KR20000038821A - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR20000038821A
KR20000038821A KR1019980053947A KR19980053947A KR20000038821A KR 20000038821 A KR20000038821 A KR 20000038821A KR 1019980053947 A KR1019980053947 A KR 1019980053947A KR 19980053947 A KR19980053947 A KR 19980053947A KR 20000038821 A KR20000038821 A KR 20000038821A
Authority
KR
South Korea
Prior art keywords
forming
region
plug
insulating layer
layer
Prior art date
Application number
KR1019980053947A
Other languages
Korean (ko)
Other versions
KR100311174B1 (en
Inventor
이명구
Original Assignee
김영환
현대반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체 주식회사 filed Critical 김영환
Priority to KR1019980053947A priority Critical patent/KR100311174B1/en
Publication of KR20000038821A publication Critical patent/KR20000038821A/en
Application granted granted Critical
Publication of KR100311174B1 publication Critical patent/KR100311174B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • H01L21/32053Deposition of metallic or metal-silicide layers of metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type

Abstract

PURPOSE: A method for fabricating a semiconductor device is provided to prevent degradation of an electrostatic discharge protection circuit. CONSTITUTION: A method for fabricating a semiconductor device comprises forming n-MOS transistors on a memory cell region(c) and an electrostatic discharge(ESD) protection region(d) of a p-substrate(30), forming a silicide layer(36) on a gate and a diffusion region(33, 35), forming a first lay-insulating layer(37), forming a first and a second contact hole at the same time by removing a portion of the first lay-insulating layer, wherein the first contact hole is formed to expose a portion of the silicide layer on the diffusion region and the second contact hole is formed to expose a portion of the silicide layer on the ESD protection region, forming a first and a second plug(38, 39) by filling the contact holes, forming a second lay-insulating layer(40), forming a via hole exposing the first plug(38), forming a conductive layer by filling the via hole, and forming a bit line(42) by patterning the conductive layer.

Description

반도체장치의 제조방법Manufacturing Method of Semiconductor Device

본 발명은 반도체장치의 제조방법에 관한 것으로서 특히, 살리사이드가 형성되는 제품에 있어서 이에스디(Electrostatic discharge : 이하, 이에스디라 칭함) 보호회로로 사용되는 NMOS 전계효과 트랜지스터의 드레인 콘택부에서 게이트 모서리(edge)까지의 드레인 영역에서 살리사이드 형성에 기인한 아웃디퓨젼(outdiffusion)현상 때문에 생기는 저항감소로 이에스디 보호회로의 열화를 이에스디 펄스를 지연시키므로서 방지하도록한 반도체장치의 이에스디 보호회로 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a gate edge at a drain contact portion of an NMOS field effect transistor, which is used as an ESD protection circuit in a product in which a salicide is formed. ISIS protective circuit fabrication of semiconductor device which prevents degradation of ESDI protective circuit by delaying ESDI pulse due to resistance decrease caused by outdiffusion phenomenon due to salicide formation in the drain region up to the edge) It is about a method.

반도체장치가 고집적화됨에 따라 소오스 및 드레인영역으로 이용되는 불순물영역과 배선 폭이 감소되고 있다. 이에 따라, 반도체장치는 불순물영역 및 배선의 저항이 증가하여 동작 속도가 저하되는 문제점이 발생되었다.As semiconductor devices are highly integrated, impurity regions and wiring widths used as source and drain regions are reduced. As a result, the semiconductor device has a problem in that the resistance of the impurity region and the wiring increases, thereby lowering the operation speed.

그러므로, 반도체장치 내의 소자들의 배선을 알루미늄 합금 및 텅스텐 등의 저저항 물질로 형성하거나, 또는, 게이트전극에서와 같이 다결정실리콘으로 형성하는 경우에 실리사이드 또는 살리사이드를 형성하여 저항을 감소시키기도 한다. 상기에서 다결정실리콘으로 형성된 게이트전극에 실리사이드층을 형성할 때 불순물영역의 표면에도 실리사이드층을 형성하여 저항을 감소시킨다.Therefore, when wiring of elements in the semiconductor device is made of a low resistance material such as aluminum alloy and tungsten, or formed of polycrystalline silicon as in the gate electrode, silicide or salicide may be formed to reduce the resistance. When the silicide layer is formed on the gate electrode formed of polycrystalline silicon, the silicide layer is formed on the surface of the impurity region to reduce the resistance.

반도체장치의 입출력단자는 과도전압 또는 얇은 게이트산화막으로 인한 항복전압(breakdown voltage)의 저하 등에 따른 정전방전에 의해 파괴되기 쉽다. 즉, 드레인영역이 실리사이드 형성으로 저저항을 갖게 되면 인가되는 전압이 고루 분산되지 않고 LDD(Lightly Doped Drain)영역에 집중되어 반도체소자가 파괴된다. 그러므로, 입출력단자에 소오스 및 드레인영역으로 이용되는 불순물영역과 다결정실리콘으로 형성된 게이트전극의 저항을 크게하여 인가되는 전압을 고루 분산시켜 정전방전 파괴를 방지하는 ESD 보호 트랜지스터를 형성하였다.The input / output terminals of the semiconductor device are susceptible to breakdown by electrostatic discharge due to a drop in breakdown voltage due to a transient voltage or a thin gate oxide film. That is, when the drain region has low resistance due to silicide formation, the applied voltage is not evenly distributed and is concentrated in the lightly doped drain (LDD) region, thereby destroying the semiconductor device. Therefore, an ESD protection transistor is formed to prevent electrostatic discharge destruction by evenly spreading the applied voltage by increasing the resistance of the impurity region used as the source and drain regions and the gate electrode formed of polycrystalline silicon in the input / output terminals.

그러나, 이에스디 보호회로에 사용되는 트랜지스터를 NMOS 트랜지스터로 형성하고 살라사이드를 형성하는 경우, 살리사이드는 게이트 상부 뿐만 아니라 드레인과 소스의 상부 표면에도 형성되게 된다. 이때, 실리사이드 형성전의 n+ 졍션의 쉬트 저항(sheet resistance)이 수십Ω에서 실리사이드 형성 후에는 수Ω으로 감소하게 된다. 따라서, 이에스디 펄스가 입출력 패드를 통하여 이에스디 보호회로에 인가되었을 때 고전류가 드레인의 실리사이드 쪽으로 흘러 n형의 졍션의 끝 부위인 게이트 모서리로 전류가 집중되고 이는 주로 기생 바이폴라 트랜지스터가 동작하는 부위가 된다.However, in the case where the transistor used in the ESD protection circuit is formed of an NMOS transistor and a salicide is formed, the salicide is formed not only on the gate but also on the upper surface of the drain and the source. At this time, the sheet resistance of the n + section before silicide formation is reduced from several tens of Ω to several Ω after silicide formation. Therefore, when the ESDI pulse is applied to the ESD circuit through the input / output pad, a high current flows toward the silicide of the drain and concentrates the current at the gate edge of the n-type junction, which is mainly a part where the parasitic bipolar transistor operates. do.

전류가 실리콘기판의 특정 부위에만 집중되면 인가되는 이에스디 펄스의 전압에 의하여 모스트랜지스터가 파괴되어 보호회로로서의 동작을 수행할 수 없게 된다. 참고문헌(Ajiith Amerasekera, Charvaka Duvvury, "The Impact of Technology Scaling on ESD Robustness and Protection Circuit Design" EOS/ESD procee., pp.237-245,1994)에 의하면 실리사이드가 적용된 경우가 그렇지 않은 경우보다 이에스디 펄스에 의해 약 5 배의 소자 디그레이데이션(degradation)을 초래한다고 지적되어 있다.When the current is concentrated only on a specific portion of the silicon substrate, the MOS transistor is destroyed by the voltage of the isdy pulse applied, and thus the operation as the protection circuit cannot be performed. References (Ajiith Amerasekera, Charvaka Duvvury, "The Impact of Technology Scaling on ESD Robustness and Protection Circuit Design" EOS / ESD procee., Pp.237-245,1994) suggest that silicides are more likely It is pointed out that the pulse causes about five times the device degradation.

도 1a 내지 도 1d는 종래 기술에 따른 반도체장치의 이에스디 보호회로 제조공정단면도이다. 이때 영역 "a"는 메모리 셀 형성영역이고 영역 "b"는 이에스디 보호회로 형성영역이다.1A to 1D are cross-sectional views illustrating a manufacturing process of an ESD protection circuit of a semiconductor device according to the prior art. At this time, the region "a" is a memory cell formation region and the region "b" is an ESD protection circuit formation region.

도 1a를 참조하면, LOCOS 또는 STI(shallow trench isolation) 등의 방법으로 반도체기판인 p형 실리콘기판(10)의 소정부위에 필드산화막(11)을 형성한다음 산화막으로 형성된 게이트절연막(12), 불순물이 도핑된 폴리실리콘으로 형성된 게이트(13), n형 불순물 확산영역(15), 절연막으로 이루어진 게이트 측벽 스페이서(14) 등으로 형성된 NMOS 트랜지스터를 각각 영역 a 와 영역 b에 형성한다.Referring to FIG. 1A, a field oxide film 11 is formed on a predetermined portion of a p-type silicon substrate 10 as a semiconductor substrate by a method such as LOCOS or shallow trench isolation (STI), and then a gate insulating film 12 formed of an oxide film, NMOS transistors formed of a gate 13 formed of polysilicon doped with impurities, an n-type impurity diffusion region 15, a gate sidewall spacer 14 made of an insulating film, and the like are formed in regions a and b, respectively.

도 1b를 참조하면, 기판의 전면에 코발트 금속층을 얇게 증착하여 형성한 다음 열처리를 실시하여 모출된 기판의 불순물 확산영역(15)과 게이트(13) 상부 표면에 실리사이드층(16)을 형성한다. 이때, 형성된 실리사이드 또는 살리사이드층은 CoSi2로 구성되며 콘택 저항을 감소시키는 역할을 한다.Referring to FIG. 1B, a thin cobalt metal layer is formed on the entire surface of the substrate, and then heat-treated to form a silicide layer 16 on the impurity diffusion region 15 and the upper surface of the gate 13 of the substrate. At this time, the formed silicide or salicide layer is composed of CoSi 2 and serves to reduce the contact resistance.

도 1c를 참조하면, 층간절연용 제 1 층간절연층(17)을 실리사이드층(16)을 포함하는 기판(10) 전면에 증착한 다음 평탄화시킨다.Referring to FIG. 1C, the first interlayer insulating layer 17 for interlayer insulation is deposited on the entire surface of the substrate 10 including the silicide layer 16 and then planarized.

그리고, 사진식각공정을 제 1 층간절연층(17)에 실시하여 메모리 셀 형성영역(a)의 트랜지스터 사이의 공통 불순물 확산영역(15) 상부 표면에 위치한 실리사이드층(16)의 표면을 노출시킨는 콘택홀을 형성한다.A photolithography process is performed on the first interlayer insulating layer 17 to expose the surface of the silicide layer 16 located on the upper surface of the common impurity diffusion region 15 between the transistors of the memory cell formation region a. Form a hole.

그다음, 콘택홀을 매립하도록 제 1 층간절연층(17)의 전면에 도핑된 폴리실리콘을 CVD법으로 증착한 다음 패터닝하여 비트라인 패드(18)를 형성한다.Then, doped polysilicon is deposited on the entire surface of the first interlayer insulating layer 17 by CVD to fill the contact holes, and then patterned to form the bit line pads 18.

도 1d를 참조하면, 비트라인 패드(18)를 덮도록 제 1 층간절연층(17) 위에 단차를 조절하기 위한 제 2 층간절연층(19)을 증착하여 형성한다.Referring to FIG. 1D, a second interlayer insulating layer 19 for controlling a step is formed on the first interlayer insulating layer 17 to cover the bit line pad 18.

그리고, 제 2 층간절연층(19)의 소정 부위를 제거하여 비어홀을 형성하므로서 비트라인 패드(18)의 상부 표면을 노출시킨 다음, 비어홀을 매립하도록 도핑된 폴리실리콘을 제 2 층간절연층(19) 위에 증착한 다음 패터닝하여 플러그(20)와 비트라인(21)을 완성한다.The upper surface of the bit line pad 18 is exposed by removing a predetermined portion of the second interlayer insulating layer 19 to form a via hole, and then a polysilicon doped with a second hole is filled with the second interlayer insulating layer 19. ) And then patterned to complete plug 20 and bit line 21.

상술한 바와 같이 종래의 반도체장치의 이디에스 보호회로에서는 이에스디 보호회로에 사용되는 트랜지스터를 NMOS 트랜지스터로 형성하고 살리사이드를 형성하는 경우 전류가 실리콘기판의 특정 부위에만 집중되면 인가되는 이에스디 펄스의 전압에 의하여 모스트랜지스터가 파괴되어 보호회로로서의 동작을 수행할 수 없게 되는 문제점이 있다.As described above, in the ESD protection circuit of the conventional semiconductor device, when the transistors used in the ESD protection circuit are formed as NMOS transistors and the salicides are formed, the current of the ESD protection pulse is applied when the current is concentrated only at a specific part of the silicon substrate. There is a problem in that the MOS transistor is destroyed by the voltage, so that the operation as the protection circuit cannot be performed.

따라서, 본 발명의 목적은 살리사이드가 형성되는 제품에 있어서 이에스디 보호회로로 사용되는 NMOS 전계효과 트랜지스터의 드레인 콘택부에서 게이트 모서리까지의 드레인 영역에서 살리사이드 형성에 기인한 아웃디퓨젼 현상 때문에 생기는 저항감소로 이에스디 보호회로의 열화를 이에스디 펄스를 지연시키므로서 방지하도록한 반도체장치의 이에스디 보호회로 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is due to an out-diffusion phenomenon caused by salicide formation in the drain region from the drain contact portion to the gate edge of an NMOS field effect transistor used as an ESD protection circuit in a product where salicide is formed. The present invention provides a method for manufacturing an ESD protection circuit of a semiconductor device which prevents degradation of the ESD protection circuit by delaying the ESD pulse.

상기 목적들을 달성하기 위한 본 발명에 따른 반도체장치의 이디에스 보호회로의 제조방법은 메모리셀 형성영역과 이에스디 보호회로 형성영역이 제 1 절연막으로 격리된 제 1 도전형 반도체기판 위에 게이트절연막, 게이트, 제 2 도전형 불순물 확산영역, 제 2 절연막으로 이루어진 게이트 측벽 스페이서로 구성된 제 2 도전형 모스트랜지스를 메모리셀 형성영역과 이에스디 보호회로 형성영역의 반도체 기판에 각각 형성하는 단계와, 노출된 게이트 상부 표면과 제 2 도전형 불순물 확산영역의 표면에 실리사이드층을 형성하는 단계와, 실리사이드층이 형성된 트랜지스터를 덮도록 반도체 기판상에 제 1 층간절연층을 형성하는 단계와, 제 1 층간절연층의 소정 부위를 제거하여 메모리셀 형성영역의 불순물 확산영역의 실리사이드층의 일부 표면을 노출시키는 제 1 콘택홀과 이에스디 보호회로 형성영역의 불순물 확산영역의 실리사이드층의 일부 표면을 노출시키는 제 2 콘택홀을 동시에 형성하는 단계와, 제 1 콘택홀 및 제 2 콘택홀을 매립하는 도전성을 갖는 제 1 플러그와 제 2 플러그를 형성하는 단계와, 제 1 플러그와 제 2 플러그를 덮도록 제 2 층간절연층을 제 1 층간절연층 위에 형성하는 단계와, 제 2 층간절연층에 제 1 플러그를 노출시키는 비어 홀을 형성하는 단계와, 제 2 층간절연층 위에 비어홀을 매립하도록 도전층을 형성하는 단계와, 도전층을 패터닝하여 비트라인을 형성하는 단계를 포함하여 이루어진다.SUMMARY OF THE INVENTION A method of manufacturing an ESD protection circuit of a semiconductor device according to the present invention for achieving the above objects includes a gate insulating film and a gate on a first conductive semiconductor substrate having a memory cell formation region and an ESD protection circuit formation region separated by a first insulating layer. Forming a second conductivity type MOS transistor comprising a second conductivity type impurity diffusion region and a gate sidewall spacer formed of a second insulating film on the semiconductor substrate of the memory cell formation region and the ESD protection circuit formation region, respectively; Forming a silicide layer on the gate upper surface and the surface of the second conductivity type impurity diffusion region, forming a first interlayer dielectric layer on the semiconductor substrate to cover the transistor on which the silicide layer is formed, and a first interlayer dielectric layer; A portion of the silicide layer of the impurity diffusion region of the memory cell formation region is exposed by removing a predetermined portion of the The key is formed simultaneously with the second contact hole exposing a part of the silicide layer of the impurity diffusion region of the first contact hole and the ESD protection circuit forming region, and filling the first contact hole and the second contact hole. Forming a first plug and a second plug having a second plug; forming a second interlayer insulating layer on the first interlayer insulating layer so as to cover the first plug and the second plug; Forming a via hole exposing the plug, forming a conductive layer to fill the via hole on the second interlayer insulating layer, and patterning the conductive layer to form a bit line.

도 1a 내지 도 1d는 종래 기술에 따른 반도체장치의 이에스디 보호회로 제조공정단면도1A to 1D are cross-sectional views of an ISD protective circuit manufacturing process of a semiconductor device according to the related art.

도 2a 내지 2d는 본 발명에 따른 반도체장치의 이에스디 보호회로의 제조공정 단면도2A to 2D are cross-sectional views of a manufacturing process of an ESD protective circuit of a semiconductor device according to the present invention.

본 발명에서는 이에스디 보호회로로 사용되는 NMOS 트랜지스터의 드레인 콘택을 메모리셀 형성영역의 비트라인 패드를 형성하기 위한 콘택홀 형성공정 진행과 동시에 형성한 후, 도핑된 폴리실리콘을 증착하여 실리사이드가 형성된 드레인과 전기적으로 연결하여 이에스디 보호회로 영역의 콘택을 형성한다.In the present invention, the drain contact of the NMOS transistor used as the ESD protection circuit is formed at the same time as the contact hole forming process for forming the bit line pad of the memory cell formation region, and then the doped polysilicon is deposited to form a silicide-drain. And electrically connect to form a contact of the ESD protection circuit region.

소스/드레인 영역에 실리사이드가 형성되면 이에스디 전압이 보호회로에 인가될 때, 전류가 집중되는 특정지역의 파괴를 일으키게 된다. 따라서, 본 발명에서와 같이 실리사이드를 드레인 영역에 형성시키더라도 드레인과의 콘택 부위에 상대적으로 저항이 큰 도핑된 폴리실리콘을 증착하게 되면 빠른 상승시간(rising time)을 갖는 이에스디 펄스의 지연현상을 유도하게 된다. 이와 같은 지연현상은 드레인 졍션 전체에 걸쳐서 바이폴라 트랜지스터 작용을 일으킬 수 있는 시간적인 여유를 제공한다. 일반적으로 소스/드렝인 영역에 실리사이드가 형성되지 않은 경우, 드레인 콘택과 게이트 사이의 거리(drain contact to gate space)가 증가할 수록 즉, 그 부위의 저항이 커질 수록 이에스디 보호회로를 구성하는 NMOS 트랜지스터의 드레인 졍션에서의 유니폼 턴-온(uniform turn-on)이 증가하여 이에스디 실효전압(ESD failure voltage)가 증가한다는 사실은 널리 알려져 있다.The formation of silicide in the source / drain regions causes the breakdown of a specific region where current is concentrated when the ESD voltage is applied to the protection circuit. Therefore, even when silicide is formed in the drain region as in the present invention, when doped polysilicon having a relatively high resistance is deposited on the contact portion with the drain, the delay phenomenon of the Isdy pulse with a fast rising time is reduced. To induce. This delay provides time margin for bipolar transistor action across the drain caption. In general, when silicide is not formed in the source / drain region, the NMOS constituting the ESD protection circuit increases as the drain contact to gate space increases, that is, the resistance of the region increases. It is well known that the uniform turn-on at the drain junction of the transistor increases, leading to an increase in the ESD failure voltage.

본 발명에서는 이에스디 보호회로로 사용되는 NMOS 트랜지스터의 드레인과 소스의 콘택 플러그를 일반적으로 사용하는 저항이 작은 텅스텐과 같은 물질을 사용하지 않고 저항이 상대적으로 큰 도핑된 폴리실리콘을 사용하여 유니폼 턴-온을 유도할 수 있다.In the present invention, uniform turn-off is performed using doped polysilicon having a relatively high resistance without using a material such as tungsten having a small resistance, which generally uses contact plugs of a drain and a source of an NMOS transistor used as an ESD protection circuit. Can be induced.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명에 따른 반도체장치의 이에스디 보호회로 제조공정단면도이다. 이때 영역 "c"는 메모리 셀 형성영역이고 영역 "d"는 입출력단자의 이에스디 보호회로 형성영역이다.2A to 2D are cross-sectional views of an ISD protective circuit manufacturing process of a semiconductor device according to the present invention. At this time, the area "c" is a memory cell formation area and the area "d" is an ESD protection circuit formation area of the input / output terminal.

도 2a를 참조하면, LOCOS 또는 STI(shallow trench isolation) 등의 방법으로 반도체기판인 p형 실리콘기판(30)의 소정부위에 필드산화막(31)을 형성한다음 산화막으로 형성된 게이트절연막(32), 불순물이 도핑된 폴리실리콘으로 형성된 게이트(33), n형 불순물 확산영역(35), 절연막으로 이루어진 게이트 측벽 스페이서(34) 등으로 형성된 NMOS 트랜지스터를 각각 영역 c 와 영역 d에 형성한다.Referring to FIG. 2A, a field oxide film 31 is formed on a predetermined portion of a p-type silicon substrate 30, which is a semiconductor substrate, by a method such as LOCOS or shallow trench isolation (STI), followed by a gate insulating film 32 formed of an oxide film, NMOS transistors formed of a gate 33 formed of polysilicon doped with impurities, an n-type impurity diffusion region 35, a gate sidewall spacer 34 made of an insulating film, and the like are formed in regions c and d, respectively.

도 2b를 참조하면, 기판의 전면에 코발트 금속층을 얇게 증착하여 형성한 다음 열처리를 실시하여 노출된 기판의 불순물 확산영역(33)과 게이트(33) 상부 표면에 실리사이드층(36)을 형성한다. 이때, 형성된 실리사이드 또는 살리사이드층은 CoSi2로 구성되며 콘택 저항을 감소시키는 역할을 한다.Referring to FIG. 2B, a thin cobalt metal layer is formed on the entire surface of the substrate, and then a heat treatment is performed to form the silicide layer 36 on the impurity diffusion region 33 and the upper surface of the gate 33 of the exposed substrate. At this time, the formed silicide or salicide layer is composed of CoSi 2 and serves to reduce the contact resistance.

도 2c를 참조하면, 층간절연용 제 1 층간절연층(37)을 실리사이드층(36)을 포함하는 기판(30) 전면에 증착한 다음 평탄화시킨다.Referring to FIG. 2C, the first interlayer insulating layer 37 for interlayer insulation is deposited on the entire surface of the substrate 30 including the silicide layer 36 and then planarized.

그리고, 사진식각공정을 제 1 층간절연층(37)에 실시하여 메모리 셀 형성영역(c)의 트랜지스터 사이의 공통 불순물 확산영역(35) 상부 표면에 위치한 실리사이드층(36)의 표면과 이에스디 보호회로 형성영역(d)의 불순물 확산영역(35) 표면에 형성된 실리사이드층(36)을 노출시킨는 콘택홀을 형성한다.Then, a photolithography process is performed on the first interlayer insulating layer 37 to protect the surface of the silicide layer 36 located on the upper surface of the common impurity diffusion region 35 between the transistors of the memory cell formation region c and the ESD protection. A contact hole is formed in which the silicide layer 36 formed on the surface of the impurity diffusion region 35 in the circuit formation region d is exposed.

그다음, 메모리 셀 형성영역(c)과 이에스디 보호회로 형성영역(d)의 콘택홀들을 매립하도록 제 1 층간절연층(37)의 전면에 도핑된 폴리실리콘을 CVD법으로 증착한 다음 포토리쏘그래피(photolithography)로 패터닝하여 비트라인 패드(38)와 이에스디 콘택 플러그(39)를 동시에 형성한다.Then, doped polysilicon is deposited on the entire surface of the first interlayer insulating layer 37 by CVD to fill the contact holes of the memory cell forming region c and the ESD protection circuit forming region d with photolithography. Patterning is performed by photolithography to simultaneously form the bit line pad 38 and the ESD contact plug 39.

도 2d를 참조하면, 비트라인 패드(38)와 이에스디 콘택 플러그(39)를 덮도록 제 1 층간절연층(37) 위에 단차 등을 조절하기 위한 제 2 층간절연층(40)을 증착하여 형성한다.Referring to FIG. 2D, a second interlayer insulating layer 40 may be formed on the first interlayer insulating layer 37 to cover the bit line pad 38 and the ISD contact plug 39 to control the level difference. do.

그리고, 제 2 층간절연층(40)의 소정 부위를 제거하여 비어홀을 형성하므로서 비트라인 패드(38)의 상부 표면을 노출시킨 다음, 비어홀을 매립하도록 도핑된 폴리실리콘 등의 도전층을 제 2 층간절연층(40) 위에 증착한 다음 포토리쏘그래피로 패터닝하여 플러그(41)와 비트라인(42)을 완성한다. 이때, 비트라인(42)은 메모리셀 형성영역(c)에만 형성한다.The upper surface of the bit line pad 38 is exposed by removing a predetermined portion of the second interlayer insulating layer 40 to form a via hole, and then a conductive layer such as polysilicon doped to fill the via hole is interposed therebetween. Deposited on the insulating layer 40 and then patterned by photolithography to complete the plug 41 and the bit line 42. At this time, the bit lines 42 are formed only in the memory cell formation region c.

따라서, 본 발명은 살리사이드가 형성되는 제품에 있어서 이에스디 보호회로로 사용되는 NMOS 전계효과 트랜지스터의 드레인 콘택부에서 게이트 모서리까지의 드레인 영역에서 살리사이드 형성에 기인한 아웃디퓨젼현상 때문에 생기는 저항감소로 이에스디 보호회로의 열화를 이에스디 펄스를 지연시키므로서 방지하도록 하는 장점이 있다.Accordingly, the present invention provides a reduction in resistance due to out-diffusion caused by the formation of salicide in the drain region from the drain contact portion to the gate edge of an NMOS field effect transistor used as an ESD protective circuit in a product where salicide is formed. The deterioration of the low-ESD protection circuit is prevented by delaying the ES-DE pulse.

Claims (4)

메모리셀 형성영역과 이에스디 보호회로 형성영역이 제 1 절연막으로 격리된 제 1 도전형 반도체기판 위에 게이트절연막, 게이트, 제 2 도전형 불순물 확산영역, 제 2 절연막으로 이루어진 게이트 측벽 스페이서로 구성된 제 2 도전형 모스트랜지스를 상기 메모리셀 형성영역과 상기 이에스디 보호회로 형성영역의 상기 반도체 기판에 각각 형성하는 단계와,A second structure including a gate insulating film, a gate, a second conductive impurity diffusion region, and a gate sidewall spacer formed on the first conductive semiconductor substrate having the memory cell forming region and the ESD protection circuit forming region separated by the first insulating film. Forming a conductive MOS transistor on the semiconductor substrate in the memory cell formation region and the ESD protection circuit formation region, respectively; 노출된 상기 게이트 상부 표면과 상기 제 2 도전형 불순물 확산영역의 표면에 실리사이드층을 형성하는 단계와,Forming a silicide layer on the exposed upper surface of the gate and the surface of the second conductivity type impurity diffusion region; 상기 실리사이드층이 형성된 트랜지스터를 덮도록 상기 반도체 기판상에 제 1 층간절연층을 형성하는 단계와,Forming a first interlayer insulating layer on the semiconductor substrate so as to cover the transistor on which the silicide layer is formed; 상기 제 1 층간절연층의 소정 부위를 제거하여 상기 메모리셀 형성영역의 상기 불순물 확산영역의 상기 실리사이드층의 일부 표면을 노출시키는 제 1 콘택홀과 상기 이에스디 보호회로 형성영역의 상기 불순물 확산영역의 상기 실리사이드층의 일부 표면을 노출시키는 제 2 콘택홀을 동시에 형성하는 단계와,A first contact hole exposing a portion of the silicide layer of the impurity diffusion region of the memory cell formation region to remove a predetermined portion of the first interlayer insulating layer and the impurity diffusion region of the ESD protection circuit formation region Simultaneously forming a second contact hole exposing a part surface of the silicide layer; 상기 제 1 콘택홀 및 상기 제 2 콘택홀을 매립하는 도전성을 갖는 제 1 플러그와 제 2 플러그를 형성하는 단계와,Forming a first plug and a second plug having conductivity to fill the first contact hole and the second contact hole; 상기 제 1 플러그와 상기 제 2 플러그를 덮도록 제 2 층간절연층을 상기 제 1 층간절연층 위에 형성하는 단계와,Forming a second interlayer insulating layer on the first interlayer insulating layer so as to cover the first plug and the second plug; 상기 제 2 층간절연층에 상기 제 1 플러그를 노출시키는 비어 홀을 형성하는 단계와,Forming a via hole exposing the first plug in the second interlayer insulating layer; 상기 제 2 층간절연층 위에 상기 비어홀을 매립하도록 도전층을 형성하는 단계와,Forming a conductive layer on the second interlayer insulating layer to fill the via hole; 상기 도전층을 패터닝하여 비트라인을 형성하는 단계로 이루어진 반도체장치의 제조방법.And forming a bit line by patterning the conductive layer. 청구항 1에 있어서, 상기 제 1 플러그와 상기 제 2 플러그는 도핑된 폴리실리콘으로 형성하는 것이 특징인 반도체장치의 제조방법.The method of claim 1, wherein the first plug and the second plug are formed of doped polysilicon. 청구항 1에 있어서, 상기 비트라인은 상기 메모리셀 형성영역에만 형성하는 것이 특징인 반도체장치의 제조방법.The method of claim 1, wherein the bit line is formed only in the memory cell formation region. 청구항 1에 있어서, 상기 실리사이드층은 코발트를 이용하는 살리사이드로 형성하는 것이 특징인 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the silicide layer is formed of salicide using cobalt.
KR1019980053947A 1998-12-09 1998-12-09 Manufacturing method of semiconductor device KR100311174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980053947A KR100311174B1 (en) 1998-12-09 1998-12-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980053947A KR100311174B1 (en) 1998-12-09 1998-12-09 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20000038821A true KR20000038821A (en) 2000-07-05
KR100311174B1 KR100311174B1 (en) 2002-08-21

Family

ID=19562035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980053947A KR100311174B1 (en) 1998-12-09 1998-12-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100311174B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001973A (en) * 2001-06-28 2003-01-08 주식회사 하이닉스반도체 a method for manufacturing of semiconductor device with electro static discharge protector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001973A (en) * 2001-06-28 2003-01-08 주식회사 하이닉스반도체 a method for manufacturing of semiconductor device with electro static discharge protector

Also Published As

Publication number Publication date
KR100311174B1 (en) 2002-08-21

Similar Documents

Publication Publication Date Title
KR100325553B1 (en) Electrostatic discharge protection device for semiconductor integrated circuit, method for producing the same, and electrostatic discharge protection circuit using the same
US6611024B2 (en) Method of forming PID protection diode for SOI wafer
US7285458B2 (en) Method for forming an ESD protection circuit
US5629544A (en) Semiconductor diode with silicide films and trench isolation
US6639284B1 (en) Compensated-well electrostatic discharge protection structure
KR101144025B1 (en) Semiconductor device and method for manufacturing the same
JP2007165853A (en) Semiconductor integrated circuit device and manufacturing method thereof
US6835624B2 (en) Semiconductor device for protecting electrostatic discharge and method of fabricating the same
KR100628246B1 (en) Esd protecting cirsiut and method for fabricating the same
KR100311174B1 (en) Manufacturing method of semiconductor device
US6114194A (en) Method for fabricating a field device transistor
US6461922B1 (en) Method for the integration of resistors and esd self-protected transistors in an integrated device with a memory matrix manufactured by means of a process featuring self-aligned source (sas) formation and junction salicidation
KR100310826B1 (en) A methed of forming resistance in ESD protection circuit
JP3926964B2 (en) Semiconductor device and manufacturing method thereof
KR100224757B1 (en) Semiconductor device and method for manafacturing thereof
KR100249016B1 (en) Method of fabricating semiconductor esd protection circuit
KR100275946B1 (en) Method of fabricating ESD protection ciruit
KR100336559B1 (en) Semiconductor device and fabricating method thereof
KR100672737B1 (en) Semiconductor Device For Electro Static Discharge And Method for Fabricating of The Same
KR20030002837A (en) A method for manufacturing of semiconductor device with elector static discharge protector
KR19990070615A (en) Method of manufacturing transistor in semiconductor device
KR20010037869A (en) Method for Manufacturing of Semiconductor Device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee