KR20000039382A - Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom - Google Patents

Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom Download PDF

Info

Publication number
KR20000039382A
KR20000039382A KR1019980054701A KR19980054701A KR20000039382A KR 20000039382 A KR20000039382 A KR 20000039382A KR 1019980054701 A KR1019980054701 A KR 1019980054701A KR 19980054701 A KR19980054701 A KR 19980054701A KR 20000039382 A KR20000039382 A KR 20000039382A
Authority
KR
South Korea
Prior art keywords
combustion
catalyst carrier
surface area
specific surface
combustion chamber
Prior art date
Application number
KR1019980054701A
Other languages
Korean (ko)
Inventor
윤경호
김기홍
이찬원
임재필
Original Assignee
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원 filed Critical 신현준
Priority to KR1019980054701A priority Critical patent/KR20000039382A/en
Publication of KR20000039382A publication Critical patent/KR20000039382A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J35/61

Abstract

PURPOSE: A process of preparing a heat-resistant catalyst carrier for combustion in a combustion chamber of a coke furnace and a catalyst carrier prepared therefrom are provided which enable fuel gas to perform catalytic combustion by improving the degree of reduction in specific surface area at high temperatures. CONSTITUTION: A process comprises the steps of dissolving barium isopropoxide and aluminium isopropoxide in isopropyl alcohol, producing a gel coagulant by adding water 0.5 to 1.0 times based on the mole ratio of barium metal to the above solution, and aging the obtained coagulant for 10 to 15 hr. The mole ratio of barium isopropoxide to aluminium isopropoxide is 1 : 6. The BaO.6Al2O3 catalyst carrier prepared by the process can be used as a heat-resistant catalyst carrier for combustion excellent in thermal resistance in a combustion chamber of a coke furnace at above 1,200°C

Description

고온 코크스로 연소실의 연소용 열저항 촉매 담체 제조 방법 및 이로부터 제조된 촉매 담체Method for preparing a heat resistance catalyst carrier for combustion in a combustion chamber with high temperature coke and catalyst catalyst prepared therefrom

본 발명은 고온 코크스로 연소실의 연소용 열저항 촉매 담체 제조 방법 및 이로부터 제조된 연소용 촉매 담체에 관한 것으로, 보다 상세하게는 1200℃이상의 고온에서도 비표면적이 개선되어 열저항성이 뛰어난 고활성인 촉매 연소용 촉매 담체 제조 방법 및 이로부터 제조된 촉매 담체에 관한 것이다.The present invention relates to a method for producing a heat resistance catalyst carrier for combustion in a combustion chamber with a high temperature coke furnace, and more particularly to a catalyst carrier for combustion produced therefrom. It relates to a method for producing a catalyst carrier for catalytic combustion and a catalyst carrier prepared therefrom.

일반적으로 코크스로는 탄화실에 석탄을 넣고 연소실에서 연소용 연료가스를 연소시켜 발생된 열을 탄화실에 전달하여 코크스를 제조하는 공정이다. 상기 연소실의 온도는 가동율에 따라 다르지만 일반적으로 1200∼1300℃로서 상당히 높은 온도를 유지해야만 코크스 제조가 가능하다. 상기 연소실에서 연료가스를 연소시키는 방법으로는 화염연소법, 즉 연료가스에 불을 붙여 연소시키는 방법이 사용되고 있다.In general, a coke furnace is a process of manufacturing coke by transferring coal into a carbonization chamber by inserting coal into a carbonization chamber and burning combustion fuel gas in the combustion chamber. The temperature of the combustion chamber varies depending on the operation rate, but in general, the coke can be manufactured only by maintaining a fairly high temperature, such as 1200 to 1300 ° C. As a method of burning fuel gas in the combustion chamber, a flame combustion method, that is, a method of burning a fuel gas by burning it is used.

그러나 이러한 종래의 방법은 연료가스의 불완전 연소로 인한 연료가스의 낭비 및 CO가스의 발생등이 문제시되고 있다. 화염연소가 아닌 촉매 연소를 이용하면 화염이 발생하지 않으므로, 조업상 안전하며, 저온에서도 완전연소가 가능하여 연료가스의 절약, CO가스의 발생 방지등의 장점이 있으나, 1200∼1300℃의 고온에서 장시간 사용가능한 담체가 없어 실제로는 이용하지 못하고 있는 실정이다.However, such a conventional method is problematic in terms of waste of fuel gas and generation of CO gas due to incomplete combustion of fuel gas. The use of catalytic combustion rather than flame combustion does not generate flames, which is safe for operation, and complete combustion is possible even at low temperatures, which saves fuel gas and prevents generation of CO gas. However, at high temperatures of 1200 to 1300 ° C, There is no carrier that can be used for a long time, which is not actually used.

여기서 촉매는 일반적으로 귀금속 또는 전이금속의 활성 물질과 활성 물질을 지지하는 담체로 구성되어 있다. 종래 연소용 촉매로는 일반적으로 Al2O3가 담체로 사용되고 있으나, 1200℃를 전후해서 Al2O3의 상이 γ상에서 α상으로 전이함에 따라 고온에서 담체의 생명이라 할 수 있는 비표면적이 현저히 감소되어 담체로서의 역할을 못해 문제가 되고 있다. 이와 같이 촉매 연소를 이용하기 위해서는 담체의 열에 의한 비표면적 감소 현상을 해결하는 것이 중요하다.The catalyst here generally consists of an active material of a noble or transition metal and a carrier which supports the active material. Conventionally, Al 2 O 3 is commonly used as a support catalyst, but the specific surface area of the carrier at remarkably high temperatures is remarkable as the Al 2 O 3 phase transitions from γ to α phase around 1200 ° C. The problem is that it is reduced and does not serve as a carrier. As such, in order to use catalytic combustion, it is important to solve the reduction of specific surface area due to heat of the carrier.

이에 본 발명의 목적은 고온에서 비표면적 감소 정도를 개선시켜 코크스로의 연소실에서 연료가스의 촉매 연소를 가능하도록 하는 촉매 연소용 촉매 담체 제조 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to provide a method for producing a catalyst carrier for catalytic combustion which enables the catalytic combustion of fuel gas in a combustion chamber of coke furnace by improving the degree of reduction of specific surface area at high temperature.

본 발명의 다른 목적은 상기 제조 방법에 의하여 제조된 열저항력이 뛰어난 담체를 제공하려는데 있다.Another object of the present invention is to provide a carrier having excellent heat resistance produced by the above production method.

도 1은 본 발명의 방법에 의해 촉매 제조시 숙성 시간 대 비표면적의 관계를 도시한 그래프,1 is a graph showing the relationship between ripening time versus specific surface area in the preparation of catalysts by the process of the invention,

도 2는 본 발명의 방법에 의해 촉매 제조시 첨가되는 물의 pH 변화 대 비표면적의 관계를 도시한 그래프, 그리고2 is a graph showing the relationship between the pH change of the water added in preparation of the catalyst by the method of the present invention and the specific surface area, and

도 3은 본 발명의 방법에 의해 촉매 제조시 물의 첨가량 대 비표면적의 관계를 도시한 그래프이다.3 is a graph showing the relationship between the amount of water added and the specific surface area when preparing a catalyst by the method of the present invention.

본 발명의 일견지에 의하면,According to one aspect of the invention,

바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드를 이소프로필알코올에 용해시키는 단계;Dissolving barium isopropoxide and aluminum isopropoxide in isopropyl alcohol;

그후 바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드가 용해된 이소프로필알코올 용액에 바륨 금속의 몰비를 기준으로 0.5∼1.0배의 물을 첨가하여 가수분해함으로써 겔 상태의 응고물을 제조하는 단계; 및Thereafter, a gel coagulum is prepared by adding 0.5-1.0 times of water based on the molar ratio of barium metal to the isopropyl alcohol solution in which barium isopropoxide and aluminum isopropoxide are dissolved and hydrolyzed. And

이와 같이 얻어진 응고물을 10∼15시간의 숙성하는 단계;로 이루어지는 고온 코크스로 연소실의 연소용 촉매 담체 제조 방법이 제공된다.There is provided a method for producing a catalyst carrier for combustion of a high temperature coke furnace combustion chamber comprising the step of aging the coagulated product obtained in this way for 10 to 15 hours.

본 발명의 제2견지에 의하면,According to the second aspect of the present invention,

상기 1견지의 방법에 의해 제조되며, 1300℃에서 숙성하는 경우 비표면적이 16㎡/g이상이며, 혹은 1450℃에서 숙성하는 경우 비표면적이 10㎡/g이상인 고온 코크스로 연소실의 연소용 열저항 촉매 담체가 제공된다.The heat resistance for combustion of the combustion chamber with a high temperature coke having a specific surface area of 16 m 2 / g or more when aged at 1300 ° C., or 10 m 2 / g or more when aged at 1450 ° C. A catalyst carrier is provided.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드의 가수 분해에 의해 고온에서의 비표면적이 우수한 연소용 열저항 촉매 담체를 제조하게 된다. 또한 바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드의 가수분해에 첨가하는 물의 pH 및 첨가량 및 그 숙성 시간을 변화시킴으로써 고온에서 비표면적이 우수한 BaOㆍ6Al2O3촉매 담체를 제조하게 한다.The present invention is to produce a heat resistance catalyst carrier for combustion having excellent specific surface area at high temperature by hydrolysis of barium isopropoxide and aluminum isopropoxide. In addition, the BaO.6Al 2 O 3 catalyst carrier having a high specific surface area at high temperature can be prepared by changing the pH and the amount of water added to the hydrolysis of barium isopropoxide and aluminum isopropoxide and its maturation time.

본 발명에 의한 고온 연소용 열저항 촉매 담체는 실질적으로 바륨과 알루미나로부터 제조된다. 적당량의 바륨과 알루미늄을 이소프로필알코올에 각각 녹여 바륨 및 알루미늄 이소프로폭사이드를 제조하고 그 혼합물을 다시 이소프로필알코올에 용해시킨다.The heat resistant catalyst carrier for high temperature combustion according to the present invention is made substantially from barium and alumina. Proper amounts of barium and aluminum are dissolved in isopropyl alcohol, respectively, to prepare barium and aluminum isopropoxide, and the mixture is dissolved again in isopropyl alcohol.

여기서 바륨은 이소프로필알코올이외의 다른 종류의 알코올에도 용해가능하나, 알루미나는 이소프로필알코올에만 용해되기 때문에, 다른 알코올을 사용하여 바륨 알콕사이드를 제조한다고 하더라도 알루미늄 이소프로폭사이드와 혼합시키게 되면 알코올의 종류가 서로 달라 가수분해후 생성되는 물질의 조성이 달라지기 때문에 상기 용매로는 이소프로필알코올을 사용하는 것이 좋다. 또한 사용하는 바륨 이소프로폭사이드 대 알루미늄 이소프로폭사이드의 몰비는 BaO 1분자당 Al2O36분자가 결합되도록 1:6몰인 것이 바람직하다.Here, barium is soluble in other kinds of alcohols other than isopropyl alcohol, but alumina is soluble only in isopropyl alcohol. Therefore, even if barium alkoxide is prepared using other alcohol, it is mixed with aluminum isopropoxide. Since is different from the composition of the material produced after the hydrolysis is different it is preferable to use isopropyl alcohol as the solvent. In addition, the molar ratio of barium isopropoxide to aluminum isopropoxide to be used is preferably 1: 6 mol such that 6 molecules of Al 2 O 3 per molecule of BaO are bonded.

또한 상기 바륨 및 알루미늄 이소프로폭사이드를 다시 이소프로필알코올에 용해시키는 경우 불활성 기체 분위기하에서 가열함으로써 상기 용매에 완전히 용해시킬 수도 있다. 불활성 기체로 질소를 사용할 경우, 상기 가열 조건은 80℃에서 5시간 정도이다.In addition, when the barium and aluminum isopropoxide is dissolved in isopropyl alcohol again, it may be completely dissolved in the solvent by heating in an inert gas atmosphere. When using nitrogen as an inert gas, the said heating conditions are about 5 hours at 80 degreeC.

여기에 적당량의 물을 떨어뜨려 가수분해를 일으키면 겔 상태의 응고물이 생성된다. 사용하는 물의 pH는 6.0∼8.0이 바람직하며, 이 범위를 벗어날 경우 비표면적이 급속히 감소하므로 바람직하지 않다. 또한 사용량은 Ba 금속의 몰비 대비 0.5∼1.0배를 첨가하는 것이 좋다. 이 범위를 벗어나면 더 이상 증대되지 않고 오히려 감소하므로 경제적이지 않다.When an appropriate amount of water is dropped therein to cause hydrolysis, a gel coagulum is formed. The pH of water to be used is preferably 6.0 to 8.0, which is not preferable because the specific surface area rapidly decreases outside this range. In addition, the amount used is preferably added 0.5 to 1.0 times the molar ratio of Ba metal. Outside this range it is not economical because it is no longer augmented, but rather diminished.

이와 같이 생성된 겔 상태의 응고물을 숙성후 건조시키면 BaOㆍ6Al2O3가 제조된다. 상기 숙성 시간으로는 10∼15시간이 바람직하다. 이 범위를 벗어날 경우에는 비표면적에 큰 영향을 보이지 못하므로 바람직하지 않다. 또한 상기 숙성 온도는 1200℃이상의 코크스로 연소실에서 비표면적이 개선되어 효과적인 열저항성을 갖도록 하기 위해서는 1200℃∼1450℃의 범위내인 것이 좋으나, 1000∼1200℃의 온도 범위에서도 비표면적이 상대적으로 개선된다.BaO.6Al 2 O 3 is produced by drying the gel coagulum thus produced after aging. As said aging time, 10-15 hours are preferable. If it is out of this range, since it does not show a big influence on a specific surface area, it is not preferable. In addition, the aging temperature is preferably in the range of 1200 ℃ to 1450 ℃ in order to improve the specific surface area in the combustion chamber of the coke oven at 1200 ℃ or more to have an effective thermal resistance, but the specific surface area is relatively improved even in the temperature range of 1000 ~ 1200 ℃ do.

상기한 바와 같이 제조된 BaOㆍ6Al2O3는 소성 온도 1300℃에서 가열 처리후 비표면적이 16㎡/g이상, 1450℃에서 가열처리후의 비표면적이 10㎡/g이상인 촉매 담체이며, 물의 pH 7.0, Ba 금속의 몰비 대비 물의 첨가량 0.5배 및 숙성 시간 12시간인 최적 조건하에서 제조될 경우에는 1300℃에서의 가열 처리후 비표면적이 20㎡/g이상, 1450℃에서 가열처리후의 비표면적이 12㎡/g이상으로 현저한 비표면적과 연소 성능을 갖는 촉매 담체이다.BaO.6Al 2 O 3 prepared as described above is a catalyst carrier having a specific surface area of at least 16 m 2 / g after heat treatment at a firing temperature of 1300 ° C. and a specific surface area of at least 10 m 2 / g after heat treatment at 1450 ° C., and the pH of water 7.0, the specific surface area after heat treatment at 1300 ° C. or higher and the specific surface area after heat treatment at 1450 ° C., 12 It is a catalyst carrier having a remarkable specific surface area and combustion performance of more than m 2 / g.

따라서 본 발명의 방법에 의해 제조된 담체는 고온에서의 비표면적이 개선되어 1200℃이상의 고온으로 유지되는 코크스 연소실에서 연료가스의 촉매 연소를 가능케하는 열저항력이 뛰어난 담체로 사용된다.Therefore, the carrier prepared by the method of the present invention is used as a carrier having excellent heat resistance to enable catalytic combustion of fuel gas in a coke combustion chamber maintained at a high temperature of 1200 ° C. or higher at a high specific surface area.

이하, 본 발명을 실시예를 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 1Example 1

본 발명의 방법에 의해 촉매 제조시 숙성 시간이 비표면적에 미치는 영향Effect of Aging Time on Specific Surface Area in Preparation of Catalysts by the Process of the Invention

1:6몰비의 바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드를 이소프로필알코올에 용해시키고, N2분위기하에서 80℃에서 5시간 가열한 다음, pH가 7.0인 물을 Ba 금속의 몰비를 기준으로 0.5배를 첨가하여 가수분해시켰다.1: 6 molar ratio of barium isopropoxide and aluminum isopropoxide were dissolved in isopropyl alcohol, heated at 80 ° C. for 5 hours under N 2 atmosphere, and then water having a pH of 7.0 was based on the molar ratio of Ba metal. 0.5 fold was added to hydrolyze.

상기 가수분해된 겔 상태의 응고물을 하기표 1에 기재된 숙성 시간에 따라 각각 1300℃와 1450℃로 소성하여 BaOㆍ6Al2O3담체를 제조하였다.The hydrolyzed gel coagulum was calcined at 1300 ° C. and 1450 ° C., respectively, according to the aging time shown in Table 1 to prepare a BaO.6Al 2 O 3 carrier.

이와 같이 제조된 담체의 비표면적을 BET법을 이용하여 측정하고 그 결과를 하기표 1에 나타내고 도 1에 그래프화하였다.The specific surface area of the carrier thus prepared was measured using the BET method, and the results are shown in Table 1 and graphed in FIG. 1.

숙성 시간(hr)Aging time (hr) 소성 온도에 따른 비표면적(㎡/g)Specific surface area according to the firing temperature (㎡ / g) 1300℃1300 ℃ 1450℃1450 ℃ 0.50.5 10.810.8 8.88.8 1.01.0 12.512.5 10.210.2 2.02.0 16.416.4 11.211.2 12.012.0 18.518.5 12.512.5 24.024.0 18.318.3 12.412.4

상기표 및 도 1에서 보듯이, 10∼15시간동안 숙성시킨 것이 바람직하였으며, 최적 숙성시간은 12시간이었다. 이 범위밖의 시간은 비표면적에 큰 영향을 보이지 못하는 것으로 나타났다. 따라서 숙성 시간은 10∼15시간 범위내가 적당하였다.As shown in the table and Figure 1, it was preferable to mature for 10 to 15 hours, the optimum ripening time was 12 hours. Times outside this range did not show a significant effect on the specific surface area. Therefore, ripening time was suitable in the range of 10 to 15 hours.

실시예 2Example 2

본 발명의 방법에 의해 촉매 제조시 첨가되는 물의 pH가 비표면적에 미치는 영향Effect of pH of water added in preparation of catalyst by the method of the present invention on specific surface area

가수분해시 첨가되는 물의 pH를 1.0∼10.0까지 변화시키고, 12시간 숙성시킨 것을 제외하고는 실시예 1과 동일한 방법을 반복하였다. 여기서 pH는 HNO3, HCl 및 NH3수용액을 사용하여 조절하였다. 그 결과 측정된 비표면적을 하기표 2에 나타내고 도2에 그래프화하였다.The same procedure as in Example 1 was repeated except that the pH of water added during hydrolysis was changed to 1.0 to 10.0 and aged for 12 hours. Here pH was adjusted using aqueous HNO 3 , HCl and NH 3 solution. As a result, the measured specific surface area is shown in Table 2 and graphed in FIG.

물의 pHPH of water 소성 온도에 따른 비표면적(㎡/g)Specific surface area according to the firing temperature (㎡ / g) 1300℃1300 ℃ 1450℃1450 ℃ 1.0(HNO3)1.0 (HNO 3 ) 13.613.6 11.211.2 2.0(HCl)2.0 (HCl) 11.811.8 9.49.4 7.0(H2O)7.0 (H 2 O) 18.518.5 12.512.5 10.0(NH3)10.0 (NH 3 ) 13.413.4 11.011.0

상기 표 및 도 2에서 보듯이, pH 6.0∼8.0 범위내에서 대체로 우수한 성능을 보였으며, 이 범위를 벗어날 경우 비표면적이 급속히 감소하였다.As shown in the table and FIG. 2, the pH showed generally excellent performance in the range of 6.0-8.0, and the specific surface area rapidly decreased when it was out of this range.

실시예 3Example 3

본 발명의 방법에 의해 촉매 제조시 물의 첨가량이 비표면적에 미치는 영향Influence of Water Addition on Specific Surface Area in the Preparation of Catalysts by the Process of the Invention

담체를 제조하기 위해 가수분해 단계에서 첨가되는 물의 양을 바륨 금속 몰비 대비 0.3∼10.0배까지 변화시키고 숙성시킨 것을 제외하고는 실시예 1의 방법을 반복하였다. 그 결과 측정된 비표면적을 하기표 3에 나타내고 도 3에 그래프화하였다.The method of Example 1 was repeated except that the amount of water added in the hydrolysis step to prepare the carrier was changed to 0.3-10.0 times the barium metal molar ratio and aged. As a result, the measured specific surface area is shown in Table 3 and graphed in FIG. 3.

Ba금속 몰비 대비물의 첨가비Addition ratio of Ba metal molar ratio 소성 온도에 따른 비표면적(㎡/g)Specific surface area according to the firing temperature (㎡ / g) 1300℃1300 ℃ 1450℃1450 ℃ 0.30.3 8.88.8 5.25.2 0.50.5 20.220.2 12.712.7 0.750.75 17.917.9 11.711.7 1.01.0 16.216.2 10.910.9 2.02.0 15.515.5 10.410.4 10.010.0 18.518.5 12.512.5

상기 표 및 도 3에서 보듯이, 물의 첨가량이 바륨 금속 대비 0.5∼1.0배인 범위내에서 비교적 우수한 성능을 나타내었으며, 그 범위를 초과하는 경우에는 비표면적이 오히려 감소하거나 일정하였다. 따라서 물의 첨가량은 바륨 금속 몰비 대비 0.5∼1.0배 범위가 적당함을 알 수 있다.As shown in the table and Figure 3, the addition of water showed a relatively good performance in the range of 0.5 to 1.0 times compared to the barium metal, the specific surface area was rather reduced or constant when exceeding the range. Therefore, it can be seen that the addition amount of water is in the range of 0.5 to 1.0 times relative to the barium metal molar ratio.

실시예 4Example 4

본 발명의 방법에 의해 촉매 제조시 소성 온도가 비표면적에 미치는 영향Effect of Firing Temperature on Specific Surface Area during Catalyst Preparation by the Method of the Present Invention

실시예 1∼3의 결과를 통해 숙성 시간 12시간, 물의 pH 7.0 및 물의 첨가량 (Ba 금속의 몰비 대비) 0.5배로 하여 제조한 BaOㆍ6Al2O3담체의 열저항력을 알아보기 위하여 소성 온도 변화에 따라 측정한 비표면적을 종래 담체인 BaCO3와 Al2O3혼합물 및 순수한 Al2O3와 비교하여 하기표 4에 나타내었다.In order to determine the thermal resistance of BaO · 6Al 2 O 3 carrier prepared by the aging time 12 hours, pH 7.0 of water and 0.5 times the amount of water (based on the molar ratio of Ba metal), the results of Examples 1 to 3 were used. The specific surface area measured according to the present invention is shown in Table 4 in comparison with BaCO 3 and Al 2 O 3 mixture and pure Al 2 O 3 which are conventional carriers.

소성온도(℃)Firing temperature (℃) 비표면적(㎡/g)Specific surface area (㎡ / g) BaOㆍ6Al2O3 BaO · 6Al 2 O 3 BaCO3/Al2O3 BaCO 3 / Al 2 O 3 Al2O3 Al 2 O 3 10001000 115115 100100 110110 11001100 9797 8080 9595 12001200 5050 2020 8.48.4 13001300 20.220.2 9.29.2 3.73.7 14001400 16.416.4 7.77.7 2.52.5 14501450 12.712.7 6.16.1 1.31.3

상기 표에서 보듯이, 1450℃에서 BaCO3/Al2O3혼합물의 비표면적은 Al2O3에 비하여 약4.5배정도 크지만, 본 발명에 의해 제조된 BaOㆍ6Al2O3화합물은 Al2O3에 대해서는 약9배, 그리고 BaCO3/Al2O3혼합물에 대해서는 약2배 정도 큰 비표면적을 나타내었다.As shown in the table, although the specific surface area of the BaCO 3 / Al 2 O 3 mixture is about 4.5 times larger than that of Al 2 O 3 at 1450 ° C., the BaO.6Al 2 O 3 compound prepared according to the present invention is Al 2 O. The specific surface area was about 9 times for 3 and about 2 times for BaCO 3 / Al 2 O 3 mixture.

실시예 5Example 5

본 발명에 의해 제조된 담체와 종래 담체의 연소 성능 대비Comparison of Combustion Performance of Carrier Prepared by the Present Invention and Conventional Carrier

본 발명에 의해 제조한 BaOㆍ6Al2O3담체의 연소성능을 알아보기 위하여, BaCO3/Al2O3혼합물 및 순수한 Al2O3와 비교하여 하기표 5에 나타내었다. 이때 Co금속을 활성 물질로 하여 코크스로의 연료 가스로 사용하는 COG(Cokes Oven Gas)의 연소전화율을 측정하였다.In order to determine the combustion performance of the BaO.6Al 2 O 3 carrier prepared by the present invention, it is shown in Table 5 in comparison with BaCO 3 / Al 2 O 3 mixture and pure Al 2 O 3 . At this time, the combustion conversion rate of COG (Cokes Oven Gas) using Co metal as an active material as a fuel gas of coke oven was measured.

전화율(%)% Conversion 온도(℃)Temperature (℃) BaOㆍ6Al2O3 BaO · 6Al 2 O 3 BaCO3/Al2O3 BaCO 3 / Al 2 O 3 Al2O3 Al 2 O 3 무촉매(화염촉매)No catalyst (flame catalyst) 9090 750750 860860 10101010 불가능impossible 100100 760760 980980 10501050 불가능impossible

상기 표에서 보듯이, 기존의 화염연소(무촉매)는 90%의 전화율을 얻기가 불가능한 반면, 본 발명에 의해 제조된 BaOㆍ6Al2O3화합물을 사용할 때는 연료 가스가 90% 내지 100% 연소되는데 필요한 온도가 750∼760℃로 가장 낮게 측정되어 다른 화합물이나 기존의 연소 방법에 비해 상대적으로 낮은 온도에서도 완전 연소가 가능하므로써 연료 절감이 가능한 우수한 연소성능을 나타내었다.As shown in the table, while conventional flame combustion (non-catalyst) is not possible to obtain a conversion rate of 90%, when using BaO.6Al 2 O 3 compound prepared by the present invention, the fuel gas is burned from 90% to 100% The lowest required temperature was 750 to 760 ° C, which means that complete combustion is possible even at relatively low temperatures compared to other compounds or conventional combustion methods, resulting in excellent combustion performance.

본 발명에 의해 제조된 BaOㆍ6Al2O3촉매 담체는 제조도중 가수분해시 첨가하는 물의 pH 와 첨가량 및 후속적인 숙성 시간을 특정함으로써 고온에서 비표면적이 개선되어 1200℃이상인 코크스로 연소실에서 열저항력이 뛰어난 연소용 열저항 담체로 사용될 수 있다.BaO · 6Al 2 O 3 catalyst carrier prepared according to the present invention is characterized by improving the specific surface area at high temperatures by specifying the pH and amount of water added during the hydrolysis during the preparation, and the subsequent aging time, so that the thermal resistance in the coke oven combustion chamber of 1200 ° C. or more is improved. It can be used as an excellent combustion heat resistant carrier.

Claims (5)

바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드를 이소프로필알코올에 용해시키는 단계;Dissolving barium isopropoxide and aluminum isopropoxide in isopropyl alcohol; 그후 바륨 이소프로폭사이드와 알루미늄 이소프로폭사이드가 용해된 이소프로필알코올 용액에 바륨 금속의 몰비를 기준으로 0.5∼1.0배의 물을 첨가하여 가수분해함으로써 겔 상태의 응고물을 제조하는 단계; 및Thereafter, a gel coagulum is prepared by adding 0.5-1.0 times of water based on the molar ratio of barium metal to the isopropyl alcohol solution in which barium isopropoxide and aluminum isopropoxide are dissolved and hydrolyzed. And 이와 같이 얻어진 응고물을 10∼15시간의 숙성하는 단계;로 이루어지는 고온 코크스로 연소실의 연소용 촉매 담체 제조 방법A method of producing a catalyst carrier for combustion of a combustion chamber comprising a high temperature coke oven, comprising the step of aging the coagulated product obtained in this way for 10 to 15 hours. 제1항에 있어서, 상기 바륨 이소프로폭사이드 대 알루미늄 이소프로폭사이드의 몰비는 1:6임을 특징으로 하는 방법The method of claim 1 wherein the molar ratio of barium isopropoxide to aluminum isopropoxide is 1: 6. 제1항에 있어서, 상기 물의 pH는 6.0∼8.0임을 특징으로 하는 방법The method of claim 1, wherein the pH of the water is characterized in that from 6.0 to 8.0 제1항의 촉매 담체 제조 방법에 의해 제조되며, 1300℃에서 숙성하는 경우, 비표면적이 16㎡/g이상인 고온 코크스로 연소실의 연소용 촉매 담체A catalyst carrier for the combustion of a combustion chamber with a high temperature coke having a specific surface area of 16 m 2 / g or more, prepared by the catalyst carrier production method of claim 1. 제1항의 촉매 담체 제조 방법에 의해 제조되며, 1450℃에서 숙성하는 경우, 비표면적이 10㎡/g이상인 고온 코크스로 연소실의 연소용 촉매 담체A catalyst carrier for the combustion of a combustion chamber with a high temperature coke having a specific surface area of 10 m 2 / g or more, which is prepared by the method of preparing a catalyst carrier according to claim 1.
KR1019980054701A 1998-12-12 1998-12-12 Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom KR20000039382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980054701A KR20000039382A (en) 1998-12-12 1998-12-12 Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980054701A KR20000039382A (en) 1998-12-12 1998-12-12 Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom

Publications (1)

Publication Number Publication Date
KR20000039382A true KR20000039382A (en) 2000-07-05

Family

ID=19562604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980054701A KR20000039382A (en) 1998-12-12 1998-12-12 Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom

Country Status (1)

Country Link
KR (1) KR20000039382A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245844A (en) * 1985-04-25 1986-11-01 Babcock Hitachi Kk Combustion catalyst and its preparation
JPS63283751A (en) * 1987-05-18 1988-11-21 Mitsubishi Heavy Ind Ltd Oxidized catalyst of combustible gas
JPH0259045A (en) * 1988-08-26 1990-02-28 Babcock Hitachi Kk Catalyst carrier
JPH0275344A (en) * 1988-09-09 1990-03-15 Toyo C C I Kk Steam modifying catalyst of hydrocarbon and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245844A (en) * 1985-04-25 1986-11-01 Babcock Hitachi Kk Combustion catalyst and its preparation
JPS63283751A (en) * 1987-05-18 1988-11-21 Mitsubishi Heavy Ind Ltd Oxidized catalyst of combustible gas
JPH0259045A (en) * 1988-08-26 1990-02-28 Babcock Hitachi Kk Catalyst carrier
JPH0275344A (en) * 1988-09-09 1990-03-15 Toyo C C I Kk Steam modifying catalyst of hydrocarbon and preparation thereof

Similar Documents

Publication Publication Date Title
EP0036462B1 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
CN107746285B (en) Three-dimensional porous nitride nano ceramic and preparation method thereof
CN114011400B (en) Preparation method of acidic system garbage incineration SCR denitration catalyst and denitration catalyst prepared by preparation method
KR20000039382A (en) Manufacture of heat-resistant catalyst carrier for combustion in combustion chamber of high-temperature coke furnace and catalyst carrier therefrom
CN112479248B (en) Preparation method of strontium titanate with adjustable strontium vacancy and application of strontium titanate in field of photocatalytic hydrogen production
CN110104657B (en) Preparation method of Y-type molecular sieve with high silica-alumina ratio
JPH07256100A (en) Production of heat-resistant alumina carrier for catalytic combustion
JPH06218282A (en) Heat resistant catalyst carrier and production thereof
KR100228241B1 (en) Oxidation catalyst and method of producing the same
KR100337024B1 (en) Manufacturing Method of high surface area alumina for high temperature catalytic combustion using surfactant
JPH03208807A (en) Phosphate compound sintered body and its production
JPS61209044A (en) Catalyst carrier partially converted to mullite and its preparation
JPH0543344A (en) Production of alumina-based porous body
KR102493409B1 (en) Nitrous oxide decomposition catalyst and its manufacturing method
JPH04281018A (en) Production of porous yarn of silica alumina
JPH0624860A (en) Production of aluminous porous body
SU1456359A1 (en) Method of producing highly disperse silicon and titanium dioxide
KR101889192B1 (en) Hydrodesulfurization catalyst and method for preparing the same
JP3186398B2 (en) Method for producing inorganic porous body
KR100336797B1 (en) Method for producing methanol from syn gas containing an excessive amount of carbon dioxide, and a catalyst used therein
JPH02102112A (en) Production of silica alumina precursor sol
JPH0427432A (en) Production of combustion catalyst
JPH08243391A (en) High temperature combustion catalyst and production thereof
JPH0388713A (en) Production of aluminate powder
SU1011601A1 (en) Method for roasting small-size ceramic products for radio engineering

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application