temperature satisfying the [Cr content (%)], and second crack at 30 minutes to 10 minutes at 850 to 950 ° C. to reprecipitate and control the precipitate to an appropriate size. In order to form fine hard particles, the cooling rate satisfies V C = 15 (Cr / 0.0014) 1/2 ± 1 (° C / sec) [V C : proper cooling rate, Cr: Cr content (%)]. After cooling to 700-800 degreeC, it is comprised by the heat processing cycle which water-cools to normal temperature.
이하에서는 양호한 실시예와 관련하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to preferred embodiments.
본 발명은 Cr함량에 따라 예비소둔조건을 최적화하여 저온 슬라브가열 방식으로 방향성 전기강판을 제조하는 것을 특징으로 하는 바, 이에 대해 설명하면 다음과 같다.The present invention is characterized by producing a grain-oriented electrical steel sheet by low-temperature slab heating method by optimizing the pre-annealing conditions according to the Cr content, which will be described below.
통상 방향성 전기강판에서 AlN계 질화석출물은 1100℃ 정도의 온도에서 재고용 또는 조대화(Coarsening)되는데, 이때 재고용되는 석출물은 그 크기가 매우 작은 것이고, 조대화되는 것은 그 크기가 큰 석출물인 것으로 알려져 있다.Generally, AlN nitride precipitates in oriented electrical steel sheets are reusable or coarsened at a temperature of about 1100 ° C. At this time, reclaimed precipitates are known to have a very small size and coarse precipitates have a large size. .
따라서, 본 발명의 경우와 같이 열간압연시 조대한 AlN계 석출물이 형성되는 경우는 통상적인 방법의 예비소둔시 조대 석출물의 고용도를 증가시킬 수 있는 방법이 필요하다.Therefore, when coarse AlN-based precipitates are formed during hot rolling as in the case of the present invention, there is a need for a method capable of increasing the solubility of the coarse precipitates during pre-annealing of a conventional method.
본 발명자들은 이를 해결하기 위해 여러 가지 성분의 첨가 효과를 조사하는 실험을 행한 결과 Cr의 적정한 첨가량에 따라 적절한 열처리 조건으로 예비소둔하게 되면 조대 석출물의 재고용도를 혁신적으로 증가시킬수 있게 되어 적절한 크기의 석출물 분포가 얻어짐을 발견하고, 이에 근거하여 본 발명을 제안하게 된 것이다.In order to solve this problem, the present inventors conducted experiments to investigate the effect of adding various components, and when preannealed under appropriate heat treatment conditions according to the appropriate amount of Cr, the inventors of the coarse precipitates could be innovatively increased, thereby increasing the stock size of the precipitates. It was found that the distribution was obtained, and the present invention was proposed based on this.
그러나, 이 때 얻어지는 상기 석출물 분포의 입성장 억제력 측면에서의 적합도는 기존 고온 슬라브가열 방식의 제조법이나, 탈탄 후 침질방식등 공지기술의 경우에 비해 다소 부족하므로 이를 보완할 수 있는 방안의 강구가 필요하다. 즉, 2차재결정에 유리한 1차재결정 집합조직의 형성 관점에서 예비소둔시 미세 탄화물이나 마르텐사이트(Martensite)상 등 경질입자를 적정량 형성시키는 방안을 고려해 볼 수 있다.However, the suitability in terms of grain growth suppression force of the precipitate distribution obtained at this time is somewhat insufficient compared to the case of the conventional high-temperature slab heating method or the known technology such as decarburization after decarburization, it is necessary to devise a method to compensate for this. Do. That is, from the viewpoint of forming a primary recrystallized texture structure advantageous for secondary recrystallization, a method of forming an appropriate amount of hard particles such as fine carbide or martensite phase during pre-annealing may be considered.
그러나, 통상 성분계의 방향성 전기강판의 경우는 상기 경질입자를 형성시키기 어려운데, 그것은 설비조건상 구현하기 어려운 1100℃ 정도의 고온에서 약 750℃의 중간까지의 온도구간에서 약 15℃/초 이상의 급냉을 필요로 하기 때문이다.However, in the case of the grain-oriented electrical steel sheet of the component system, it is difficult to form the hard particles, which requires quenching of about 15 ° C./sec or more at a temperature range of about 1750 ° C. to about 750 ° C., which is difficult to implement due to the equipment conditions. This is because
반면에 본 발명자들은 Cr을 첨가하고 Cr량에 따라 제어된 냉각속도로 냉각하면 상기 온도구간에서 로냉 정도의 서냉을 하더라도 경질입자들을 충분히 형성시킬 수 있음을 발견할 수 있었다.On the other hand, the present inventors have found that addition of Cr and cooling at a controlled cooling rate in accordance with the amount of Cr can sufficiently form hard particles even by slow cooling of the degree of cooling in the temperature section.
이러한 현상은 Cr이 강의 경화능(Hardenability)을 향상시키는 것과 유관한 것으로 추정되는데, 즉, Cr이 탄화물의 조대화를 억제하고 고용도를 높이기 때문으로 추정된다.This phenomenon is presumed to be related to the improvement of the hardenability of the steel, that is, Cr inhibits the coarsening of carbides and increases the solubility.
본 발명자들은 Cr 함량에 따라 적절한 냉각속도로, 탄화물 최대 고용온도 구간인 700∼800℃까지 로냉하더라도 충분한 양의 경질입자들이 형성되며, 이에 따라 적절한 1차재결정 집합조직을 형성시킬 수 있음을 발견하게 되었고, 결국 이에 근거하여 상기 다소 미흡한 석출물 분포(입성장 억제력 미흡)를 최적 1차재결정 집합조직의 형성에 의해 보완함으로써 2차재결정의 안정화를 달성할 수 있는 저온 슬라브가열 방식의 방향성 전기강판 제조방법을 제안하게 되었다.The inventors have found that sufficient cooling of the hard particles to 700-800 ° C., the maximum solidus temperature range of carbides, at a suitable cooling rate, depending on the Cr content, results in the formation of an adequate primary recrystallized texture. Based on this, the method of manufacturing a grain-oriented electrical steel sheet of low-temperature slab heating method, which can achieve stabilization of secondary recrystallization by supplementing the rather poor precipitate distribution (inadequate grain growth suppression) by forming an optimal primary recrystallized texture. Was proposed.
본 발명에 사용되는 규소강 슬라브의 성분 및 제조조건은 다음과 같은 조건을 충족시켜야 한다.The components and manufacturing conditions of the silicon steel slab used in the present invention must satisfy the following conditions.
C는 슬라브에 오스테나이트를 형성하여 AlN의 고용을 용이하게 하는 원소로 0.03% 미만으로 첨가된 경우 오스테나이트 형성량이 너무 적게 되므로 좋지 않으며, 0.08%를 초과하면 탈탄소둔시 장시간이 소요되어 바람직하지 않다.C is an element that forms austenite in the slab to facilitate the solid solution of AlN. If it is added less than 0.03%, the amount of austenite is too low, and if it is more than 0.08%, it takes a long time for decarbonization annealing. .
Si은 2.90% 미만인 경우 우수한 철손 특성이 얻어지지 않으며, 3.30%를 초과하는 경우는 냉간압연성이 열화되므로 바람직하지 않다.If Si is less than 2.90%, excellent iron loss characteristics are not obtained, and if it is more than 3.30%, cold rolling property is deteriorated, which is not preferable.
Mn도 슬라브에 오스테나이트를 형성하여 AlN의 고용을 용이하게 하는 원소로 0.05% 미만으로 첨가된 경우 오스테나이트 형성량이 너무 적게 되므로 좋지 않으며, 0.30%을 초과하는 경우 압연시 롤 하중(Roll force)이 너무 증가하여 판 형상이 불균일해지므로 좋지 않다.Mn is an element that forms austenite in the slab to facilitate the solid solution of AlN, and when it is added below 0.05%, the amount of austenite formation is too low, and when it exceeds 0.30%, the roll force during rolling is high. It is not good because it increases too much and the plate shape becomes uneven.
S는 과도하게 첨가하면 슬라브 중심부의 S 편석이 심해져 이를 균질화하기 위해 발명 범위 이상의 온도로 슬라브를 가열해야 하므로 0.007% 이하 함유되도록 하는 것이 바람직하다.When S is excessively added, S segregation in the center of the slab becomes severe, and in order to homogenize the slab, the slab needs to be heated to a temperature higher than the range of the invention, so that the S content is preferably 0.007% or less.
산가용성(Soluble) Al 및 N은 AlN 석출물의 형성에 필요한 원소이다. 산가용성 Al은 0.010% 미만인 경우 2차재결정의 방향성이 열화되어 자속밀도가 저하되며, 0.040%를 초과하면 2차재결정의 발달이 불안정해지므로 좋지 않다. 한편, N은 0.03% 미만인 경우 AlN의 양이 부족하게 되며, 0.10%를 초과하면 제품에 블리스터(Blister) 형태의 결함이 발생하기 쉬우므로 바람직하지 않다.Acid Soluble Al and N are elements necessary for the formation of AlN precipitates. If the acid-soluble Al is less than 0.010%, the orientation of the secondary recrystallization deteriorates and the magnetic flux density is lowered. If the acid-soluble Al exceeds 0.040%, the development of the secondary recrystallization becomes unstable. On the other hand, N is less than the amount of AlN is less than 0.03%, if it exceeds 0.10% Blister (Blister) -type defects are likely to occur in the product is not preferable.
P는 입계편석 원소로 입성장 억제력을 보강하는 원소이다. 그 함량이 0.01%미만의 경우는 입성장 억제력이 부족하게 되어 2차재결정이 불안정해지므로 바람직하지 않으며, 0.04%를 초과하는 경우는 냉간압연시 판 파단을 초래할 수 있으므로 바람직하지 않다.P is a grain boundary segregation element that reinforces the grain growth suppression force. If the content is less than 0.01%, the grain growth inhibiting ability is insufficient and the secondary recrystallization becomes unstable, and if it is more than 0.04%, it is not preferable because it may cause plate break during cold rolling.
본 발명의 주요 첨가원소인 Cr은 예비소둔시 조대한 질화 석출물의 재고용을 촉진할 뿐만 아니라 미세 탄화물 등 경질 입자들의 형성을 용이하게 하여 2차재결정의 안정화에 필요한 원소이다. 그 첨가량이 0.05% 미만인 경우는 상기 2차재결정 안정화 효과가 나타나지 않으므로 바람직하지 않다. 또한, 0.20%를 초과하는 경우는 Cr 함량의 증가분 만큼 상기 2차재결정 안정화 효과가 없으며, 합금첨가에 따른 원가상승의 요인이 되므로 바람직하지 않다.Cr, the main additive element of the present invention, promotes the re-use of coarse nitride precipitates during pre-annealing and facilitates the formation of hard particles such as fine carbides, and is an element necessary for stabilization of secondary recrystallization. If the added amount is less than 0.05%, the secondary recrystallization stabilization effect is not exhibited, which is not preferable. In addition, when the content exceeds 0.20%, the secondary recrystallization stabilization effect is not increased by an increase in the Cr content, which is not preferable because it causes a cost increase due to alloy addition.
본 발명의 강 성분은 이상과 같으며, 나머지 Fe로 구성되어 있다. 본 발명강에는 그 외에 제강시 원재료로부터 혼입되는 불가피한 원소들(B, Ti, Nb, V등)의 경우 미량(80ppm이하)으로 함유되어도 무방하다.The steel component of this invention is as above and consists of remainder Fe. In addition, the present invention steel may contain a small amount (less than 80ppm) of the unavoidable elements (B, Ti, Nb, V, etc.) mixed from the raw materials during steelmaking.
이어서 전술한 강 성분으로 구성된 규소강 슬라브의 가열온도는 1100℃ 미만인 경우 열간압연시 롤하중(Roll Force)이 과다하게 되어 판형상 제어가 어렵게 되므로 바람직하지 않으며, 1250℃를 초과하는 온도에서는 강 표면의 산화 스케일(Scale)양이 늘어나게 되므로 바람직하지 않다.Subsequently, when the heating temperature of the silicon steel slab composed of the above-described steel components is less than 1100 ° C., the roll force becomes excessive during hot rolling, which makes it difficult to control the plate shape, and at the temperature exceeding 1250 ° C., the steel surface is not preferable. It is not preferable because the amount of oxide scale increases.
상기 슬라브의 두께는 너무 얇으면 열간압연 생산성이 떨어지고 너무 두꺼우면 슬라브 가열 시간이 길어져야 하므로 150∼350㎜로 제어하는 것이 바람직하다.If the thickness of the slab is too thin, hot rolling productivity is lowered, and if the slab is too thick, the slab heating time should be long, so it is preferable to control the slab to 150 to 350 mm.
이후 통상의 열간압연으로 후속의 최종냉간압연 두께를 고려하여 보통1.5∼2.6㎜의 두께의 열간압연강판으로 제조한다.After the usual hot rolling in consideration of the final final cold rolling thickness is usually produced by hot rolled steel sheet having a thickness of 1.5 ~ 2.6mm.
본 발명의 특징중 하나인 예비소둔공정은 열간압연시 형성된 조대한 질화 석출물을 재고용시키는 1차균열처리, 고용석출물을 재석출 및 적정 크기로 성장시키기 위한 2차균열처리 및 이어서 미세한 탄화물 등 경질입자를 형성시키기 위해 적정 냉각속도로 로냉한 다음, 상온까지 수냉하는 열처리 싸이클로 이루어진다.One of the features of the present invention is a pre-annealing process is a primary cracking treatment to re-use the coarse nitride precipitate formed during hot rolling, the second cracking treatment to re-precipitate and grow the solid solution to a suitable size and then hard particles such as fine carbide After cooling to an appropriate cooling rate to form a heat treatment cycle consisting of water cooling to room temperature.
이때, 소둔분위기는 질화물의 유실을 방지하기 위해 질소분위기를 사용하는 것이 바람직하다.At this time, in the annealing atmosphere, it is preferable to use a nitrogen atmosphere to prevent the loss of nitride.
상기 1차균열시 온도가 T1=1000+(1400/Cr)1/2±5(℃)[여기서, T1:적정 1차균열온도, Cr:Cr함량(%)] 미만이거나 균열시간이 5초 미만인 경우는 조대 석출물의 재고용이 불충분하게 되어, 이어지는 2차균열시 적절한 크기의 석출물 분포가 얻어지지 않는 결과, 2차재결정이 불안정해지므로 우수한 자기특성을 얻을 수 없으며, 상기 1차균열 온도가 T1을 초과하거나 균열시간이 1분을 초과하게 되면 질화 석출물의 고용량 증대는 기대할 수 있으나, 강판 표면층 결정립들이 너무 조대하게 성장하여 2차재결정이 불안정해지므로 바람직하지 않다.The temperature at the first crack is less than T 1 = 1000 + (1400 / Cr) 1/2 ± 5 (° C.) [where T 1 : the appropriate primary crack temperature, Cr: Cr content (%)] or the crack time is If it is less than 5 seconds, the availability of coarse precipitates is insufficient. As a result, the distribution of precipitates of the appropriate size is not obtained during subsequent cracks, and as a result, the secondary recrystallization becomes unstable, and thus excellent magnetic properties cannot be obtained. When the T exceeds 1 or the crack time exceeds 1 minute, a high capacity increase of the nitride precipitate can be expected, but it is not preferable because the grain thickness of the steel sheet surface layer grows so coarsely that the secondary recrystallization becomes unstable.
상기 2차균열시 온도가 850℃ 미만이거나, 균열시간이 30초 미만인 경우는 상기 질화 석출물들이 입성장 억제력을 발휘할 수 있는 정도로 성장하지 않게 되어 2차재결정이 불안정하게 되며, 또한 2차균열 온도가 950℃를 초과하거나, 균열시간이 10분을 초과하는 경우는 질화 석출물들의 크기가 너무 조대해져 2차재결정 안정화의 측면에서 바람직하지 않다.If the temperature during the second crack is less than 850 ° C. or the crack time is less than 30 seconds, the nitride precipitates do not grow to the extent that they can exert grain growth suppression, so that the secondary recrystallization becomes unstable, and the secondary crack temperature is increased. If the temperature exceeds 950 ° C or the crack time exceeds 10 minutes, the size of the nitride precipitates is too coarse, which is not preferable in terms of secondary recrystallization.
상기 2차균열후 냉각시 냉각속도가 VC=15-(Cr/0.0014)1/2±1(℃/초)[여기서, VC:적정 냉각속도, Cr:Cr함량(%)] 미만인 경우는 미세 탄화물 보다는 입계 탄화물 등 조대한 탄화물이 형성되어 2차재결정이 불안정해지기 때문에 바람직하지 않으며, 또한 VC를 초과하는 경우는 탄화물의 고용도 향상의 측면에서는 불리하지 않으나 공업적으로 가혹한 조건이 되기 때문에 실용화의 관점에서 바람직하지 않다.When the cooling rate after the second cracking is less than V C = 15-(Cr / 0.0014) 1/2 ± 1 (° C / sec) [where V C : proper cooling rate, Cr: Cr content (%)] Is not preferable because coarse carbides such as grain boundary carbides are formed rather than fine carbides, and the secondary recrystallization becomes unstable.In addition, when V C is exceeded, it is not disadvantageous in terms of improving the solid solubility of carbides. It is not preferable from the viewpoint of practical use.
상기 2차균열 후 냉각시 도달온도가 700℃ 미만인 경우 및 800℃를 초과하는 경우는 탄화물의 고용이 불충분하게 되어 후속되는 수냉시 미세 탄화물이나 마르텐사이트 등 경질입자를 충분히 형성시킬 수 없게 되어 2차재결정의 안정화에 유리한 1차재결정 집합조직을 얻을 수 없게 되므로 바람직하지 않다.When the temperature reached during cooling after the secondary cracking is less than 700 ° C. and when it exceeds 800 ° C., the solid solution of carbides becomes insufficient so that hard particles such as fine carbides or martensite cannot be formed sufficiently during subsequent water cooling. It is not preferable because primary recrystallization texture which is advantageous for stabilization of recrystallization cannot be obtained.
이후 상온까지의 냉각은 빠를수록 경질입자의 형성에 유리한데, 공업적인 설비의 측면에서 수냉하는 것이 바람직하다.Since the cooling to room temperature is faster, it is advantageous to the formation of hard particles, but water cooling is preferable in terms of industrial equipment.
상기 예비소둔된 강판은 1회 냉간압연을 하여 0.23∼0.35㎜ 두께로 만든다. 최종냉연판의 두께가 0.23㎜ 미만인 경우는 2차재결정이 잘 발달되지 않으며, 0.35㎜를 초과하는 경우는 와류 철손 특성이 나빠지므로 바람직하지 않다.The preannealed steel sheet is cold rolled once to make 0.23-0.35 mm thick. If the thickness of the final cold rolled sheet is less than 0.23mm, secondary recrystallization is not well developed, and if the thickness of the final cold rolled plate is more than 0.35mm, the vortex iron loss characteristics are deteriorated.
이어서, 상기 냉연판의 잔류탄소량을 30ppm이하로 낮추기 위해, 700∼950℃의 온도에서 30초∼10분간, 이슬점이 30∼70℃인 습윤 수소+질소의 혼합가스 분위기를 사용하여 탈탄소둔한다.Subsequently, in order to lower the residual carbon amount of the cold rolled sheet to 30 ppm or less, decarbonization is performed using a mixed gas atmosphere of wet hydrogen + nitrogen having a dew point of 30 to 70 ° C for 30 seconds to 10 minutes at a temperature of 700 to 950 ° C. .
이때 잔류탄소량의 허용치를 30ppm 이하로 제한하는 것은 이를 초과할 경우, 후속되는 고온소둔시 형성되는 2차재결정의 방향성이 열화되어 우수한 자속밀도를 얻을 수 없을 뿐만 아니라, 변압기등의 제품으로 사용중 자기시효가 일어나 철손특성이 열화되기 때문이다.At this time, limiting the allowable value of residual carbon amount to 30ppm or less, if it exceeds this, the direction of secondary recrystallization formed during subsequent high temperature annealing is deteriorated, so that excellent magnetic flux density is not obtained and magnetic in use as a product such as transformer. This is because aging causes deterioration of iron loss characteristics.
탈탄질 소둔시 소둔온도가 700℃ 미만이거나 시간이 30초 미만이면 탈탄이 불충분하게 되고, 950℃를 초과하는 온도의 경우는 1차재결정 조직이 너무 조대해져 2차재결정이 불안정하게 되므로 우수한 자속밀도를 얻을 수 없게 되어 바람직하지 않으며, 10분을 초과하는 소둔시간은 비경제적이므로 좋지 않다.When annealing annealing temperature is less than 700 ℃ or less than 30 seconds, decarburization is insufficient, and at temperatures exceeding 950 ℃, the primary recrystallization structure becomes too coarse and the secondary recrystallization becomes unstable, so the excellent magnetic flux density is achieved. It is not preferable to not obtain, and an annealing time of more than 10 minutes is uneconomical.
또한, 탈탄소둔시 분위기 가스는 본 발명범위내로 탈탄 및 질소부화를 동시에 가능하게 하는 어떠한 혼합분위기도 사용할 수 있으나, 바람직하게는 공업적으로 탈탄량의 제어가 용이한 습윤 수소+질소의 혼합가스 분위기를 사용하는 것이 좋다.In addition, the atmosphere gas during decarbonization annealing may be used in any mixed atmosphere that enables simultaneous decarburization and nitrogen enrichment within the scope of the present invention, but is preferably a mixed gas atmosphere of wet hydrogen + nitrogen in which industrial decarburization is easily controlled. It is good to use
다만 분위기 가스의 이슬점은 너무 낮은 경우 탈탄능 감소로 인해 소둔시간을 늘여야 하므로 좋지 않으며, 지나치게 높은 경우 강판 표면산화층이 불균일하게 형성되어 후속되는 고온소둔시 형성되는 유리질 피막(Glass Film)이 불량하게 형성되므로 30∼70℃의 범위로 한정하는 것이 바람직하다.However, if the dew point of the atmosphere gas is too low, it is not good because the annealing time should be increased due to the decrease in decarburization performance. If the dew point of the atmosphere gas is too low, the glass oxide film formed during the subsequent high temperature annealing is poorly formed because the surface oxide layer is unevenly formed. Therefore, it is preferable to limit it to the range of 30-70 degreeC.
마무리 고온소둔시 승온율은 2차재결정을 완전히 일으키고, 이의 방향성을 향상시키기 위해 10∼50℃/hr의 범위로 제어해야 한다. 고온소둔의 분위기가스로는 유리질 피막 형성과 2차재결정 완료후 N, S등 잔류불순물을 제거하기 위해 건조한 수소 또는 수소 및 질소의 혼합가스를 사용하는 것이 바람직하다.The temperature increase rate during finishing high temperature annealing should completely control the secondary recrystallization, and should be controlled in the range of 10 to 50 ° C./hr to improve its directivity. As an atmospheric gas for high temperature annealing, it is preferable to use dry hydrogen or a mixed gas of hydrogen and nitrogen to remove residual impurities such as N and S after the formation of the glass film and the completion of the secondary recrystallization.
마무리 고온소둔의 온도가 1150℃ 미만이거나 균열시간이 1시간 미만인 경우는 양호한 유리질피막 형성과 불순물 제거가 어려워지며, 1250℃를 초과하는 온도나 30 시간을 초과하는 시간의 경우는 비경제적이므로 바람직하지 않다.If the temperature of finishing high temperature annealing is less than 1150 ° C or the cracking time is less than 1 hour, it is difficult to form a good glass film and remove impurities, and it is not preferable for the temperature above 1250 ° C or more than 30 hours because it is uneconomical. not.
상기 고온소둔에 의해 무기질의 유리질피막이 형성된 강판 표면에는 절연성 향상과 자구 미세화에 의한 철손 개선을 목적으로 고온소둔후 장력부여 코팅(Coating)을 하여도 좋다.The surface of the steel sheet in which the inorganic glass coating is formed by the high temperature annealing may be subjected to a tension coating after the high temperature annealing for the purpose of improving insulation and improving iron loss by miniaturization of magnetic domains.
이하에서는 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예 1Example 1
중량%로, C:0.055%, Si:3.10%, Mn:0.11%, S:0.005%, 산가용성Al:0.025%, N:0.077%, P:0.025% 및 Cr을 하기표 1과 같이 첨가량을 달리하고 나머지 Fe로 조성된 210㎜ 두께의 슬라브를 제조하였다. 이것을 1200℃에서 4시간 슬라브 가열 후 열간압연하여 2.3㎜ 두께의 열연판을 제조하였다.By weight, C: 0.055%, Si: 3.10%, Mn: 0.11%, S: 0.005%, Acid Soluble Al: 0.025%, N: 0.077%, P: 0.025% and Cr were added as shown in Table 1 below. A 210 mm thick slab made of different and rest Fe was prepared. This was hot rolled after slab heating at 1200 ° C. for 4 hours to prepare a hot rolled plate having a thickness of 2.3 mm.
그 다음 질소가스 분위기중에서 하기 표 1에 나타낸 바와 같이 조건을 달리하여 예비소둔후 산세하고, 1회 압연으로 0.285㎜ 두께의 최종냉간압연강판을 제조하였다. 이후 850℃에서 3분간 이슬점이 45℃인 습윤 25%H2+75%N2혼합가스 분위기를 사용하여, 탈탄 및 1차재결정 조직을 형성시키기 위한 탈탄소둔을 실시하였다.Then, after pre-annealing and pickling under different conditions as shown in Table 1 in a nitrogen gas atmosphere, a final cold rolled steel sheet having a thickness of 0.285 mm was prepared by one rolling. Thereafter, decarburization and decarbonization to form primary recrystallized structures were performed using a wet 25% H 2 + 75% N 2 mixed gas atmosphere having a dew point of 45 ° C. at 850 ° C. for 3 minutes.
이어서, MgO를 주성분으로 하는 소둔분리제를 강판 표면에 도포한 다음, 마무리 고온소둔하였다. 이때 상기 고온소둔은 2차재결정을 생성시키기 위해 20℃/hr의 승온율로 1200℃까지 승온하고 15시간 균열후 냉각하는 열처리 사이클로 행하였으며, 승온중 분위기가스로는 25%N2+75%H2를 사용하고, 1200℃로 승온한 이후에는 순수소 가스를 사용하였다. 상기와 같이 Cr의 첨가량 및 예비소둔 조건들을 변화시킨 시편들에 대하여 2차재결정 발달율, 그리고 자기특성을 조사하여 하기 표 1에 나타내었다.Subsequently, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, followed by finishing high temperature annealing. At this time, the high temperature annealing the second was raised at a heating rate of 20 ℃ / hr to generate the re-crystallization from 1200 ℃ and line cycle thermal treatment for cooling After 15 hours cracking, atmosphere gas of elevated temperature is 25% N 2 + 75% H 2 After the temperature was raised to 1200 ° C., pure hydrogen gas was used. As described above, the secondary recrystallization rate and magnetic properties of the specimens in which Cr addition amount and preannealing conditions were changed are shown in Table 1 below.
여기서 2차재결정 발달율은 마무리 고온소둔강판 표면을 약 80℃의 20% 염산용액으로 부식하여 노출한 매크로(Macro)조직을 관찰하여 측정하였으며, 자기특성은 단판자성측정기로 B10과 W17/50을 측정하였다.The secondary recrystallization rate was measured by observing the macrostructure exposed by corrosion of the surface of the finished hot-annealed steel sheet with 20% hydrochloric acid solution at about 80 ℃, and the magnetic properties of B10 and W17 / 50 were measured by single plate magnetometer. It was.
[표 1]TABLE 1
* 표시는 실시결과가 본 발명의 조건에 부합되지 않는 경우를 나타낸 것임.* Indicates that the results do not meet the conditions of the present invention.
상기 표 1에 나타난 바와 같이, Cr의 첨가량이 본 발명 범위 미만인 경우(비교재1)의 경우는 2차재결정이 매우 불안정하게 일어나 자기특성이 열등한 반면에, Cr을 적정량 첨가하고 또한, 예비소둔시 각 조건을 본 발명범위 내로 제어할 경우(발명재1-4)는 적절한 입성장 억제력과 1차재결정 집합조직이 얻어져 2차재결정이 안정해지는 결과 우수한 자기특성을 얻을 수 있었다.As shown in Table 1, in the case where the amount of Cr added is less than the scope of the present invention (Comparative Material 1), the secondary recrystallization is very unstable, resulting in inferior magnetic properties, while adding an appropriate amount of Cr and preliminary annealing. In the case of controlling each condition within the scope of the present invention (invention material 1-4), an appropriate grain growth suppression force and a primary recrystallization texture were obtained to stabilize the secondary recrystallization, thereby obtaining excellent magnetic properties.
반면에 적정량의 Cr을 첨가하더라도 예비소둔시 1차균열 온도가 T1=1000+(1400/Cr)1/2±5(℃)[여기서, T1:적정 1차균열온도, Cr:Cr함량(%)] 미만이거나(비교재2-5), 균열시간이 5초 미만인 경우(비교재14)는 조대 석출물의 재고용이 불충분하게 되어 2차균열시 적절한 크기의 석출물 분포가 얻어지지 않는 결과, 2차재결정이 불안정해지므로 우수한 자기특성을 얻을 수 없었다.On the other hand, even if an appropriate amount of Cr is added, the primary cracking temperature at pre-annealing is T 1 = 1000 + (1400 / Cr) 1/2 ± 5 (℃) [wherein T 1 : the appropriate primary cracking temperature and Cr: Cr content (%)] Less than (Comparative Materials 2-5), or when the crack time is less than 5 seconds (Comparative Material 14), insufficient reusability of the coarse precipitates results in the inability to obtain adequately sized precipitates during secondary cracking. As the secondary recrystallization becomes unstable, excellent magnetic properties could not be obtained.
또한, 상기 1차균열온도가 T1을 초과하거나(비교재6-9), 균열시간이 1분을 초과하는 경우(비교재15)도 2차재결정이 불안정해지는 결과 자기특성이 열등하였다.In addition, when the primary cracking temperature exceeded T 1 (Comparative Material 6-9) or the crack time exceeded 1 minute (Comparative Material 15), the secondary recrystallization became unstable, resulting in inferior magnetic properties.
더욱이, 2차균열후 냉각속도가 VC=15-(Cr/0.0014)1/2±1(℃/초)[여기서, VC:적정 냉각속도, Cr:Cr함량(%)] 미만인 경우(비교재10-13)는 적절한 1차재결정 집합조직이 형성되지 않아 2차재결정이 불안정해지는 결과 우수한 자기특성을 얻을 수 없었다.Furthermore, if the cooling rate after the second crack is less than V C = 15- (Cr / 0.0014) 1/2 ± 1 (° C / sec) [where V C is the appropriate cooling rate and Cr: Cr content (%)] Comparative material 10-13) could not obtain excellent magnetic properties as a result of unstable secondary recrystallization because no proper primary recrystallization texture was formed.
한편, 예비소둔시 2차균열 온도가 850℃ 미만(비교재16)이거나, 균열시간이 30초 미만인 경우(비교재18)는 입성장 억제력의 부족으로 2차재결정이 불안정하게 되며, 또한 2차균열 온도가 950℃를 초과(비교재17)하거나, 균열시간이 10분을 초과하는 경우(비교재19)도 2차재결정의 불안정한 발달로 자기특성이 열화되었다.On the other hand, if the secondary cracking temperature is less than 850 ° C. (Comparative Material 16) or the cracking time is less than 30 seconds (Comparative Material 18) during pre-annealing, the secondary recrystallization becomes unstable due to the lack of grain growth inhibition. In the case where the crack temperature exceeds 950 ° C. (Comparative Material 17) or the crack time exceeds 10 minutes (Comparative Material 19), the magnetic properties deteriorate due to unstable development of the secondary recrystallization.
또한, 2차균열후 제어냉각에 의해 도달되는 온도가 700℃ 미만인 경우(비교재20) 및 800℃를 초과하는 경우(비교재20)는 탄화물의 고용이 불충분하게 되기 때문에 2차재결정의 안정화에 유리한 1차재결정 집합조직을 얻을 수 없게 되어 낮은 자속밀도값을 나타내었다.In addition, when the temperature reached by controlled cooling after the secondary crack is less than 700 ° C. (comparative material 20) and when it exceeds 800 ° C. (comparative material 20), the solid solution of carbides is insufficient to stabilize the secondary recrystallization. It was not possible to obtain an advantageous primary recrystallized texture, resulting in low magnetic flux density.
따라서, 상기 설명한 바와 같은 본 발명에 의하면, 제강단계에서 적정량의 Cr을 첨가하고, Cr의 함량에 따라 적절한 싸이클로 예비소둔을 행하게 되면 적절한 크기 및 분포를 갖는 AlN 및 Al(Si)N 등의 질화 석출물을 얻을 수 있고, 미세한 탄화물 등 경질입자의 형성에 의해 2차재결정에 유리한 1차재결정 집합조직을 얻을 수 있게 되어 침질소둔 없이도 안정하게 2차재결정을 일으킬 수 있어 자기특성이 우수한 방향성 전기강판을 제조할 수 있으며, 탈탄소둔 후 질소부화(또는 침질) 소둔을 추가적으로 실시할 필요가 없어 공정을 단축할 수 있으며, 제조원가를 절감할 수 있다.Therefore, according to the present invention as described above, when an appropriate amount of Cr is added in the steelmaking step, and pre-annealed with an appropriate cycle according to the content of Cr, nitrides such as AlN and Al (Si) N having an appropriate size and distribution By forming hard particles such as fine carbides, it is possible to obtain a primary recrystallized texture structure that is advantageous for secondary recrystallization, and to produce secondary recrystallization stably without sedimentation annealing. It is possible to do, after the decarbonization annealing does not need to additionally perform nitrogen enrichment (or sedimentation) annealing can shorten the process, reducing the manufacturing cost.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0058972A KR100399222B1 (en) | 1998-12-26 | 1998-12-26 | Manufacturing method of oriented electrical steel sheet by slab low temperature heating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0058972A KR100399222B1 (en) | 1998-12-26 | 1998-12-26 | Manufacturing method of oriented electrical steel sheet by slab low temperature heating |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000042706A true KR20000042706A (en) | 2000-07-15 |
KR100399222B1 KR100399222B1 (en) | 2004-01-28 |
Family
ID=19565959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0058972A KR100399222B1 (en) | 1998-12-26 | 1998-12-26 | Manufacturing method of oriented electrical steel sheet by slab low temperature heating |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100399222B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117671A1 (en) * | 2016-12-23 | 2018-06-28 | 주식회사 포스코 | Method for producing grain-oriented electrical steel sheet |
WO2019132364A1 (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method therefor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2130241B (en) * | 1982-09-24 | 1986-01-15 | Nippon Steel Corp | Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density |
JPH0798976B2 (en) * | 1986-02-01 | 1995-10-25 | 新日本製鐵株式会社 | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss |
KR970007333B1 (en) * | 1994-12-14 | 1997-05-07 | 포항종합제철 주식회사 | Method for manufacturing oriented electrical steel sheet having high magnetic density |
-
1998
- 1998-12-26 KR KR10-1998-0058972A patent/KR100399222B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117671A1 (en) * | 2016-12-23 | 2018-06-28 | 주식회사 포스코 | Method for producing grain-oriented electrical steel sheet |
CN110114478A (en) * | 2016-12-23 | 2019-08-09 | Posco公司 | The manufacturing method of oriented electrical steel |
CN110114478B (en) * | 2016-12-23 | 2021-05-25 | Posco公司 | Method for manufacturing oriented electrical steel sheet |
WO2019132364A1 (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR100399222B1 (en) | 2004-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3561103A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP4203238B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
EP3561104B1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
KR100321044B1 (en) | Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density | |
KR100435478B1 (en) | A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process | |
KR100399222B1 (en) | Manufacturing method of oriented electrical steel sheet by slab low temperature heating | |
KR100285344B1 (en) | Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way | |
JP2607331B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
KR100340495B1 (en) | Method for manufacturing grain oriented electric steel sheet with high magnetic density | |
KR100360101B1 (en) | A method for manufacturing grain oriented electrical steel sheets having superior glass film | |
KR100479996B1 (en) | The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same | |
KR100237158B1 (en) | The manufacturing method for oriented electric steel sheet with excellent magnetic property | |
KR100399221B1 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
KR100406420B1 (en) | A method for manufacturing grain oriented electrical steel sheet with high permeability | |
KR100514790B1 (en) | A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method | |
JP2521585B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
KR100359242B1 (en) | Low temperature heating method of high magnetic flux density oriented electrical steel sheet | |
KR101263843B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same | |
KR101263846B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same | |
KR101263848B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same | |
KR970007334B1 (en) | Method for manufacturing oriented electrical steel sheet having magnetic properties | |
KR970007333B1 (en) | Method for manufacturing oriented electrical steel sheet having high magnetic density | |
JP4473357B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
KR100345696B1 (en) | A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures | |
KR970007162B1 (en) | Making method of oriented electrical steel sheet having excellent from loss properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120829 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130906 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20150909 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20160909 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20170911 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |