KR20000038157A - Method for producing oriented electric steel plate of high magnetic flux density by slab heating method at low temperature - Google Patents

Method for producing oriented electric steel plate of high magnetic flux density by slab heating method at low temperature Download PDF

Info

Publication number
KR20000038157A
KR20000038157A KR1019980053050A KR19980053050A KR20000038157A KR 20000038157 A KR20000038157 A KR 20000038157A KR 1019980053050 A KR1019980053050 A KR 1019980053050A KR 19980053050 A KR19980053050 A KR 19980053050A KR 20000038157 A KR20000038157 A KR 20000038157A
Authority
KR
South Korea
Prior art keywords
annealing
temperature
magnetic flux
flux density
nitrogen
Prior art date
Application number
KR1019980053050A
Other languages
Korean (ko)
Other versions
KR100360097B1 (en
Inventor
이청산
우종수
한찬희
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980053050A priority Critical patent/KR100360097B1/en
Publication of KR20000038157A publication Critical patent/KR20000038157A/en
Application granted granted Critical
Publication of KR100360097B1 publication Critical patent/KR100360097B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for producing an aromatic electric steel plate is provided to have the excellent characteristic of magnetic flux density in a larger range by adding a specific component controlled to be able to heat a slab of low temperature and by stabilizing a secondary recrystalline. CONSTITUTION: A silicon steel slab composed of 0.020-0.045% of a C, 2.90-3.30% of a Si, 0.05-0.30% of a Mn, 0.001-0.012% of a B, 0.005-0.019% of an Al, 0.003-0.008% of a N, a S under 0.007%, 0.030-0.70% of a Cu, 0.03-0.07% of a Ni, 0.03-0.07% of a Cr, a P under 0.020%, a Fe and other impurities. The silicon steel slab is re-heated at a temperature within 1050-1250°C and a cold rolled sheet of 0.23-0.7mm is made by cold-rolling at first after a hot rolling and an annealing of hot rolled sheet. The cold rolled sheet is annealed to be a remained carbon amount under 30ppm and a whole nitrogen amount of 125-82.9(1+(Cu%+10(Ni%+Cr%)))ppm and to generate a decarbonization and a nitrification for 30seconds-10minutes at 850-950°C under a gas atmosphere contained a nitrogen having a dew point of 30-70°C at the same time. Thereby an aromatic electronic steel plate of high magnetic flux density is produced by spreading a separating agent of annealing and by annealing at a high temperature.

Description

저온 슬라브 가열방식의 고자속밀도 방향성 전기강판의 제조방법Manufacturing method of high magnetic flux density oriented electrical steel sheet by low temperature slab heating method

본 발명은 변압기, 발전기 및 기타 전자기기 등의 철심재료로 사용되는 방향성 전기강판 제조방법에 관한 것으로, 보다 상세하게는, 저온 슬라브 가열이 가능하도록 제어된 특정성분을 첨가하고 2차 재결정이 안정화되는 공정을 거쳐 기존에 비해 넓은 범위의 강판두께에서 자속밀도 특성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as iron core materials for transformers, generators, and other electronic devices, and more particularly, by adding a specific component controlled to enable low-temperature slab heating and stabilizing secondary recrystallization. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic flux density characteristics in a wide range of steel sheet thicknesses through conventional processes.

방향성 전기강판은 결정립의 방위가 (110)[001] 방향으로 정열된 집합조직을 가지고 있으며, 이 제품은 냉간압연 방향으로 우수한 자기적 특성을 갖는다. 방향성 전기강판의 자기적 특성은 주로 자속밀도와 철손으로 나타내는데, 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도 즉, B10으로, 철손은 일정한 주파수, 예컨대, 50Hz의 교류에 의해 1.7Tesla의 자속밀도가 얻어지도록 할 때 철심내에서 열등으로 낭비되는 에너지소실 즉, W17/50으로 평가하고 있다. 자속밀도가 높은 소재를 사용하게 되면 소형, 고성능의 전기기기의 제작이 가능하게 되며, 철손이 적으면 적을수록 전기에너지 손실을 대폭 줄일 수 있다.The grain-oriented electrical steel sheet has an aggregate structure in which the grain orientation is aligned in the (110) [001] direction, and the product has excellent magnetic properties in the cold rolling direction. The magnetic properties of oriented electrical steel are mainly represented by magnetic flux density and iron loss. The magnetic flux density is a magnetic flux density, B 10 , induced in the iron core by a magnetic field of 1000 A / m. By using the magnetic flux density of 1.7 Tesla, it is estimated to be W 17/50 . The use of materials with high magnetic flux density enables the manufacture of small, high-performance electrical devices. The less iron loss, the greater the loss of electrical energy.

N.P.Goss에 의해 냉간압연법에 의한 방향성 전기강판 제조법이 발명된 이래 그 개량을 거듭하여 많은 진보가 있었다. 지금까지 방향성 전기강판의 연구의 역사는 철손 저감 노력의 역사라 해도 과언이 아니다. 주요한 개선내용을 보면, 제품의 두께를 얇게 하고, 성분에 첨가원소를 다양하게 한다던가 또는, 제품에 레이저를 조사하여 자구를 미세하게 하는 방법 등이 있다. 이러한 모든 방법들은 제조원가를 높이고, 작업자들의 노력을 많이 필요로 하는 것들이다.Since the invention of producing a grain-oriented electrical steel sheet by cold rolling by N.P.Goss, many improvements have been made. It is no exaggeration to say that the history of research on oriented electrical steel sheet is the history of efforts to reduce iron loss. Major improvements include thinning the product, varying the amount of added elements in the components, or minimizing magnetic domains by irradiating the laser with the product. All of these methods increase manufacturing costs and require a lot of labor.

그러나, 최근에는 수요가 들의 욕구가 다양해지면서, 최종제품의 용도에 맞게 경제적으로 재료를 선택하려는 움직임이 있으나, 이러한 다양한 욕구를 만족시킬 만큼 제품이 세분화되어 있지 않다. 예컨대, 저철소 전자기기의 철심용 박물제품의 수요 외에도, 가공비가 저렴한 소형, 고성능 기기의 철심용 방향성 전기강판을 낮은 가격에 공급받기를 원하는 수요가 들이 많다.However, in recent years, as the demands of demanders are diversified, there is a movement to select a material economically for the purpose of the final product, but the products are not subdivided enough to satisfy these various needs. For example, in addition to the demand for iron core thin products of low iron electronics, there are many demands for low-cost supply of oriented electrical steel sheets for iron cores of small, high-performance devices with low processing costs.

이들의 욕구를 만족시키기 위해서는 두께가 두꺼운 고자속밀도 방향성 전기강판을 저온 슬라브 가열방식으로 제조할 수 있는 기술이 필요하다. 또한, 이러한 제품의 철손은 두께를 감안하더라도, 강판두께가 두꺼운 만큼 에너지 손실이 크지 않다면 바람직할 것이다. 방향성 전기강판을 후물로 제조할 수 있다면, 수요가의 측면에서는 전기강판을 철심으로 타발하는 시간과 경비를 절약할 수 있는 이점이 있으며, 또한, 생산자의 측면에서는 연속압연과 연속소둔으로 제조할 경우 기존의 얇은 방향성 전기강판에 비해 생산성이 증대되는 이점도 있다.In order to satisfy these needs, there is a need for a technology capable of manufacturing a thick high magnetic flux density oriented electrical steel sheet by low temperature slab heating. In addition, iron loss of such a product may be desirable if the energy loss is not so great that the steel sheet thickness is large, even in view of thickness. If the oriented electrical steel sheet can be manufactured as a thick material, there is an advantage in that it can save time and cost of punching the electrical steel sheet in terms of demand, and in the case of the producer, it can be manufactured by continuous rolling and continuous annealing. There is also an advantage of increased productivity compared to conventional thin oriented electrical steel sheet.

한편, 본 발명자들은 석출물(예: AlN)의 고용을 위해 고온에서 슬라브가열하는 재래식 방향성 전기강판의 문제를 개선하기 위해 후속공정에서 부가적인 석출물관리를 통하여 저온 슬라브가열이 가능하도록 한 기술을 대한민국 특허출원 제97-28305호와 제97-37247호에 제안한 바 있다(이하, '선행기술'이라 함).On the other hand, the inventors of the Republic of Korea patent for a technology that enables low-temperature slab heating through additional precipitate management in the subsequent process to improve the problem of conventional oriented electrical steel sheet that is heated slab at high temperature for the employment of precipitates (eg AlN) It has been proposed in the applications 97-28305 and 97-37247 (hereinafter referred to as "prior art").

상기 제97-28305호에 제안된 선행기술은, 적정량의 Cu, Ni 및 Cr를 함유한 규소강 슬라브를 최종 제품두께로 압연을 완료한 후 적정조건으로 탈탄 및 질소부화를 동시에 수행하는 방식에 의해 입성장억제력을 확보함과 더불어, 1차 재결정 미세조직을 균일하게 함으로써 높은 자속밀도를 얻을 수 있는 저온 슬라브 가열 방식의 방향성 전기강판의 제조방법이다.The prior art proposed in No. 97-28305 is based on a method of simultaneously performing decarburization and nitrogen enrichment under appropriate conditions after the completion of rolling a silicon steel slab containing an appropriate amount of Cu, Ni and Cr to the final product thickness. It is a method of manufacturing a grain-oriented electrical steel sheet of low temperature slab heating method that can secure high grain density by securing grain growth suppression force and making the primary recrystallized microstructure uniform.

또한 상기 제 97-37247호에 제안된 선행기술은, 최종 제품두께로 냉간압연을 완료 한 후 1차 재결정립 성장 억제제를 형성시킴에 의해 저온슬라브 가열이 가능한 고자속밀도 방향성 전기강판을 제조하는 방법이다. 구체적으로 이 방법은, C의 함량을 저감시키고, B을 적당량 함유시킨 규소강슬라브를 최종두께로 한 후 적절한 조건으로 질화처리하여 BN석출물을 형성시킴으로서 슬라브의 저온 가열이 가능하고, 기존 설비를 변경하지 않고서도 전기강판을 제조할 수 있는 방법이다.In addition, the prior art proposed in No. 97-37247 is a method of manufacturing a high magnetic flux density oriented electrical steel sheet capable of low-temperature slab heating by forming a primary recrystallization growth inhibitor after cold rolling to the final product thickness to be. Specifically, this method is to reduce the content of C, to make the final thickness of the silicon steel slab containing an appropriate amount of B, and to nitriding under the appropriate conditions to form a BN precipitate, allowing the slab to be heated at low temperatures, and to change the existing equipment. It is a method that can produce electrical steel sheet without.

위에서 언급한 선행기술들은 기존설비를 그대로 이용하면서 질화처리하여 저온슬라브 가열이 가능하고 안정적으로 고자속밀도 방향성전기강판을 제조할 수 있는 괄목한 만한 기술이다. 그런데, 이들 방법은 0.35mm 이하로 강판을 제조할 경우는 효과적이나, 0.4mm 이상의 후물을 제조하는 경우 우수한 자속밀도를 얻을 수 없게 되는 단점이 있다. 그 이유는 상기 선행기술들이 탈탄 및 질소부화를 동시에 행하는 공정에서 강판 두께 방향으로 1차 재결정 조직이 불균일해지는 문제점을 나름대로 보완하고 있으나, 임계치 이상의 두께에서는 그 효과가 미약하기 때문이다.The above-mentioned prior arts are a remarkable technology that can be used for low temperature slab heating and stably produce high magnetic flux density oriented electrical steel sheet by using nitriding treatment while using existing equipment as it is. By the way, these methods are effective when manufacturing the steel sheet to 0.35mm or less, but there is a disadvantage in that excellent magnetic flux density cannot be obtained when producing a thicker than 0.4mm. The reason is that the prior art supplements the problem that the primary recrystallization structure becomes nonuniform in the thickness direction of the steel sheet in the process of simultaneously performing decarburization and nitrogen enrichment, but the effect is weak at a thickness above the threshold.

본 발명자들은 상기 문제점을 해결하기 위해 심도 있게 연구한 결과, Cu, Ni, Cr 과 B을 복합적으로 첨가하여 억제제로서의 효과가 우수한 BN을 이용함과 더불어, 제어된 조건으로 탈탄 및 질화처리함으로서 1차 재결정 조직을 한층 더 균일화하게 하면 0.23-0.35mm의 통상적 강판 두께에서뿐만 아니라 0.4mm 이상으로 두꺼울 경우에도 안정하게 2차 재결정이 발달하여 고자속밀도 특성이 얻어진다는 사실을 수회에 걸친 실험을 통해 확인하고, 이 실험결과에 기초하여 본 발명을 제안하게 이르렀다.The present inventors have conducted in-depth studies to solve the above problems. As a result, primary recrystallization is carried out by decarburizing and nitriding under controlled conditions while using BN having excellent effects as an inhibitor by adding Cu, Ni, Cr and B in combination. Further experiments confirm that the uniformity of the tissue results in the development of secondary recrystallization to obtain high magnetic flux density characteristics stably even when the steel sheet thickness is not less than 0.4 mm as well as the usual steel sheet thickness of 0.23-0.35 mm, On the basis of this experimental result, the present invention was proposed.

본 발명은 탈탄소둔공정에서의 질화처리에 의해 박물에서 뿐 아니라, 후물에서도 우수한 자성을 안정적으로 얻을 수 있는 저온 슬라브가열에 의한 고자속밀도 방향성 전기강판의 제조방법을 제공하는데, 그 목적이 있다.The present invention provides a method for producing a high magnetic flux density oriented electrical steel sheet by low temperature slab heating, which can stably obtain excellent magnetic properties not only in thin materials but also in thick materials by nitriding treatment in a decarbonization annealing process.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.020-0.045%, Si:2.90-3.30%, Mn:0.05-0.30%, B:0.001-0.012%, Al:0.005-0.019%, N:0.003-0.008%, S:0.007%이하, Cu:0.30-0.70%, Ni:0.03-0.07%, Cr:0.03-0.07%, P:0.020% 이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지는 규소강슬라브를 1050∼1250℃의 온도에서 재가열하고 이어 열간압연, 연연판소둔한 후, 1회냉간압연하여 0.23∼0.7mm의 냉연판을 만든 다음, 이 냉연판을 잔류탄소량이 30ppm 이하가 되고 총질소량이 125∼82.9(1 + [Cu% + 10(Ni% + Cr%)]2)ppm 이 되도록 이슬점이 30∼70℃인 함질소 가스분위기하에서 850∼950℃의 온도로 30초∼10분 동안 탈탄 및 질화가 동시에 일어나도록 소둔한 다음, 소둔분리제를 도포하고, 마무리 고온소둔하는 것을 포함하여 구성된다.The present invention for achieving the above object, in weight%, C: 0.020-0.045%, Si: 2.90-3.30%, Mn: 0.05-0.30%, B: 0.001-0.012%, Al: 0.005-0.019%, N : 0.003-0.008%, S: 0.007% or less, Cu: 0.30-0.70%, Ni: 0.03-0.07%, Cr: 0.03-0.07%, P: 0.020% or less, remaining Fe and other inevitable impurities The silicon steel slab is reheated at a temperature of 1050-1250 ° C, followed by hot rolling and annealing of the sheet, followed by cold rolling once to form a cold rolled sheet of 0.23 to 0.7 mm. 30 seconds to 10 seconds at a temperature of 850 to 950 ° C. under a nitrogen gas atmosphere with a dew point of 30 to 70 ° C. such that the total nitrogen amount is 125 to 82.9 (1 + [Cu% + 10 (Ni% + Cr%)] 2 ) ppm. Annealing is performed to simultaneously decarburize and nitride for several minutes, and then apply annealing separator and finish hot annealing.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명에서 '박물'이란 용어는 구체적으로 약 0.23-0.4mm의 냉연강판을 의미하며, '후물'이란 용어는 구체적으로 약 0.4-07mm의 냉연강판을 의미하는데, 본 발명의 냉간압연공정을 통해 제조되는 냉연판의 두께는 박물재와 후물재를 포함한다. 또한, 본 발명에서는 탈탄과 질화처리를 동시에 행하는 소둔공정을 '동시 탈탄질화소둔'이라고도 표기한다.In the present invention, the term 'museum' specifically refers to a cold rolled steel sheet of about 0.23-0.4mm, and the term 'thickness' specifically refers to a cold rolled steel sheet of about 0.4-07mm, through the cold rolling process of the present invention. The thickness of the cold rolled sheet to be produced includes a material and a thick material. In the present invention, the annealing step of simultaneously performing decarburization and nitriding treatment is also referred to as 'simultaneous decarburization annealing'.

본 발명은 동시 탈탄질화소둔을 통해 박물에서 뿐 아니라 후물에서도 안정적인 2차 재결정을 확보하여 선행기술에 비해 자성을 높이는데, 그 특징이 있으며, 이를 선행기술과 비교하여 설명하면 다음과 같다.The present invention, through the simultaneous decarbonation annealing to secure a stable secondary recrystallization not only in the museum but also in the thick material to increase the magnetism compared to the prior art, it is characterized by, compared to the prior art as follows.

위에서 언급한 선행기술에 따라 동시 탈탄질화소둔하는 경우 특히, 후물 두께에서 1차 재결정 조직이 불균일 해지고, 여기에 적정량의 질소부화로 입성장억제력이 부여해주더라도 2차 재결정이 불안정하게 되어 고자속밀도 특성을 얻을 수 없게 되는 문제점이 나타났다.In the case of simultaneous decarbonation annealing according to the above-mentioned prior art, in particular, the primary recrystallization structure becomes non-uniform in the thickness of the thick material, and even though the grain growth inhibitory force is given to the appropriate amount of nitrogen enrichment, the secondary recrystallization becomes unstable and thus high magnetic flux density is achieved. The problem of not being able to obtain characteristics appeared.

본 발명자들은 상기 후물 두께에서 1차 재결정이 불균일하게 분포되는 것을 방지하기 위해 수많은 실험을 행한 결과, 적정량의 Cu, Ni, Cr 및 B을 제강시 첨가하고, Cu, Ni 및 Cr의 첨가량에 따라 적정량의 질소를 부화하고, 동시 탈탄질화소둔에 의해 BN를 억제제로 이용할 경우 넓은 범위의 강판두께, 특히 후물 두께에서도 균일한 1차 재결정 조직이 얻어짐을 발견하였다. 이를 위해 본 발명에서는 강성분관리와 함께 제조조건을 적절히 제어하는데, 이하에서는 이를 구분하여 설명한다.The present inventors conducted numerous experiments to prevent the non-uniform distribution of the primary recrystallization in the thickness of the thick, as a result of adding the appropriate amount of Cu, Ni, Cr and B during steelmaking, the appropriate amount according to the addition amount of Cu, Ni and Cr When nitrogen was enriched and BN was used as an inhibitor by simultaneous decarbonation annealing, it was found that a uniform primary recrystallized structure was obtained even at a wide range of steel sheet thickness, especially in thick material. To this end, the present invention properly controls the manufacturing conditions with the steel component management, hereinafter will be described separately.

[규소강슬라브의 조성][The composition of silicon steel slab]

상기 강 슬라브 중에 C가 0.02% 미만 함유되는 경우에는 슬라브 가열시 결정립들이 조대하게 성장하여 최종 고온소둔시 2차 재결정의 발달이 불안정해지므로 바람직하지 않으며, 그 함량이 0.045%를 초과하면 동시 탈탄질화소둔공정에서 탈탄이 장시간이 소요되어 바람직하지 않으므로, 상기 C의 함량은 0.02-0.045%로 선정하는 것이 바람직하다.In the case of containing less than 0.02% of C in the steel slab, the grains grow coarsely upon heating the slab, which is not preferable because the development of secondary recrystallization becomes unstable during the final high temperature annealing, and when the content exceeds 0.045%, simultaneous decarbonation is performed. Since decarburization takes a long time in the annealing process, it is not preferable, so the content of C is preferably selected from 0.02-0.045%.

상기 Si는 전기강판의 기본성분으로 소재의 비저항치를 증가시켜 철손을 낮추는 역할을 하는 성분이지만, 그 함량이 2.90% 미만에서는 철손특성이 나쁘고, 그 함량이 3.30%를 초과할 경우에는 냉간압연성이 열화하므로 Si의 함량은 2.90-3.30%로 선정하는 것이 바람직하다.The Si is a component that serves to lower the iron loss by increasing the resistivity of the material as a basic component of the electrical steel sheet, but the iron loss characteristics are bad when the content is less than 2.90%, cold rolling properties when the content exceeds 3.30% It is preferable to select Si content of 2.90-3.30% because of deterioration.

상기 Mn은 전기저항을 높여 철손을 낮추는 효과가 있는 성분이지만, 그 함량이 너무 많은 경우에는 자속밀도의 저하를 초래하므로, 상기 Mn의 함량은 0.05-0.30%로 선정하는 것이 바람직하다.The Mn is a component having an effect of lowering iron loss by increasing electrical resistance, but when the content is too large, the magnetic flux density is lowered, so the Mn content is preferably selected to 0.05-0.30%.

상기 B은 강중에 고용상태로 존재하다가 최종 두께로 냉간압연된 후 동시 탈탄질화소둔공정에서 소둔분위기로 부터 강중에 들어온 질소와 결합하여 BN 석출물을 형성함으로서 억제제의 역할과 함께 균일한 1차 재결정 조직을 분포시키는 유효한 역할을 하는데, 이를 설명하면 다음과 같다. 확산계수가 B에 비해 느린 Al의 경우는 동시 탈탄질화소둔시 형성된 AlN이 주로 강판 표면층 입계에 형성되어 입성장을 억제하는 결과 불균일한 1차 재결정 조직이 형성되어 최종 제품의 자속밀도 저하를 초래하는 반면, B의 경우는 확산속도가 빠르기 때문에 강판 표면층 뿐만 아니라 중심부의 입계에도 BN이 비교적 균일하게 형성되어 동시 탈탄질화소둔 후 균일한 1차 재결정 조직을 얻을 수 있고, 이에 따라 안정하게 2차 재결정을 일으킬 수 있게 된다. 따라서, 본 발명에서는 이러한 B의 역할을 고려하여 0.001-0.012%의 범위로 첨가한다. 이는 상기 B의 함량이 0.001% 미만인 경우에는 억제제의 양이 부족하여 안정적인 2차 재결정 조직을 얻을 수 없고, 0.012%를 초과하는 경우에는 2차 재결정 조직을 얻을 수는 있으나 자속밀도가 감소하는 것으로 확인되었기 때문이다.The B exists in solid solution in the steel and is cold-rolled to the final thickness, and then combined with nitrogen introduced into the steel from the annealing atmosphere in the simultaneous decarbonation annealing process to form BN precipitates, thereby forming a uniform primary recrystallized structure. It is effective to distribute, which is explained as follows. In the case of Al having a slow diffusion coefficient compared to B, AlN formed during simultaneous decarbonation annealing is mainly formed in the grain boundary of the steel sheet surface to suppress grain growth, resulting in nonuniform primary recrystallization, resulting in lower magnetic flux density of the final product. On the other hand, in the case of B, since the diffusion rate is high, BN is formed relatively uniformly not only at the surface layer of the steel sheet but also at the grain boundary of the central part, so that a uniform primary recrystallization structure can be obtained after simultaneous decarbonation annealing. It can be raised. Therefore, the present invention is added in the range of 0.001-0.012% in consideration of the role of B. It is confirmed that when the content of B is less than 0.001%, the amount of the inhibitor is insufficient to obtain a stable secondary recrystallized tissue, and when it exceeds 0.012%, the secondary recrystallized tissue can be obtained but the magnetic flux density decreases. Because

상기 Al은 AlN 및 (Al, Si)N 형태의 질화물로 되어 억제제로 작용하는 기존의 성분계와는 달리, 본 발명에서는 억제제의 관점에서는 큰 의미가 없다. 그렇지만, Al 은 Si와 마찬가지로 비저항을 증가시키는 원소이므로 0.019% 까지 첨가시키는 것이 자기적 특성에 유리하지만, 0.019% 이상 첨가되면 열간압연의 작업성이 저하되는 문제점이 발생한다. 따라서, 상기 Al의 함량은 비저항 및 열간압연의 작업성 측면에서 0.005-0.019%로 선정하는 것이 바람직하다. 종래의 제조법에서는 상기한 열간압연의 작업성 저하를 감수하더라도 AlN을 억제제로 사용하여야 하기 때문에 0.05% 까지 첨가하였지만, 본 발명에서는 그럴 필요가 없다.Al is a nitride of the AlN and (Al, Si) N form, unlike the conventional component system to act as an inhibitor, in the present invention is not significant from the viewpoint of the inhibitor. However, Al, like Si, is an element that increases resistivity, so adding up to 0.019% is advantageous to magnetic properties. However, when Al or more is added, the workability of hot rolling decreases. Therefore, the content of Al is preferably selected from 0.005-0.019% in terms of specific resistance and workability of hot rolling. In the conventional manufacturing method, although AlN should be used as an inhibitor even if the workability of the hot rolling is reduced, it is added up to 0.05%. However, this is not necessary in the present invention.

상기 N은 동시 탈탄질화소둔 과정에서 보강하여 이용하므로 용해시 불순물로 들어갈 수 있는 양이면 충분하다. 그러나, N 양이 0.003% 미만의 경우는 제강시 비용상승의 요인이 되므로 바람직하지 않으며, 반면, N의 양이 0.008%를 초과하는 경우는 강중에 함유되어 있는 Al과 반응하여 조대한 AlN의 석출물을 형성하고 이에 따라 1차 재결정 불균일 현상이 초래되어 결국 자기특성이 나빠지므로, 상기 N 의 함량은 0.003-0.008%로 선정하는 것이 바람직하다.Since N is used by reinforcing in the simultaneous decarbonation annealing process, an amount sufficient to enter impurities during dissolution is sufficient. However, when the amount of N is less than 0.003%, it is not preferable because it causes a cost increase during steelmaking, whereas when the amount of N exceeds 0.008%, coarse precipitate of AlN reacts with Al contained in the steel. The amount of N is preferably selected to be 0.003-0.008%, since the first recrystallization nonuniformity is caused and the magnetic properties deteriorate.

상기 S은 과도하게 첨가하면 슬라브 중심부의 S 편석이 심해지며, 이를 균질화하기 위해서는 본 발명범위 이상의 온도로 슬라브를 가열해야 하므로 0.007% 이하로 제한하는 것이 바람직하다.When the S is excessively added, the S segregation of the center of the slab becomes severe, and in order to homogenize the slab, the slab needs to be heated to a temperature of the range of the present invention.

상기 P는 통상보다 많은 경우 냉간압연시 판파단을 초래할 수 있으므로 제강에서 비용상승을 유발하지 않고 제어할 수 있는 양인 0.020% 이하로 제한하는 것이 바람직하다.Since P may cause plate breakage during cold rolling in more cases than usual, P is preferably limited to 0.020% or less, which can be controlled without causing cost increase in steelmaking.

상기 Cu, Ni 및 Cr 은 탄소저감에 따른 열연판 미세조직을 균질하게 할뿐만 아니라, 동시 탈탄질화소둔판의 1차 재결정 미세조직을 균일하게 하기 위해 첨가하는 중요한 성분들로서, 그 첨가량은 각각 0.3-0.7%, 0.03-0.07% 및 0.03-0.07%로 선정하는 것이 바람직하다. 상기 성분들중 어느 한 성분이라도 그 첨가량의 하한치 미만으로 첨가되는 경우에는 동시 탈탄질화소둔 후의 1차 재결정의 미세조직 균일화 효과가 미약하게 되어 2차 재결정이 불안정하게 일어나 자기적 특성이 열화된다. 또한, 각 성분범위의 상한치를 초과하게 되는 경우 그 첨가효과는 크지 않으며 Cu 및 Cr의 경우에는 오히려 탈탄을 어렵게 하고, Ni의 경우에는 고가의 합금첨가에 따른 원가상승이 유발되므로 바람직하지 않다.The Cu, Ni, and Cr are important components added not only to homogenize the hot rolled sheet microstructure according to carbon reduction, but also to homogenize the primary recrystallized microstructure of the simultaneous decarbonation annealing plate, the addition amount of which is 0.3- It is preferable to select 0.7%, 0.03-0.07% and 0.03-0.07%. When any one of the above components is added below the lower limit of the added amount, the microstructure homogenization effect of the primary recrystallization after simultaneous decarbonation annealing becomes weak, and the secondary recrystallization becomes unstable and the magnetic properties deteriorate. In addition, when the upper limit of each component range is exceeded, its addition effect is not large, and in the case of Cu and Cr, it is rather difficult to decarburize, and in the case of Ni, it is not preferable because cost increases due to the addition of expensive alloys.

상기한 강 슬라브에서는 상기한 성분들 외에 제강시 원재료로부터 혼입되는 불가피한 원소(Ti, Nb, V)들이 미량(80ppm 이하)으로 함유되어도 무방하다. 또한, 상기와 같은 용강은 통상의 여하한 용해법, 조괴법, 연주법 등을 이용하여 제조한 경우에도 본 발명의 소재로 사용할 수 있다.In the above-described steel slab, in addition to the above components, unavoidable elements (Ti, Nb, V) mixed from raw materials during steelmaking may be contained in a small amount (80 ppm or less). The molten steel as described above can also be used as a raw material of the present invention even when manufactured using any conventional melting method, ingot method, performance method, or the like.

[규소강슬라브의 제조조건][Manufacturing Conditions of Silicon Steel Slabs]

상기와 같이 조성되는 규소강 슬라브의 두께는 너무 얇은 경우 열간압연의 생산성이 떨어지고 너무 두꺼우면 슬라브 가열시간이 길어져야 하므로, 150-350mm로 제어하는 것이 바람직하다.If the thickness of the silicon steel slab composition as described above is too thin, the productivity of hot rolling is reduced, if the thickness is too thick, the slab heating time should be long, it is preferable to control to 150-350mm.

상기 규소강 슬라브의 가열온도는 1050-1250℃로 선정하는 것이 바람직한데, 그 이유는 가열온도가 1050℃ 이하인 경우에는 열간압연시 작업이 어려워지고 1250℃ 이상의 경우에는 자기적 특성에는 크게 영향이 없으나 슬라브의 저온가열에서 오는 이점이 크게 감소되기 때문이다. 종래의 재가열공정에서는, AlN 이나 MnS를 고용시킨 후 열간압연시 재석출시켜 크기와 분포를 조절하여야 하기 때문에 고온슬라브 가열이 불가피하다. 그러나, 본 발명은 최종제품 두께로 냉간압연된 후에 억제제를 형성시키는 방법을 채택하므로 석출물을 제어하기 위한 고온슬라브 가열이 필요하지 않다. 따라서, 슬라브의 가열온도는 상술한 바와 같이 열간압연 작업성 및 경제성을 고려하여 1050-1250℃ 의 범위로 선정하는 것이 바람직하다. 본 발명에 있어 슬라브의 가열시간은 슬라브 내부까지의 균열과 경제성을 고려하여 1-10시간으로 선정할 수 있다.Preferably, the heating temperature of the silicon steel slab is selected to be 1050-1250 ° C. The reason is that when the heating temperature is 1050 ° C or less, it is difficult to work during hot rolling, and when the temperature is higher than 1250 ° C, the magnetic properties are not significantly affected. This is because the benefits from low-temperature heating of slabs are greatly reduced. In the conventional reheating process, hot slab heating is inevitable because AlN or MnS must be dissolved and re-precipitated during hot rolling to control the size and distribution. However, the present invention adopts a method of forming an inhibitor after cold rolling to the final product thickness, so that hot slab heating to control the precipitate is not necessary. Therefore, the heating temperature of the slab is preferably selected in the range of 1050-1250 ° C. in consideration of hot rolling workability and economical efficiency as described above. In the present invention, the heating time of the slab may be selected from 1 to 10 hours in consideration of cracking and economical efficiency to the inside of the slab.

상기와 같이 가열된 슬라브는 통상의 방법으로 열간압연하는데, 이때의 열간압연판 두께는 후속의 최종 냉간압연 두께를 고려하여 보통 1.5-3mm로 제한하는 것이 바람직하다.The slabs heated as above are hot rolled in a conventional manner, and the hot rolled sheet thickness is preferably limited to 1.5-3 mm in consideration of the subsequent final cold rolled thickness.

상기와 같이 열간압연한 후 열연판소둔(예비소둔)을 행하는데, 이 열연판소둔은 후속되는 동시 탈탄질화소둔후 적절한 입도의 1차 재결정 조직형성과 열간압연시 일부 형성된 AlN 등의 질화석출물의 조대화 방지 측면을 고려하여 900-1150℃에서 30초-10분간 실시하는 것이 바람직하며, 이때 상기 석출물의 유실을 억제하기 위해 질소분위기를 사용하는 것이 바람직하다. 만일, 상기한 예비소둔온도 보다 낮은 온도에서 또는 예비소둔시간 보다 짧은 시간동안 예비소둔 하는 경우에는 1차 재결정 입도가 미세하게 되어 2차 재결정을 고온에서 발달시키지 못하게 되므로 우수한 자속밀도를 얻을 수 없게 되며, 상기한 예비소둔 온도를 초과하는 온도에서 또는 예비소둔시간 보다 긴 시간동안 예비소둔 하는 경우에는 석출물의 조대화로 2차 재결정이 불안정해지므로 바람직하지 않다.The hot rolled sheet annealing (pre-annealed) is performed after hot rolling as described above, and the hot rolled sheet annealing is followed by simultaneous decarburization annealing to form a primary recrystallized structure of appropriate particle size and part of the nitride precipitates such as AlN formed during hot rolling. In consideration of the anti-coarsening aspect, it is preferably carried out at 900-1150 ° C. for 30 seconds to 10 minutes, and in this case, it is preferable to use a nitrogen atmosphere to suppress the loss of the precipitate. In case of pre-annealing at a temperature lower than the pre-annealing temperature or for a shorter time than the pre-annealing time, the primary recrystallization grain size becomes fine and secondary recrystallization cannot be developed at a high temperature, so excellent magnetic flux density cannot be obtained. In the case of pre-annealing at a temperature exceeding the pre-annealing temperature or for a longer time than the pre-annealing time, the secondary recrystallization becomes unstable due to coarsening of precipitates, which is not preferable.

상기와 같이 예비소둔된 열연판은 1회 냉간압연하는데, 이때 냉연판의 두께는 0.23-0.7mm 두께로 선정하는 것이 바람직한데, 그 이유는 최종냉연판의 두께가 0.23mm 미만의 경우에는 2차 재결정이 잘 발달되지 않으며, 0.7mm를 초과하는 경우에는 와류 철손특성이 나빠지므로 바람직하지 않기 때문이다. 상기 냉간압연시 압하율은 70-90% 로 선정하는 것이 바람직하다.The pre-annealed hot rolled sheet as described above is cold rolled once, and the thickness of the cold rolled sheet is preferably selected to be 0.23-0.7mm thick, because the second cold rolled sheet is less than 0.23mm thick. This is because the recrystallization is not well developed, and if it exceeds 0.7 mm, the vortex iron loss characteristics are deteriorated, which is not preferable. The cold rolling reduction rate is preferably selected to 70-90%.

상기와 같이 냉간압연된 냉연판은 850-950℃ 온도에서 30초-10분동안 이슬점이 30-70℃ 인 함질소의 혼합가스 분위기하에서 동시 탈탄질화소둔하는 것이 바람직하다. 그 이유는 상기 소둔온도가 850℃ 미만이거나 시간이 30초 미만인 경우에는 탈탄과 질소부화가 불충분하게 되고, 950℃를 초과하는 경우에는 1차 재결정 조직이 너무 조대해져 2차 재결정이 불안정하게 되어 우수한 자속밀도를 얻을 수 없고, 또한, 소둔시간이 10분을 초과하는 경우에는 소둔시간이 길어 비경제적이기 때문이다.The cold rolled cold rolled plate as described above is preferably subjected to simultaneous decarbonation annealing under a mixed gas atmosphere of nitrogen containing a dew point of 30-70 ° C. for 30 seconds to 10 minutes at a temperature of 850-950 ° C. The reason is that when the annealing temperature is less than 850 ° C. or less than 30 seconds, decarburization and nitrogen enrichment are insufficient, and when the annealing temperature is higher than 950 ° C., the primary recrystallization structure becomes too coarse and the secondary recrystallization becomes unstable. This is because when the magnetic flux density cannot be obtained and when the annealing time exceeds 10 minutes, the annealing time is long and it is uneconomical.

그리고, 소둔분위기로는 탈탄과 질소부화를 위해 함질소가스 분위기이면 어느 것이나 가능하지만, 공업적으로 탈탄량과 질소부화량의 제어가 용이한 암모니아 + 수소 + 질소의 혼합가스 분위기를 사용하는 것이 바람직하다.As the annealing atmosphere, any nitrogen gas atmosphere may be used for decarburization and nitrogen enrichment. However, it is preferable to use a mixed gas atmosphere of ammonia + hydrogen + nitrogen in which industrial control of decarburization and nitrogen enrichment is easy. Do.

이때, 분위기 가스의 이슬점이 너무 낮은 경우에는 탈탄능 감소로 인해 소둔시간을 늘여야 하므로 바람직하지 않으며, 지나치게 높은 경우에는 강판 표면 산화층이 불균일하게 형성되어 후속 되는 고온소둔시 형성되는 유리질 피막(Glass Film)이 불량하게 형성되므로 30-70℃ 의 범위로 선정하는 것이 바람직하다.At this time, when the dew point of the atmosphere gas is too low, it is not preferable because the annealing time should be increased due to the decrease in decarburization ability, and if it is too high, the glass oxide film is formed during the subsequent high temperature annealing due to the non-uniformity of the steel sheet surface oxide layer. Since it is poorly formed, it is preferable to select it in the range of 30-70 degreeC.

상기, 동시 탈탄질화소둔시 암모니아 + 수소 + 질소의 혼합가스 분위기를 사용하는 경우, 강판의 내부에 들어가는 질소의 양은 소둔온도, 소둔시간, 분위기중의 암모니아 분율에 의해 영향을 받으며 소강성분에 따라 적절한 질소량으로 제어되는데, 이들 변수중 가장 큰 영향을 미치는 암모니아의 양은 침질효과와 가스누출시의 안전성을 고려하여 0.1-1.0% 의 범위로 조절하는 것이 바람직하다.In the case of using the mixed gas atmosphere of ammonia + hydrogen + nitrogen during the simultaneous decarburization annealing, the amount of nitrogen that enters the inside of the steel sheet is affected by the annealing temperature, the annealing time, and the ammonia fraction in the atmosphere and is appropriate according to the steel composition. It is controlled by the amount of nitrogen, and the amount of ammonia which has the greatest influence among these variables is preferably adjusted in the range of 0.1-1.0% in consideration of the sedimentation effect and the safety of gas leakage.

또한, 상기한 소둔조건에서 강판의 탄소가 제거되는데, 이때의 탈탄능은 수소분압과 증기압에 의해 결정된다. 상기와 같이 동시 탈탄질화소둔을 할 때, 잔류 탄소량은 30ppm 이하로 낮추는 것이 필요하다. 즉, 잔류탄소량이 30ppm을 초과하는 경우에는 후속되는 고온소둔시 형성되는 2차 재결정의 방향성이 열화되어 우수한 자속밀도를 얻을 수 없으며, 변압기 등의 제품으로 사용중 자기시효가 일어나 철손특성이 열화하기 때문이다.In addition, the carbon of the steel sheet is removed under the annealing conditions, wherein the decarburization capacity is determined by the hydrogen partial pressure and the vapor pressure. When performing simultaneous decarbonation annealing as described above, it is necessary to lower the residual carbon amount to 30 ppm or less. In other words, if the amount of residual carbon exceeds 30 ppm, the secondary recrystallization formed during subsequent high temperature annealing deteriorates, so that excellent magnetic flux density cannot be obtained, and magnetic aging occurs during use as a product such as a transformer, resulting in deterioration of iron loss characteristics. to be.

이와 같이 본 발명에서 동시 탈탄질화소둔에 의해 부화되는 질소는 후속 마무리 고온소둔시 저온영역에서 강중의 잉여 B, 산가용성 Al, Cu, Mn, Si 등과 반응하여 추가적인 석출물을 형성하게 되는데, 이들 석출물의 양 및 크기 등 분포상태에 따라 얻어지는 입성장 억제력이 변화하게 된다. 따라서, 적절한 입성장 억제력을 확보하기 위해서는 강판내 총질소량을 125∼82.9 x {1 + [Cu% + 10 x (Ni% + Cr%)]2}ppm 의 범위로 선정하는 것이 바람직하다. 즉, 총질소량이 125ppm 미만의 경우에는 필요한 최소한의 석출물이 형성되지 않아 입성장 억제력이 부족하게 되어 2차 재결정이 불안정하게 되므로 바람직하지 않다. 또한, 총질소량이 82.9 x { 1 + [Cu% + 10 x (Ni% + Cr%)]2}ppm 를 초과하는 경우에는 1차 재결정 조직이 불균일하게 형성될 뿐만 아니라 고온소둔 승온중 석출물의 조대화가 진전되어 고온까지 입성장 억제력이 유지되지 않기 때문에 2차 재결정 발달이 불안정해지므로, 우수한 자속밀도가 얻어지지 않게 되므로 바람직하지 않다. 이때, 총질소량의 상한 값은 Cu, Ni 및 Cr 의 함량과 관계되어 결정되는데, 이는 Cu, Ni 및 Cr이 1차 재결정 조직을 균일하게 분포시키는 작용을 하기 때문이다. 또한, 총질소량의 하한값은 B의 첨가유무에 따라 달라지는데, 이는 동시 탈탄질화소둔후 형성되는 석출물중 BN의 억제력이 강하기 때문으로 추정되며, 이에 따라 최소한의 필요 질소량은 B 미첨가시에 비해 낮아지게 된다.As described above, nitrogen enriched by simultaneous decarbonation annealing reacts with excess B, acid-soluble Al, Cu, Mn, Si, etc. in the steel in the low temperature region during subsequent high temperature annealing to form additional precipitates. The grain growth inhibitory force obtained varies depending on the distribution state such as amount and size. Therefore, in order to secure appropriate grain growth inhibiting force, it is preferable to select the total nitrogen content in the steel sheet in the range of 125 to 82.9 x {1 + [Cu% + 10 x (Ni% + Cr%)] 2 } ppm. That is, if the total nitrogen is less than 125ppm is not desirable because the minimum precipitate is not formed, the grain growth inhibitory power is insufficient and the secondary recrystallization becomes unstable. In addition, when the total nitrogen content exceeds 82.9 x {1 + [Cu% + 10 x (Ni% + Cr%)] 2 } ppm, not only the primary recrystallized structure is formed non-uniformly, but also the precipitate The secondary recrystallization development becomes unstable because the dialogue is advanced and the grain growth suppression force is not maintained up to a high temperature, which is not preferable because excellent magnetic flux density is not obtained. At this time, the upper limit of the total nitrogen amount is determined in relation to the contents of Cu, Ni and Cr, since Cu, Ni and Cr act to uniformly distribute the primary recrystallized structure. In addition, the lower limit of the total nitrogen amount depends on the presence or absence of B, which is presumed to be due to the strong inhibitory power of BN in the precipitates formed after simultaneous decarbonation annealing, whereby the minimum required amount of nitrogen is lower than when B is not added. .

한편, 1차 재결정의 입도는 질화후 형성되는 석출물의 크기와 분포에 의해 결정되는 것으로 본 발명의 성분계에서 생성된 석출물에 적당한 결정립도는 20-35㎛ 정도이다.On the other hand, the particle size of the primary recrystallization is determined by the size and distribution of the precipitate formed after nitriding. The grain size suitable for the precipitate produced in the component system of the present invention is about 20-35 μm.

상기와 같이 동시 탈탄질화소둔한 다음, 강판의 표면에 MgO를 주성분으로 하는 소둔분리제를 도포한 후, 마무리 고온소둔을 행한다. 구체적으로, 고온소둔은 2차 재결정 조직을 발달시키는 승온구간과 불순물을 제거하는 순화소둔 구간으로 이루어진다. 이때, 승온구간의 승온속도는 석출물의 재배열이 일어나기 때문에 중요한데, 승온속도가 너무 빠르면 2차 재결정이 불안정해지고, 반면에 승온속도가 너무 느리면 소둔시간이 길어져 비경제적이다. 따라서, 바람직한 승온속도는 10-40℃/hr 이다. 상기와 같은 승온속도로 1150-1250℃의 온도로 승온한 후, 1-30시간 동안 순화를 위해 균열처리하는 것이 바람직하다. 이때 승온과정의 분위기 가스는 억제제로 사용되는 질화물의 유실을 방지하기 위해 질소가 포함된 분위기를 유지해주는 것이 바람직하고, 순화소둔의 분위기로는 유리질피막 형성과 2차 재결정 완료후 N, S 등 잔류불순물을 제거하기 위해 건조한 수소 또는 수소 및 질소의 혼합가스를 사용하는 것이 바람직하다.After simultaneous decarbonation annealing as described above, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by finishing high temperature annealing. Specifically, the high temperature annealing is composed of a temperature rising section for developing a secondary recrystallized structure and a pure annealing section for removing impurities. At this time, the temperature increase rate is important because the rearrangement of the precipitate occurs, the second recrystallization is unstable if the temperature rise rate is too fast, while the annealing time is too economical if the temperature rise rate is too slow. Therefore, the preferable temperature increase rate is 10-40 degreeC / hr. After the temperature is raised to a temperature of 1150-1250 ° C at the same temperature rate, it is preferable to crack for 1-30 hours to purify. At this time, it is preferable to maintain the atmosphere containing nitrogen in order to prevent the loss of the nitride used as an inhibitor during the temperature rising process, and as an atmosphere of pure annealing, N, S and the like remain after the formation of the glassy film and the completion of the secondary recrystallization. It is preferable to use dry hydrogen or a mixed gas of hydrogen and nitrogen to remove impurities.

상기 고온소둔에 의해 무기질의 유리질 피막이 형성된 강판 표면에는 절연성 향상과 자구미세화에 의한 철손개선의 목적으로 고온소둔후 장력부여 코팅을 하여도 좋다.The surface of the steel sheet on which the inorganic glass coating is formed by the high temperature annealing may be subjected to a tension-coating coating after the high temperature annealing for the purpose of improving the insulation and improving the iron loss due to finer microstructure.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로, C:0.025%, Si:3.15%, Mn:0.23%, S:0.004%, 산가용성 Al:0.018%, N:0.0055%, B:0.0035%, P:0.015% 및 Cu, Ni, Cr을 하기표 1과 같이 첨가량을 달리하고, 나머지 Fe로 조성된 210mm 두께의 슬라브를 제조하였다. 이 슬라브를 1200℃ 의 온도에서 2시간 30분동안 가열한 후 열간압연을 행하여 2.3mm 두께의 열연판을 만들었다. 이어 900℃에서 3분간 질소가스 분위기중에서 예비소둔 한 후 산세하고, 1회 압연으로 0.30mm 두께의 최종 냉간압연판을 만들었다. 이후 870℃에서 3분간 이슬점이 45℃ 인 습윤 암모니아(NH3) + 수소 + 질소 혼합가스 분위기를 사용하여, 탈탄 및 질소부화 그리고 1차 재결정 조직을 형성시킴을 위한 동시 탈탄 질화소둔을 실시하였다.By weight, C: 0.025%, Si: 3.15%, Mn: 0.23%, S: 0.004%, acid soluble Al: 0.018%, N: 0.0055%, B: 0.0035%, P: 0.015% and Cu, Ni, Cr was added to vary the amount as shown in Table 1, to prepare a slab of 210mm thickness consisting of the remaining Fe. The slab was heated at a temperature of 1200 ° C. for 2 hours and 30 minutes and then hot rolled to form a 2.3 mm thick hot rolled sheet. Subsequently, after annealing in a nitrogen gas atmosphere at 900 ° C. for 3 minutes, pickling was performed, and a final cold rolled plate having a thickness of 0.30 mm was made by one rolling. Subsequently, simultaneous decarbonation annealing for decarburization, nitrogen enrichment, and primary recrystallization was carried out using a wet ammonia (NH 3 ) + hydrogen + nitrogen mixed gas atmosphere having a dew point of 45 ° C. at 870 ° C. for 3 minutes.

이때, 강판의 총질소량을 하기표 1과 같이 변화시키기 위해 분위기 가스로는 부피%로, 0.05-10% 의 범위에서 농도를 달리한 암모니아 및 5-80% 의 범위에서 농도를 달리한 수소와 나머지 질소로 이루어진 혼합가스를 사용하였다. 이어서 MgO를 주성분으로 하는 소둔분리제를 강판 표면에 도포한 다음 마무리 고온소둔하였다. 이때, 상기 마무리 고온소둔은 2차 재결정을 일으키기 위해 20℃/hr의 승온속도로 1200℃까지 승온하고 15시간 균열한 후 냉각하는 열처리 사이클로 행하였으며, 승온중 분위기가스로는 25%N2+ 75%H2를 사용하고 1200℃ 로 승온한 이후에는 순수소가스를 사용하였다.At this time, in order to change the total nitrogen of the steel sheet as shown in Table 1, the atmosphere gas is a volume%, ammonia with a different concentration in the range of 0.05-10% and hydrogen and the remaining nitrogen with a different concentration in the range of 5-80% A mixed gas consisting of was used. Subsequently, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, followed by finishing high temperature annealing. At this time, the finishing high temperature annealing was performed by a heat treatment cycle to increase the temperature to 1200 ℃ at a temperature rising rate of 20 ℃ / hr and crack for 15 hours to cool the secondary recrystallization, 25% N 2 + 75% After using H 2 and raising the temperature to 1200 ° C., pure hydrogen gas was used.

상기와 같이 Cu, Ni, Cr의 첨가량 및 총질소량을 변화한 시편들에 대하여 강판의 잔류 탄소량, 총질소량, 동시 탈탄질화소둔 후의 1차 재결정 미세조직의 균일성 여부, 2차 재결정 발달율, 그리고, 자속밀도를 조사하고, 그 결과를 하기표 1에 나타내었다.Residual carbon content, total nitrogen amount, uniformity of primary recrystallized microstructure after simultaneous decarbonation annealing, secondary recrystallization rate, and the like for the specimens in which the addition amount of Cu, Ni, Cr and total nitrogen were changed as described above. , Magnetic flux density was investigated, and the results are shown in Table 1 below.

여기서, 1차 재결정 미세조직의 균일성 여부는 동시 탈탄질화소둔한 시편의 단면을 연마한 후 3% 나이탈(Nital)로 에칭하여 광학현미경으로 관찰함으로써 판정하였다. 이때의 판정방법은 시편 1mm2당 등방정의 결정립과 두께방향으로 성장된 결정립의 분포면적을 비교하여 등방정의 결정립의 면적이 크면 균일, 그렇지 않으면 불균일로 하였다. 그리고, 2차 재결정 발달율은 마무리 고온소둔한 강판의 표면을 약 80℃ 인 20% 염산용액으로 부식하여 노출한 매크로(Macro) 조직을 관찰하여 측정하였다. 또한, 자속밀도는 단판자성측정기로 B10(1000A/m 의 여자력에서 유기되는 자속밀도)을 측정한 값이다.Here, the uniformity of the primary recrystallized microstructure was determined by polishing the cross section of the specimen subjected to simultaneous decarbonation annealing and etching with 3% nital and observing with an optical microscope. The determination method at this time was to compare the distribution area of the grains grown in the thickness direction with the grains of isotropic crystals per 1 mm 2 of the specimen, so that the area of the grains of the isotropic crystals was large and uniform, if not uniform. The secondary recrystallization rate was measured by observing the macrostructure in which the surface of the finished hot-annealed steel sheet was corroded with 20% hydrochloric acid solution at about 80 ° C. and exposed. The magnetic flux density is a value obtained by measuring B 10 (magnetic flux density induced at an excitation force of 1000 A / m) with a single plate magnetic measuring device.

구분division 합금첨가량(중량%)Alloy addition amount (% by weight) 적정총질소량범위(ppm)Proper Total Nitrogen Range (ppm) 분위기 개스 분율(부피%)Atmosphere gas fraction (% by volume) 동시탈탄질화소둔후 총질소량(ppm)Total Nitrogen Content after Simultaneous Decarbonation Nitride (ppm) 잔류 탄소량(ppm)Residual carbon (ppm) 1차 재결정조직 균일성 여부Primary recrystallization uniformity 2차 재결정 발달율(%)Secondary Recrystallization Development Rate (%) 자속밀도B10(Tesla)Magnetic flux density B 10 (Tesla) NH3 NH 3 H2 H 2 CuCu NiNi CrCr 비교재1Comparative Material 1 0.50.5 0.050.05 0.050.05 125-269125-269 0.050.05 55 122* 122 * 2626 균일Uniformity 95* 95 * 1.88* 1.88 * 발명재1Invention 1 0.50.5 0.050.05 0.050.05 125-269125-269 0.50.5 2525 220220 2424 균일Uniformity 100100 1.951.95 발명재2Invention 2 0.50.5 0.050.05 0.050.05 125-269125-269 0.70.7 2525 265265 2222 균일Uniformity 100100 1.951.95 발명재3Invention 3 0.50.5 0.050.05 0.060.06 125-269125-269 0.60.6 2525 233233 1919 균일Uniformity 100100 1.961.96 비교재2Comparative Material 2 0.50.5 0.050.05 0.050.05 125-269125-269 0.080.08 55 280* 280 * 1414 불균일* Non-uniformity * 80* 80 * 1.77* 1.77 * 발명재4Invention 4 0.40.4 0.060.06 0.070.07 125-322125-322 1.01.0 1010 311311 1717 균일Uniformity 100100 1.941.94 발명재5Invention 5 0.60.6 0.030.03 0.040.04 125-223125-223 0.50.5 3535 204204 2121 균일Uniformity 100100 1.951.95 발명재6Invention 6 0.50.5 0.040.04 0.040.04 125-223125-223 0.50.5 2525 220220 2525 균일Uniformity 100100 1.971.97 비교재 3Comparative material 3 0.30.3 0.030.03 0.030.03 125-150125-150 0.070.07 2525 120* 120 * 2626 균일Uniformity 75* 75 * 1.78* 1.78 * 발명재 7Invention Material 7 0.30.3 0.030.03 0.030.03 125-150125-150 0.10.1 5050 148148 2424 균일Uniformity 100100 1.941.94 비교재 4Comparative material 4 0.30.3 0.030.03 0.030.03 125-150125-150 0.090.09 2525 160* 160 * 2222 불균일* Non-uniformity * 95* 95 * 1.88* 1.88 * 비교재 5Comparative material 5 0.70.7 0.070.07 0.070.07 125-449125-449 0.070.07 2020 123* 123 * 2828 균일Uniformity 70* 70 * 1.75* 1.75 * 발명재 8Invention Material 8 0.70.7 0.070.07 0.070.07 125-449125-449 1.01.0 55 430430 1414 균일Uniformity 100100 1.971.97 비교재 6Comparative Material 6 0.70.7 0.070.07 0.070.07 125-449125-449 1010 8080 460* 460 * 1313 불균일* Non-uniformity * 90* 90 * 1.88* 1.88 * 비교재 7Comparative material 7 0.2* 0.2 * 0.070.07 0.070.07 125-295125-295 0.080.08 55 280280 2323 불균일* Non-uniformity * 85* 85 * 1.82* 1.82 * 비교재 8Comparative Material 8 0.50.5 0.02* 0.02 * 0.050.05 125-202125-202 1.51.5 8080 190190 2020 불균일* Non-uniformity * 85* 85 * 1.83* 1.83 * 비교재 9Comparative material 9 0.50.5 0.060.06 0.02* 0.02 * 125-223125-223 22 8080 210210 1919 불균일* Non-uniformity * 90* 90 * 1.87* 1.87 * 비교재 10Comparative Material 10 미첨가* Not added * 미첨가* Not added * 0.050.05 -- 22 8080 220220 1616 불균일* Non-uniformity * 90* 90 * 1.88* 1.88 * 비교재 11Comparative Material 11 0.8* 0.8 * 0.040.04 0.040.04 125-295125-295 55 8080 290290 45* 45 * 균일Uniformity 100100 1.86* 1.86 * 비교재 12Comparative Material 12 0.50.5 0.040.04 0.08* 0.08 * 125-322125-322 55 7070 308308 46* 46 * 균일Uniformity 100100 1.84* 1.84 * * 표시는 실시결과가 본 발명의 조건에 부합되지 않는 경우를 나타낸 것임* Indicates that the result does not meet the conditions of the present invention

상기표 1에 나타난 바와 같이, Cu, Ni, Cr 의 첨가량을 본 발명범위내로 첨가하고, 또한, 동시 탈탄 질화소둔후 총질소량을 125∼82.9(1 + [Cu% + 10(Ni% + Cr%)]2)ppm 의 범위내로 제어한 발명재(1-8)의 경우에는 균일한 1차 재결정 조직 및 조절한 크기와 양으로 분포된 BN 및 AlN 의 석출물이 얻어져, 2차 재결정이 완전히 일어날 뿐만 아니라, 그 방향성도 향상되어 우수한 자속밀도값을 나타내었다.As shown in Table 1, the addition amount of Cu, Ni, Cr is added within the scope of the present invention, and the total nitrogen amount after simultaneous decarburization annealing is 125-82.9 (1 + [Cu% + 10 (Ni% + Cr%) )] 2 ) In the case of the invention material (1-8) controlled in the range of ppm, the precipitates of BN and AlN distributed in uniform primary recrystallization structure and controlled size and amount are obtained, and secondary recrystallization takes place completely. In addition, the directionality was also improved to show an excellent magnetic flux density value.

반면, 동시 탈탄질화소둔후 총질소량이 125ppm 미만인 비교재(1,3,5)의 경우 적절한 양으로 입성장 억제력이 얻어지지 않아 2차 재결정이 불안정하게 일어나게 되어 열등한 자속밀도값이 얻어졌다. 또한 총질소량이 본 발명범위를 초과하는 비교재(2, 4, 6)의 경우에는 1차 재결정 조직이 불균일하게 형성될 뿐만 아니라 고온 소둔 승온중 석출물의 조대화가 빠르게 진전되어 입성장 억제력이 쉽게 상실되기 때문에 2차 재결정 발달이 불안정하여, 우수한 자속밀도가 얻어지지 않았다.On the other hand, in the case of the comparative material (1,3,5) having a total nitrogen content of less than 125 ppm after the simultaneous decarbonation annealing, the secondary growth of the second recrystallization was unstable because an adequate amount of growth inhibition was not obtained. In addition, in the case of the comparative material (2, 4, 6) in which the total nitrogen exceeds the scope of the present invention, not only the primary recrystallized structure is not uniformly formed, but also the coarsening of the precipitates during the high temperature annealing is rapidly progressed, thereby making it easy to suppress grain growth. Because of the loss, secondary recrystallization development is unstable, and excellent magnetic flux density was not obtained.

또한, 총질소량을 본 발명범위내로 제어한 경우라도 Cu, Ni, Cr의 3원소중 어느 하나라도 본 발명범위 미만으로 첨가한 비교재(7-10)는 1차 재결정 조직이 불균일하게 형성되어 2차 재결정이 불안정하게 일어나는 결과, 낮은 자속밀도값을 나타내었다.In addition, even when the total nitrogen amount is controlled within the scope of the present invention, the comparative material (7-10) added to any one of the three elements of Cu, Ni, and Cr less than the scope of the present invention has a non-uniform primary recrystallized structure 2 As a result of unstable car recrystallization, low magnetic flux density was shown.

또한, Cu, Cr의 첨가량이 본 발명범위를 초과하는 비교재(11,12)는 2차 재결정은 완전히 일어나지만, 탈탄성이 열화되고(잔류탄소량 30ppm 초과) 그 방향성이 열화되어 우수한 자속밀도를 얻을 수 없었다.In the comparative materials 11 and 12 in which the addition amount of Cu and Cr exceeds the scope of the present invention, secondary recrystallization takes place completely, but decarburization deteriorates (more than 30 ppm of residual carbon), and its orientation deteriorates, thereby providing excellent magnetic flux density. Couldn't get it.

[실시예 2]Example 2

중량%로, C:0.025%, Si:3.15%, Mn:0.23%, S:0.004%, 산가용성 Al:0.019%, N:0.0060%, P:0.015% 및 B, Cu, Ni, Cr을 하기표 2와 같이 첨가량을 달리하고, 나머지 Fe 로 조성된 210mm 두께의 슬라브를 제조하였다. 이 슬라브를 1160℃ 의 온도에서 3시간 30분 동안 가열한 후 열간압연을 행하여 2.3mm 두께의 열연판을 만들었다. 이어 950℃에서 3분간 질소가스 분위기중에서 예비소둔한 후 산세하고, 1회 압연으로 하기표 2와 같이 강판두께를 달리한 최종 냉간압연판을 만들었다. 이후 900℃에서 3분간 이슬점이 60℃인 습윤 암모니아(NH3) + 수소 + 질소 혼합가스 분위기를 사용하여, 탈탄 및 질소부화 그리고 1차 재결정 조직을 형성시키기 위한 동시 탈탄 질화소둔을 실시하였다.By weight%, C: 0.025%, Si: 3.15%, Mn: 0.23%, S: 0.004%, acid soluble Al: 0.019%, N: 0.0060%, P: 0.015% and B, Cu, Ni, Cr By varying the addition amount as shown in Table 2, to prepare a slab of 210mm thickness consisting of the remaining Fe. The slab was heated at a temperature of 1160 ° C. for 3 hours 30 minutes and then hot rolled to form a 2.3 mm thick hot rolled sheet. Subsequently, after pre-annealing in a nitrogen gas atmosphere at 950 ° C. for 3 minutes, pickling was performed, and a final cold rolled sheet having a different steel sheet thickness was obtained by rolling once. Thereafter, decarburization, nitrogen enrichment, and simultaneous decarbonation annealing were performed to form primary recrystallized structure using a wet ammonia (NH 3 ) + hydrogen + nitrogen mixed gas atmosphere having a dew point of 60 ° C. at 900 ° C. for 3 minutes.

이때, 동시 탈탄질화소둔 후 강판의 총질소량을 125∼82.9(1 + [1 + (Cu% + 10(Ni% + Cr%)]2)ppm 의 범위로 제어하기 위해 분위기 가스로는 부피 % 로, 0.5% 암모니아 및 25% 의 수소와 나머지 질소로 이루어진 혼합가스를 사용하였다. 이후 공정조건은 상기 실시예 1과 동일하게 한 후 상기와 같이 Cu, Ni, Cr 및 B 의 첨가유무와 강판두께에 따른 동시탈탄질화소둔 후의 잔류탄소량, 총질소량, 1차 재결정 미세조직의 균일성 여부, 2차 재결정 발달율, 그리고 자속밀도를 조사하고, 그 결과를 하기표 2에 나타내었다.At this time, in order to control the total nitrogen of the steel sheet in the range of 125 ~ 82.9 (1 + [1 + (Cu% + 10 (Ni% + Cr%)] 2 ) ppm after the simultaneous decarbonation annealing in volume% as the atmosphere gas, A mixed gas consisting of 0.5% ammonia, 25% hydrogen and the remaining nitrogen was used, and then the process conditions were the same as in Example 1, and the addition of Cu, Ni, Cr, and B as described above and the thickness of the steel sheet were used. The residual carbon content, total nitrogen amount, uniformity of primary recrystallized microstructure, secondary recrystallization rate, and magnetic flux density after co-denitrification annealing were investigated, and the results are shown in Table 2 below.

구분division 합금첨가량(중량%)Alloy addition amount (% by weight) 강판두께(mm)Steel plate thickness (mm) 총질소량(ppm)Total nitrogen (ppm) 잔류탄소량(ppm)Residual carbon (ppm) 1차 재결정조직 균일성여부Primary recrystallization uniformity 2차 재결정 발달율(%)Secondary Recrystallization Development Rate (%) 자속밀도B10(Tesla)Magnetic flux density B 10 (Tesla) 철손W17/50(W/kg) Iron loss W 17/50 (W / kg) BB CuCu NiNi CrCr 비교재13Comparative Material 13 0.0040.004 미첨가* Not added * 미첨가* Not added * 미첨가* Not added * 0.350.35 215215 1111 균일Uniformity 100100 1.941.94 1.061.06 비교재14Comparative Material14 미첨가* Not added * 0.50.5 0.050.05 0.050.05 0.350.35 210210 1212 균일Uniformity 100100 1.941.94 1.061.06 비교재15Comparative Material 15 0.0040.004 미첨가* Not added * 미첨가* Not added * 미첨가* Not added * 0.400.40 200200 1515 불균일* Non-uniformity * 90* 90 * 1.86* 1.86 * 1.70* 1.70 * 비교재16Comparative Material 16 미첨가* Not added * 0.50.5 0.050.05 0.050.05 0.400.40 200200 1515 불균일* Non-uniformity * 90* 90 * 1.87* 1.87 * 1.65* 1.65 * 비교재17Comparative Material17 0.0040.004 0.50.5 0.050.05 0.050.05 0.20* 0.20 * 255255 1010 균일Uniformity 95* 95 * 1.88* 1.88 * 1.25* 1.25 * 발명재 9Invention Material 9 0.0040.004 0.50.5 0.050.05 0.050.05 0.230.23 235235 1010 균일Uniformity 100100 1.951.95 1.001.00 발명재10Invention 10 0.0040.004 0.50.5 0.050.05 0.050.05 0.270.27 220220 1111 균일Uniformity 100100 1.951.95 1.021.02 발명재11Invention 11 0.0040.004 0.50.5 0.050.05 0.050.05 0.300.30 210210 1212 균일Uniformity 100100 1.951.95 1.041.04 발명재12Invention Material12 0.0040.004 0.50.5 0.050.05 0.050.05 0.340.34 205205 1414 균일Uniformity 100100 1.951.95 1.081.08 발명재13Invention Material 13 0.0040.004 0.50.5 0.060.06 0.050.05 0.400.40 200200 1616 균일Uniformity 100100 1.941.94 1.121.12 발명재14Invention 14 0.0040.004 0.50.5 0.060.06 0.050.05 0.500.50 190190 1818 균일Uniformity 100100 1.941.94 1.181.18 발명재15Invention Material 15 0.0040.004 0.50.5 0.050.05 0.050.05 0.600.60 190190 2020 균일Uniformity 100100 1.941.94 1.241.24 발명재16Invention Material 16 0.0040.004 0.50.5 0.050.05 0.050.05 0.700.70 180180 2323 균일Uniformity 100100 1.941.94 1.271.27 비교재18Comparative Material 18 0.0040.004 0.50.5 0.050.05 0.050.05 0.08* 0.08 * 175175 2626 균일Uniformity 100100 1.931.93 1.36* 1.36 * * 표시는 실시결과가 본 발명의 조건예 부합되지 않는 경우를 나타낸 것임* Indicates that the result of implementation does not meet the conditions example of the present invention.

상기 표 2에 나타난 바와 같이, B만 이용하고 Cu, Ni, Cr을 첨가하지 않은 경우나, 이와는 상반되게 Cu, Ni, Cr 만을 이용하는 공지기술의 경우는 통상두께의 상한인 0.35mm 두께에서는 비교적 우수한 자속밀도값을 나타내지만(비교재 13, 14) 0.40mm 두께의 경우(비교재 15,16)는 동시 탈탄질화소둔후 강판에 불균일한 1차 재결정 조직이 분포되어 2차 재결정이 불안정해지는 결과 열등한 자속밀도값을 나타내었다.As shown in Table 2 above, in the case of using only B and not adding Cu, Ni, or Cr, or in the case of the known technology using only Cu, Ni, and Cr, in contrast, it is relatively excellent at a thickness of 0.35 mm, which is the upper limit of the conventional thickness. In the case of 0.40mm thickness (Comparative Materials 15 and 16), the non-uniform primary recrystallization structure is distributed on the steel plate after simultaneous decarbonation annealing, resulting in instability of secondary recrystallization. Magnetic flux density values are shown.

반면에 B 및 Cu, Ni, Cr의 첨가량을 본 발명범위내로 첨가한 경우는 통상 두께인 0.23-0.35mm에서 뿐만 아니라, 이 보다 두께가 두꺼운 0.40-0.70mm 의 후물재에서도 균일한 1차 재결정 조직 및 적절한 크기와 양으로 분포된 BN 및 AlN 등의 석출물이 얻어져, 2차 재결정이 완전히 일어날 뿐만 아니라, 그 방향성도 향상되어 고자속밀도 특성이 얻어졌다(발명재 9-16). 따라서, 본 발명은 통상 두께에서 뿐만 아니라 특히, 후물 고자속밀도 방향성 전기강판의 제조시 상기 공지기술들에 비해 효과적임을 알 수 있다.On the other hand, when the addition amount of B, Cu, Ni, and Cr is added within the scope of the present invention, the uniform primary recrystallization structure is not only in the thickness of 0.23-0.35mm, but also in the thick material of 0.40-0.70mm thicker than this. And precipitates such as BN and AlN distributed in appropriate sizes and amounts were obtained, not only secondary recrystallization completely occurred, but also the orientation thereof was improved to obtain high magnetic flux density characteristics (Invention 9-16). Therefore, it can be seen that the present invention is effective in comparison with the above known techniques not only in the usual thickness, but especially in the production of thick high magnetic flux oriented electrical steel sheets.

그러나, 성분 및 함량은 본 발명에 들더라도 강판두께가 너무 얇은 경우(비교재 17)는 2차 재결정이 불완전하게 일어나 열등한 자속밀도값이 얻어졌으며, 강판두께가 너무 두꺼운 경우(비교재 18)는 양호한 2차 재결정의 발달로 고자속밀도 특성은 얻어지지만 철손이 너무 나빠지므로 본 발명범위에서 제외하였다.However, even if the steel sheet thickness is too thin (Comparative Material 17) in the present invention, the component and content are inferior in magnetic flux density due to incomplete secondary recrystallization, and when the steel sheet thickness is too thick (Comparative Material 18), High magnetic flux density characteristics are obtained by the development of good secondary recrystallization, but iron loss is so bad that it is excluded from the scope of the present invention.

상술한 바와 같이, 본 발명은 자기적특성이 우수한 후물 방향성 전기강판을 저온스라브재가열 방식으로 제조하는 방법을 제공할 수 있으며, 이 후물 방향성 전기강판은 수요가의 측면에서는 전기강판을 철심으로 타발하는 시간과 경비를 절약할 수 있는 이점이 있으며, 또한, 생산자의 측면에서는 연속압연과 연속소둔으로 제조할 경우 기존의 얇은 방향성 전기강판에 비해 생산성이 증대되는 이점이 있다.As described above, the present invention can provide a method for manufacturing a thick grain-oriented electrical steel sheet having excellent magnetic properties by a low-temperature slab reheating method, and the thick grain-oriented electrical steel sheet punches the electrical steel sheet in terms of demand. There is an advantage to save time and money, and also from the producer's point of view, when manufactured by continuous rolling and continuous annealing, there is an advantage that the productivity is increased compared to the conventional thin oriented electrical steel sheet.

Claims (3)

중량%로, C:0.020-0.045%, Si:2.90-3.30%, Mn:0.05-0.30%, B:0.001-0.012%, Al:0.005-0.019%, N:0.003-0.008%, S:0.007%이하, Cu:0.30-0.70%, Ni:0.03-0.07%, Cr:0.03-0.07%, P:0.020% 이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지는 규소강슬라브를 1050∼1250℃의 온도에서 재가열하고 이어 열간압연, 연연판소둔한 후, 1회냉간압연하여 0.23∼0.7mm의 냉연판을 만든 다음, 이 냉연판을 잔류탄소량이 30ppm 이하가 되고 총질소량이 125∼82.9(1 + [Cu% + 10(Ni% + Cr%)]2)ppm 이 되도록 이슬점이 30∼70℃인 함질소 가스분위기하에서 850∼950℃의 온도로 30초∼10분 동안 탈탄 및 질화가 동시에 일어나도록 소둔한 다음, 소둔분리제를 도포하고, 마무리고온소둔하는 것을 포함하여 이루어지는 저온슬라브가열방식의 고자속밀도 방향성 전기강판의 제조방법.By weight, C: 0.020-0.045%, Si: 2.90-3.30%, Mn: 0.05-0.30%, B: 0.001-0.012%, Al: 0.005-0.019%, N: 0.003-0.008%, S: 0.007% Below, the temperature of 1050-1250 degreeC is the silicon steel slab which consists of Cu: 0.30-0.70%, Ni: 0.03-0.07%, Cr: 0.03-0.07%, P: 0.020% or less, and remaining Fe and other unavoidable impurities. After reheating, followed by hot rolling and annealing, annealing, and then cold rolling once to form a cold rolled sheet of 0.23 to 0.7 mm. The cold rolled sheet is then 30 ppm or less in residual carbon and 125 to 82.9 (1 + [ Cu% + 10 (Ni% + Cr%)] 2 ) Annealing so that decarburization and nitriding occur simultaneously for 30 seconds to 10 minutes at a temperature of 850 to 950 ° C. under a nitrogen gas atmosphere with a dew point of 30 to 70 ° C. Then, the method for producing a high magnetic flux density oriented electrical steel sheet of a low temperature slab heating method comprising applying an annealing separator and finishing high temperature annealing. 제 1항에 있어서, 상기 열연판소둔은 질소분위기로 900∼1150℃의 온도에서 30초∼10분간 행함을 특징으로 하는 제조방법.The method of claim 1, wherein the hot-rolled sheet annealing is performed for 30 seconds to 10 minutes at a temperature of 900 to 1150 ℃ in a nitrogen atmosphere. 제 1항에 있어서, 상기 함질소가스는 암모니아+수소+질소의 혼합가스로, 이 암모니아의 농도가 체적분율로 0.1∼1.0%임을 특징으로 하는 제조방법.The method according to claim 1, wherein the nitrogen gas is a mixed gas of ammonia + hydrogen + nitrogen, and the concentration of the ammonia is 0.1 to 1.0% by volume fraction.
KR1019980053050A 1998-12-04 1998-12-04 The method of manufacturing grain oriented electrical steel sheet by low heating of slab KR100360097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980053050A KR100360097B1 (en) 1998-12-04 1998-12-04 The method of manufacturing grain oriented electrical steel sheet by low heating of slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980053050A KR100360097B1 (en) 1998-12-04 1998-12-04 The method of manufacturing grain oriented electrical steel sheet by low heating of slab

Publications (2)

Publication Number Publication Date
KR20000038157A true KR20000038157A (en) 2000-07-05
KR100360097B1 KR100360097B1 (en) 2002-12-18

Family

ID=19561359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980053050A KR100360097B1 (en) 1998-12-04 1998-12-04 The method of manufacturing grain oriented electrical steel sheet by low heating of slab

Country Status (1)

Country Link
KR (1) KR100360097B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475553A (en) * 2015-12-22 2018-08-31 Posco公司 Oriented electrical steel insulating coating composition, using the insulating coating composition oriented electrical steel insulating coating forming method and oriented electrical steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475553A (en) * 2015-12-22 2018-08-31 Posco公司 Oriented electrical steel insulating coating composition, using the insulating coating composition oriented electrical steel insulating coating forming method and oriented electrical steel
CN110634592A (en) * 2015-12-22 2019-12-31 Posco公司 Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
CN108475553B (en) * 2015-12-22 2021-09-10 Posco公司 Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
CN110634592B (en) * 2015-12-22 2021-11-12 Posco公司 Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
US11335475B2 (en) 2015-12-22 2022-05-17 Posco Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
US11848122B2 (en) 2015-12-22 2023-12-19 Posco Co., Ltd Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR100360097B1 (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR100721822B1 (en) The grain-oriented electrical steel sheet manufacturing method with low iron core loss, high magnetic induction
JP3485188B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density based on low-temperature slab heating method
EP3561103A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR20110036390A (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and method for manufacturing the same
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101908045B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
KR100285344B1 (en) Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way
KR100360097B1 (en) The method of manufacturing grain oriented electrical steel sheet by low heating of slab
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100399221B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR100340575B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet of low temperature slab heating method with excellent glass coating properties
KR102305718B1 (en) Grain oriented electrical steel sheet and method of manufacturing the same
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
KR20110075373A (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, method for manufacturing the same, and a slab using therefor
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151023

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee