KR20000033851A - Composite composition steel for high strength and high percentage of bolt having good delayed fracture resistance and preparation method thereof - Google Patents

Composite composition steel for high strength and high percentage of bolt having good delayed fracture resistance and preparation method thereof Download PDF

Info

Publication number
KR20000033851A
KR20000033851A KR1019980050899A KR19980050899A KR20000033851A KR 20000033851 A KR20000033851 A KR 20000033851A KR 1019980050899 A KR1019980050899 A KR 1019980050899A KR 19980050899 A KR19980050899 A KR 19980050899A KR 20000033851 A KR20000033851 A KR 20000033851A
Authority
KR
South Korea
Prior art keywords
steel
ferrite
less
strength
delayed fracture
Prior art date
Application number
KR1019980050899A
Other languages
Korean (ko)
Other versions
KR100380739B1 (en
Inventor
최해창
최종교
박수동
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0050899A priority Critical patent/KR100380739B1/en
Publication of KR20000033851A publication Critical patent/KR20000033851A/en
Application granted granted Critical
Publication of KR100380739B1 publication Critical patent/KR100380739B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

PURPOSE: A composite composition steel for bolt and a preparation method thereof are provided which provide the bolt having high strength, high percentage of elongation and good delayed fracture resistance. CONSTITUTION: The composite composition steel for bolt comprises: (i) 0.4-0.60 wt% of carbon, 2.0-4.0 wt% of silicone, 0.2-0.8 wt% of manganese; 0.25-0.8 wt% of chromium, less than 0.01 wt% of sulfur, less than 0.01 wt% of phosphorous, 0.005-0.01 wt% of nitrogen and less than 0.005 wt% of oxygen; (ii) at least one selected from 0.05-0.2 wt% of vanadium, 0.05-0.2 wt% of niobium, 0.3-2.0 wt% of nickel, 0.001-0.003 wt% of boron, 0.01-0.5 wt% of molybdenum, 0.01-0.2 wt% of titanium, 0.01-0.5 wt% of tungsten, 0.01-0.2 wt% of copper and 0.01-0.5 wt% of cobalt; and (iii) the remained of Fe and inevitable impurities, wherein the fine composition has the composite composition of ferrite and bainite and the phase proportion of the ferrite is 5-25%. The method comprises steps of: (i) controlling the phase proportion of the ferrite at 5-25% and the phase proportion of the austenite at 75-95% by heating the composite composition steel within the range of from Ac3-(Ac3-Ac1)/1.3 to Ac3-(Ac3-Ac1)/5.5 for more than 20 minutes; (ii) quickly cooling the step (i) in a cooling rate of 70°C/second within a range of Ms+(80°C plus or minus 30°C) and then isothermal heat-treating it for more than 20 minutes; and (iii) oil cooling or air cooling the step (ii).

Description

지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강 및 그 제조방법High strength, high elongation composite steel for bolts with excellent delayed fracture resistance and manufacturing method

본 발명은 강구조 체결용 및 자동차 부품용 등에 사용되는 볼트용 강 및 그 제조방법에 관한 것으로서, 보다 상세하게는 미세조직의 적절한 제어로 지연파괴저항성이 우수하면서 고강도 및 고연신율화가 가능한 페라이트와 베이나이트 복합조직강 및 그 제조방법에 관한 것이다.The present invention relates to bolt steel used for fastening steel structures and automobile parts, and a method for manufacturing the same, and more particularly, ferrite and bainite, which have high delay fracture resistance and high strength and high elongation, by appropriate control of microstructure. A composite tissue steel and a method for manufacturing the same.

강구조물의 효율적인 건설을 위한 부재 체결과 자동차 부품의 경량화 및 다기능, 고성능화를 위해서는 사용되는 소재의 고강도화가 필히 요구되어진다. 그러나, 볼트의 고강도화는 수소침입에 의한 지연파괴 저항성의 열화를 초래하기 때문에, 현재 인장강도 130kg/mm2급 이상 사용하는 것이 불가능하여 그 사용용도 및 그 범위가 제한되고 있는 실정이다.In order to fasten members for efficient construction of steel structures and to reduce weight, multifunction, and high performance of automobile parts, it is necessary to increase the strength of materials used. However, since the high strength of the bolt causes the deterioration of the delayed fracture resistance by hydrogen intrusion, it is currently impossible to use the tensile strength of 130 kg / mm 2 or more, and the use of the bolt and its range are limited.

기존 사용되고 있는 미세조직의 구성으로는 대부분 템퍼드 마르텐사이트(tempered martensite)의 준단상(quasi single phase) 조직으로 입계에 탄화물계 석출물이 분포하고 모재는 래스 마르텐사이트에 석출물들이 분포하는 것이 일반적인 특징으로 볼 수 있다. 그런데, 소재의 고강도화를 달성하는데 주요 저해요인으로는 수소의 침입에 의한 지연파괴 저항성 저하를 들 수 있으며, 이는 입계에 석출분포하고 있는 석출물이 수소의 트랩 사이트(trapped site)로 작용하여 입계의 강도를 열화시키기 때문인 것으로 알려져 있다. 따라서, 템퍼드 마르텐사이트 조직으로서 고강도 볼트용 강으로 사용하는 것이 미세조직 특징상 한계가 있다.Most of the microstructures in use are quasi single phase tissues of tempered martensite, and carbide-based precipitates are distributed at grain boundaries, and the matrix is deposited in ras martensite. can see. However, the main inhibitory factor in achieving the high strength of the material is a decrease in the delayed fracture resistance due to the intrusion of hydrogen, which is because the precipitate deposited at the grain boundary acts as a trapped site of hydrogen and thus the strength of the grain boundary. It is known to deteriorate. Therefore, the use of high strength bolted steel as a tempered martensite structure has a limitation in terms of microstructure characteristics.

따라서, 볼트의 고강도화를 달성하기 위해서는 임계지연파괴강도 및 소성변형능을 높이는 우선적으로 필요하며 이를 위해 지연파괴저항성 및 연신율의 개선이 불가피하다. 따라서, 결정입계 석출물의 분포를 최대한으로 억제시키면서 고강도화를 추구하고 동시에 소성변형능의 개선으로 고연실율화를 달성하는 것이 바람직하다.Therefore, in order to achieve high strength of the bolt, it is necessary to first increase the critical delay strength and plastic deformation performance, and for this purpose, improvement of delayed fracture resistance and elongation is inevitable. Therefore, it is desirable to achieve high strength while at the same time pursuing high strength while suppressing the distribution of grain boundary precipitates to the maximum.

지연파괴저항성이 우수하면서 고강화가 가능한 볼트용강이 개발될 경우 기대되어지는 잇점으로는 다음과 같다.The following are the benefits expected when the bolt steel is developed, which has excellent delayed fracture resistance and high strength.

즉, 강구조물 측면에서 볼트 체결은 용접접합에 비해 숙련된 기술을 요구치 않고, 취약한 용접부를 대체하는 것등을 고려할 때 첫째, 볼트체결시 체결력 강화에 따른 강구조물의 안정성을 높일 수 있으며, 둘째, 볼트 체결 개수의 감소에 의해 강재 사용량을 줄일 수 있다. 또한, 자동차 부품 측면에서는 셋째, 부품의 경량화에 기여하며, 넷째, 부품 경량화에 따른 자동차 조립장치의 설계 다양화 및 컴팩트화(compact)가 가능한 잇점이 있다.In other words, in terms of steel structures, bolt fastening does not require skilled skills compared to welding joints, and considering the substitution of vulnerable welds. Steel usage can be reduced by reducing the number. In addition, in terms of automotive parts, third, it contributes to the weight reduction of parts, and fourth, there is an advantage that the design diversification and compactness of the vehicle assembly apparatus according to the weight reduction of parts is possible.

지연파괴저항성을 개선하기 위한 종래의 기술로는 1)강재의 부식억제, 2)수소침입량 최소화, 3)지연파괴에 기여하는 확산성 수소의 축적억제, 4)한계확산성 수소농도가 큰 강재사용, 5)인장응력 최소화, 6)응력집중의 완화 등을 들 수 있다.Conventional techniques for improving delayed fracture resistance include: 1) corrosion inhibition of steel, 2) minimization of hydrogen intrusion, 3) inhibition of accumulation of diffusible hydrogen contributing to delayed destruction, and 4) steel with high limit diffusion hydrogen concentration. Use, 5) minimization of tensile stress, and 6) relaxation of stress concentration.

이를 달성하기 위한 수단으로 고합금화를 추구하거나, 외부 수소침입방지를 위한 표면코팅 또는 도금을 부여하는 방법을 주로 사용하고 있는 실정이다.As a means to achieve this, it is mainly used to pursue high alloying or to give surface coating or plating to prevent external hydrogen intrusion.

열처리에 의한 고강도 베이나이트+마르텐사이트 복합조직 저탄소 합금강 제조기술로는 일본국 특허공개공보 평6-271975, 평7-173531, 일본의 "철과 강 Vo.82(1996) No. 4" 등이 있다.Techniques for manufacturing high strength bainite + martensite composite low carbon alloy steels by heat treatment include Japanese Patent Application Laid-Open No. Hei 6-271975, Hei 7-173531, and Japanese "Iron and Steel Vo.82 (1996) No. 4". have.

상기 일본국 특허공보 평6-271975는 수소에 의한 지연파괴 저항성이 우수한 복합조직강 제조방법에 관한 것으로서 중량%로 0.05-0.3%C, 0.1-2.5%Si, 0.1-3.0%Mn, 0.05-0.1Al, Cu, Ni, Mo, Cr, Nb, V, Ti, B 중 1개 이상의 합금원소를 포함하는 강에 있어서 미세조직이 마르텐사이트 단상, 베이나이트 단상, 혹은 베이나이트+마르텐사이트 복합조직이며 이러한 미세조직에 수소에 의한 지연파괴 저항성을 확보하기 위해 잔류 오스테나이트가 체적분율로 1-30% 존재하는 것을 특징으로 한다. 그러나, 상기 일본국 특허공개공보 평6-271975에서는 임계지연파괴강도 130kg/mm2이상 고강도화를 달성하지는 못하였고 지연파괴 저항성 개선을 위한 복합조직 제조시 열처리공정이 많은 단점이 있다.Japanese Patent Laid-Open No. 6-271975 relates to a method for manufacturing a composite tissue steel having excellent resistance to delayed fracture by hydrogen, and is 0.05-0.3% C, 0.1-2.5% Si, 0.1-3.0% Mn, and 0.05-0.1 by weight. In steels containing at least one alloy element among Al, Cu, Ni, Mo, Cr, Nb, V, Ti, and B, the microstructure is a martensite single phase, bainite single phase, or bainite + martensite composite structure. Residual austenite is present in a volume fraction of 1-30% in order to secure resistance to delayed destruction by hydrogen in the microstructure. However, the Japanese Patent Laid-Open Publication No. Hei 6-271975 has not achieved a high strength of more than 130kg / mm 2 of critical delay fracture strength, and there are many disadvantages in the heat treatment process when manufacturing a composite structure for improving delayed fracture resistance.

상기 일본 특허공개공보 평7-173531은 중량%로 0.05-0.3%C, 0.05-2.0%Si, 0.3-5.0%Mn, 1.0-3.0%Cr, 0.01-0.5%Nb, 0.01-0.06%Al의 화학조성을 갖는 강을 열간성형후 초석페라이트가 석출되지 않는 임계냉각속도 이상으로 연속냉각하여 베이나이트+마르텐사이트 이상복합조직강을 제조하는 방법에 관한 것이나 임계지연파괴강도 130kg/mm2이상 고강도화를 달성하지는 못하였고 지연파괴저항성 개선을 위한 복합조직 제조시 열처리공정이 많아 공업성을 부여하기 어려운 점이 있다.Japanese Patent Laid-Open No. 7-173531 has a chemical weight of 0.05-0.3% C, 0.05-2.0% Si, 0.3-5.0% Mn, 1.0-3.0% Cr, 0.01-0.5% Nb, 0.01-0.06% Al It is a method for producing bainite + martensite abnormal composite tissue steel by continuously cooling steel having a composition after hot forming at a critical cooling rate at which no cornerstone ferrite does not precipitate, but attaining a high strength of 130kg / mm 2 or more of critical delay fracture strength. In addition, there are many heat treatment processes in manufacturing a composite structure for improving delayed fracture resistance, which makes it difficult to impart industriality.

상기 "철과 강 Vol.82(1996) No.4"은 종래의 템퍼드 마르텐사이트 조직을 근간으로 합금성분계 0.49%C-0.31%Mn-1.02%Cr-0.68%Mo-0.034%Nb-0.32%V-0.009P-0.004%S으로 구성되며 임계지연파괴 강도는 130kg/mm2급으로 불순물의 입계편석 저감을 위해 저P, 저S, 저Mn화하고, 탄화물의 입계석출방지를 위해 Ni, Cr, Mo, V을 첨가하고, 결정립 미세화를 위해 V, Nb, Ti을 첨가하여 낮은 템퍼링 온도에서 열처리하는 것을 특징으로 한다. 그러나, 상기 철과 강 Vol. 82(1996) No. 4 에서는 임계지연파괴강도가 130kg/mm2급 이상으로 사용하기에는 지연파괴저항성이 열악한 문제점이 있다.The "iron and steel Vol. 82 (1996) No. 4" is based on the conventional tempered martensite structure 0.49% C-0.31% Mn-1.02% Cr-0.68% Mo-0.034% Nb-0.32% V-0.009P-0.004% S is composed of in order to reduce the critical delayed fracture strength of the grain boundary segregation of impurities to 130kg / mm 2 grade low P, low S, low Mn screen, for preventing the grain boundary precipitation of carbides Ni, and Cr , Mo, V is added, and V, Nb, and Ti are added for grain refinement, and heat treatment is performed at low tempering temperature. However, the iron and steel Vol. 82 (1996) No. At 4, there is a problem that the delayed fracture resistance is poor to use the critical delay fracture strength of 130kg / mm 2 or more.

이에, 본 발명은 130kg/mm2급 이상의 고강도 볼트를 제조함에 있어 지연파괴 저항성이 우수하면서 고강도화가 가능하면서 고강도화에 따른 연신율의 저하없이 오히려 고강도 및 고연신율화가 가능한 미세조직 제어방안에 대한 것으로, 그 목적하는 바는 외부수소치입에 따른 입계 취화의 문제점을 근본적으로 해결함으로서, 지연파괴저항성이 우수하면서 고강도 및 고연신율을 갖는 볼트용 복합조직강을 제공하며 또한, 그 제조방법을 제공하고자 하는데 있다.Accordingly, the present invention relates to a microstructure control method capable of increasing high strength and high elongation without deterioration of elongation at the same time as it is excellent in delayed fracture resistance and high strength in manufacturing high strength bolts of 130 kg / mm 2 or more, The objective is to solve the problems of grain embrittlement due to external hydrogen injection, and to provide a composite tissue steel for bolts having high strength and high elongation while having excellent delayed fracture resistance, and to provide a method for manufacturing the same. .

도 1(a)는 발명예, (b)는 비교예의 SEM을 이용한 미세조직 사진Figure 1 (a) is an invention example, (b) is a microstructure photograph using the SEM of the comparative example

본 발명자들은, 중탄소강에서 실리콘 함량을 적절한 범위로 조정하고, 이상역 온도범위내에서 적절히 가열하여, 복합조직(페라이트와 오스테나이트)에서의 페라이트 상분율을 5-25%범위로 제어하고, 마르텐사이트 변태점 직상까지 급냉후 등온 열처리 하여 이상역 복합조직내의 오스테나이트를 베이나이트 조직으로 변태시키는 경우, 지연파괴저항성에 대한 개선 효과가 현저하여 고강도 및 고연신율화가 가능하며, 미세조직 특성상 페라이트와 베이나이트 계면에는 탄화물계 석출물의 분포가 어렵고 또한 베이나이트와 베이나이트 결정입계에서도 탄화물계 석출물의 분포가 상변태 특성상 어렵기 때문에 외부 수소치입에 따른 입계 취화의 문제점을 근본적으로 해결하여 지연파괴저항성이 우수한 고강도 볼트용강을 제조할 수 있다는 것을 알아내었다.The present inventors adjusted the silicon content in an appropriate range in the medium carbon steel, and appropriately heated in an ideal temperature range to control the ferrite phase fraction in the composite structure (ferrite and austenite) in the range of 5-25%, When the austenite in the abnormal zone composite tissue is transformed into bainite tissue by quenching it to the site transformation point immediately after isothermal heat treatment, the improvement effect on delayed fracture resistance is remarkable, and high strength and high elongation can be increased. It is difficult to distribute carbide-based precipitates at the interface, and the distribution of carbide-based precipitates at the bainite and bainite grain boundaries is difficult due to the phase transformation characteristics. I found out that I can manufacture bolted steel .

상기한 바와같은 관점으로 부터 출발한 본 발명은 중량%로, 탄소 0.4-0.60%, 실리콘 2.0-4.0%, 망간 0.2-0.8%, 크롬 0.25-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.005-0.01%, 산소 0.005%이하를 함유하고, 여기에 바나듐 0.05-0.2%, 니요븀 0.05-0.2%, 니켈 0.3-2.0%, 보론 0.001-0.003%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%, 코발트 0.01-0.5%으로 이루어진 그룹중 1종 또는 2종 이상을 선택적으로 함유하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되고, 그 미세조직이 페라이트와 베이나이트의 복합조직을 갖으며 이때 상기 페라이트의 상분율이 5-25%인 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강에 관한 것이며,Starting from the above point of view, the present invention is in terms of weight%, carbon 0.4-0.60%, silicon 2.0-4.0%, manganese 0.2-0.8%, chromium 0.25-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, Nitrogen 0.005-0.01%, oxygen 0.005% or less, including vanadium 0.05-0.2%, niobium 0.05-0.2%, nickel 0.3-2.0%, boron 0.001-0.003%, molybdenum 0.01-0.5%, titanium 0.01- 0.2%, tungsten 0.01-0.5%, copper 0.01-0.2%, cobalt 0.01-0.5%, optionally containing one or two or more of the group consisting of the remaining Fe and other unavoidable impurities, the microstructure It has a composite structure of ferrite and bainite, and wherein the phase ratio of the ferrite relates to a high-strength high elongation composite tissue steel with excellent delayed fracture resistance, characterized in that,

또한, 본 발명은 볼트용 강을 제조하는 방법에 있어서, 중량%로, 탄소 0.4-0.60%, 실리콘 2.0-4.0%, 망간 0.2-0.8%, 크롬 0.25-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.005-0.01%, 산소 0.005%이하를 함유하고, 여기에 바나듐 0.05-0.2%, 니요븀 0.05-0.2%, 니켈 0.3-2.0%, 보론 0.001-0.003%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%, 코발트 0.01-0.5%으로 이루어진 그룹중 1종 또는 2종 이상을 선택적으로 함유시키고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강을 이상역 온도범위인 Ac3-(Ac3-Ac1)/1.3에서 Ac3-(Ac3-Ac1)/5.5 까지의 범위내에서 20분 이상 가열하여, 페라이트와 오스테나이트의 복합조직에서 페라이트 상분율을 5-25%, 오스테나이트 분율을 75-95%로 제어하고, 70℃/sec 이상의 냉각속도로 Ms+(80℃±30℃)범위까지 급냉한 후 20분 이상 등온열처리하고, 이후 유냉 또는 공냉하는 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법에 관한 것이다.In addition, the present invention is a method for producing a steel for bolts, by weight%, carbon 0.4-0.60%, silicon 2.0-4.0%, manganese 0.2-0.8%, chromium 0.25-0.8%, phosphorus 0.01% or less, sulfur 0.01 % Or less, nitrogen 0.005-0.01%, oxygen 0.005% or less, including vanadium 0.05-0.2%, niobium 0.05-0.2%, nickel 0.3-2.0%, boron 0.001-0.003%, molybdenum 0.01-0.5%, A steel composed of one or two or more selected from the group consisting of 0.01-0.2% titanium, 0.01-0.5% tungsten, 0.01-0.2% copper and 0.01-0.5% cobalt, and composed of balance Fe and other unavoidable impurities The ferrite phase fraction in the complex structure of ferrite and austenite is heated by heating for 20 minutes or more within the range of Ac3- (Ac3-Ac1) /1.3, which is an ideal temperature range, from Ac3- (Ac3-Ac1) /5.5. %, Austenitic fraction is controlled to 75-95%, quenched to Ms + (80 ° C ± 30 ° C) range at a cooling rate of 70 ° C / sec or more, and isothermally treated for at least 20 minutes, followed by oil cooling or The present invention relates to a method for producing a high-strength high elongation composite steel for bolts having excellent delayed fracture resistance, characterized by air cooling.

이하, 본 발명의 화학성분 및 그 범위의 한정이유에 대하여 설명한다.Hereinafter, the chemical component of this invention and the reason for limitation of its range are demonstrated.

상기 탄소(C)의 함량을 0.40-0.60%으로 제한한 이유는, 그 함량이 0.40%미만에서는 베이나이트 제조를 위한 등온열처리후 고강도 및 고연신율 볼트용강으로서의 충분한 인장강도와 연신율을 확보하기 어렵기 때문이며, 그 함량이 0.60%를 초과하면 열처리후 연신율 확보의 어려움과, 이상역 열처리시 페라이트 생성에 따른 오스테나이트의 탄소농도가 너무높아 고연신율에 유효한 베이나이트 조직을 확보하기 어렵기 때문이며, 가열로 탈탄, 볼트 체결시 영구변형성, 피로특성, 탄질화물 분포, 베이나이트 조직형상, 베이나이트 변태 소요시간등에 영향을 미치기 때문이다.The reason for limiting the content of carbon (C) to 0.40-0.60% is that if the content is less than 0.40%, it is difficult to secure sufficient tensile strength and elongation as high strength and high elongation bolts for isothermal heat treatment for bainite production. If the content exceeds 0.60%, it is difficult to secure elongation after heat treatment, and it is difficult to obtain bainite structure effective for high elongation due to too high carbon concentration of austenite due to ferrite formation during abnormal reverse heat treatment. This is because it affects decarburization, permanent deformation during bolting, fatigue characteristics, carbonitride distribution, bainite structure, and bainite transformation time.

상기 실리콘(Si)의 함량은 2.0-4.0%로 한정한다. 그 함량이 2.0%미만인 경우에는 베이나이트 조직내 페라이트의 고용강화 효과가 미흡하여 강도확보에 어려윰이 있고, 또한 지연파괴저항성, 연신율, 표면부식특성, 충격인성, 베이나이트 조직 구성, 볼트 체결시 영구변성성등에 영향을 미치기 때문이고, 또한 선재 탈탄제어를 위한 선재 가열로내에서의 표면 페라이트 탈탄층의 적정분포가 어려워 탈탄이 심화되고, 선재 냉각시 소입성 증가로 표면스케일 특성의 제어가 어려운 단점이 있기 때문이다. 또한, 그 함량이 4.0%를 초과하면 상기 언급한 효과가 포화되고, 복합조직내의 베이나이트 조직구성, 충격인성, 부식성, 피로특성등에 영향을 미치기 때문에 바람직하지 않으며, 선재제조를 위한 부룸(bloom) 또는 빌레트(billet) 제조시 실리콘 편석에 의한 미세조직의 불균질화를 초래하여 최종 제품에서의 품질특성이 저하되기 때문이며, 또한 열처리시 표면 페라이트층의 두께가 증가하여 균질 표면 탈탄제어가 어렵기 때문이다.The content of silicon (Si) is limited to 2.0-4.0%. If the content is less than 2.0%, it is difficult to secure the strength due to the insufficient effect of strengthening the ferrite in the bainite structure, and also the delayed fracture resistance, elongation, surface corrosion property, impact toughness, bainite structure, and bolting Because it affects permanent denaturation, etc., and it is difficult to properly distribute the surface ferrite decarburization layer in the wire furnace for wire decarburization control, the decarburization is intensified, and it is difficult to control the surface scale characteristics by increasing the hardenability during wire rod cooling. Because there are disadvantages. In addition, if the content exceeds 4.0%, the above-mentioned effect is saturated, which is not preferable because it affects the structure of bainite structure, impact toughness, corrosiveness, fatigue characteristics, etc. in the composite tissue, and is not a blow for wire production. Or because the quality characteristics in the final product are deteriorated due to the inhomogeneity of microstructures due to silicon segregation during billet manufacture, and the thickness of the surface ferrite layer increases during heat treatment, making it difficult to control homogeneous surface decarburization. .

상기 실리콘의 보다 바람직한 성분범위는 2.8-3.3% 로서, 이는 베이나이트 조직을 제조하기 위한 등온 열처리 시간 및 잔류 오스테나이트 분율, 베이나이트의 고강도화 및 고연신율화, 지연파괴저항성(확산성 수소량, 입계석출물의 석출제어), 표면탈탄, 볼트체결후 응력이완성(stress relaxation) 또는 영구 변형저항성, 동적 및 정적 피로특성등을 고려하여 매우 효과적으로 개선할 수 있기 때문이다.The more preferable component range of the silicon is 2.8-3.3%, which is an isothermal heat treatment time and residual austenite fraction for producing bainite structure, high strength and high elongation of bainite, delayed fracture resistance (diffusive hydrogen amount, grain boundary) Precipitation control), surface decarburization, stress relaxation after bolting or permanent deformation resistance, dynamic and static fatigue characteristics can be improved very effectively.

상기 망간(Mn)은 기지조직내에 치환형 고용체를 형성하여 고용강화하는 원소로 고장력 볼트특성에 매우 유용한 원소이며, 그 함량은 0.2-0.8%로 한정한다. 상기 망간이 0.8%를 초과하여 첨가될 경우 고용강화 효과는 망간편석에 의한 조직불균질이 볼트 특성에 더 유해한 영향을 미친다. 강의 응고시 편석기구에 따라 거시편석과 미시편석이 일어나기 용이한데, 망간편석은 타원소에 비해 상대적으로 낮은 확산계수로 인해 편석대를 조장하고 이로인한 경화능 향상은 중심부 저온조직(core martensite)를 생성하는 주원인이 된다. 또한, 상기 망간이 0.2%미만으로 첨가될 경우 망간편석에 의한 편석대의 형성은 거의 없으나 고용강화에 의한 응력이완 개선효과는 기대하기 어렵다.The manganese (Mn) is an element that forms a solid solution to form a solid solution to strengthen the solid solution and is a very useful element for high-strength bolt characteristics, the content is limited to 0.2-0.8%. When the manganese is added in excess of 0.8%, the solid solution strengthening effect has a more harmful effect on the bolt properties of tissue heterogeneity due to manganese segregation. When the steel solidifies, macro segregation and micro segregation are easy to occur due to the segregation mechanism. Manganese segregation promotes segregation due to the relatively low diffusion coefficient compared to other elements, and the improvement of hardenability results in the core martensite. This is the main reason for generating. In addition, when the manganese is added less than 0.2%, the formation of segregation zone due to manganese segregation is hardly expected, but stress relaxation improvement effect due to solid solution strengthening is difficult to expect.

즉, 망간의 함량이 0.2%미만인 경우에는 고용강화 효과 미흡으로 소입성 및 영구변형 저항성 개선이 미흡하고, 0.8%를 초과하는 경우에는 주조시 망간편석으로 인한 국부소입성 증대 및 편석대 형성으로 조직이방성 심화, 즉 조직불균질로 볼트특성이 저하된다. 따라서, 망간의 함량을 0.2-0.8%로 한정하는 것은 모재의 강도, 열처리시 소입성, 응력이완성, 편석대 생성에 따른 유해한 영향등을 고려한 범위이다.In other words, if the content of manganese is less than 0.2%, the improvement of hardenability and permanent deformation resistance is insufficient due to insufficient solidification effect, and if it exceeds 0.8%, local quenchability is increased due to manganese segregation and segregation is formed. The deepening of tissue anisotropy, ie, tissue heterogeneity, causes the bolt characteristics to deteriorate. Therefore, limiting the content of manganese to 0.2-0.8% is a range in consideration of the strength of the base material, the hardenability during heat treatment, the stress relaxation, the harmful effects of the segregation zone production.

상기 크롬(Cr)의 함량은 0.25-0.8%로 한정한다. 그 함량이 0.25%미만에서는 고 실리콘 첨가강의 열처리시 표면 탈탄제어를 위한 표면 페라이트층의 형성이 어려워 탈탄억제 효과가 거의 없으며 또한 소입성 개선을 기대하기 어렵기 때문이다. 또한, 그 함량이 0.8%를 초과하면 등온열처리시 베이나이트의 변태 소요시간이 길어지기 때문에 바람직하지 않으며, 선재 탈탄층 제어를 위한 선재 가열로 장입시 표면 적정 페라이트층의 생성이 어려워 균질 탈탄제어에 영향을 미치기 때문이다.The content of chromium (Cr) is limited to 0.25-0.8%. If the content is less than 0.25%, it is difficult to form a surface ferrite layer for surface decarburization control during heat treatment of high silicon-added steel, so that there is almost no decarburization inhibitory effect and it is difficult to expect an improvement in quenchability. In addition, if the content exceeds 0.8%, it is not preferable because the transformation time of bainite becomes longer during isothermal heat treatment, and it is difficult to generate a surface titration ferrite layer when charging the wire rod for controlling the wire decarburization layer. Because it affects.

상기 바나듐(V) 또는 니오븀(Nb)은 지연파괴 저항성 및 응력이완성 개선원소로 그 함량을 0.05-0.2%로 한정한다. 그 함량이 0.05%미만에서는 모재내 바나듐 또는 니요븀계 석출물들의 분포가 적어짐에 따라 비확산성 수소 트랩사이트로의 역할이 미흡하여 지연파괴저항성 개선효과를 기대하기 어려우며, 또한 석출강화를 기대하기 어려워 응력이완저항성에 대한 개선효과가 충분하지 못하기 때문이며, 오스테나이트 결정립 미세화를 기대하기 어려워 베이나이트 조직구성에 영향을 미치기 때문이다. 그 함량이 0.2%를 초과하면 석출물들에 의한 지연파괴저항성 및 응력이완저항성에 대한 개선효과가 포화하고 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물양이 증가하여 비금속 개재물과 같은 작용을 하기 때문에 피로특성의 저하를 초래한다.The vanadium (V) or niobium (Nb) is an element that improves delayed fracture resistance and stress relaxation resistance, and its content is limited to 0.05-0.2%. If the content is less than 0.05%, the distribution of vanadium or niobium-based precipitates in the base material decreases, and thus the role of the non-diffusible hydrogen trap site is insufficient. Therefore, it is difficult to expect the effect of improving the delayed fracture resistance and the stress relaxation is difficult to expect. This is because the improvement effect on resistance is not sufficient, and it is difficult to expect austenite grain refinement, which affects the structure of bainite. When the content exceeds 0.2%, the improvement effect on the delayed fracture resistance and the stress relaxation resistance by the precipitates is saturated, and the amount of coarse alloy carbides that are not dissolved in the base metal during the austenitic heat treatment increases, thus acting as a nonmetal inclusion. This causes a decrease in fatigue characteristics.

상기 산소(O)의 함량은 0.0015% 이하로 한정한다. 그 함량이 0.0015% 이상에서는 조대한 산화물계 비금속개재물이 용이하게 형성되어 피로수명이 저하되기 때문이다.The content of oxygen (O) is limited to 0.0015% or less. If the content is more than 0.0015%, coarse oxide-based nonmetallic inclusions are easily formed and fatigue life is lowered.

상기 질소(N)의 함량은 0.005-0.03%로 한정한다. 그 함량이 0.005% 이하에서는 비확산성 수소 트랩 사이트로 작용하는 바나듐 및 니오븀계 질화물의 형성이 어렵기 때문이며, 0.03% 이상에서는 그 효과가 포화되기 때문이다.The content of nitrogen (N) is limited to 0.005-0.03%. This is because it is difficult to form vanadium and niobium-based nitrides that act as non-diffusion hydrogen trap sites when the content is 0.005% or less, and the effect is saturated when 0.03% or more.

상기 인(P) 및 황(S)의 함량은 0.01% 이하로 한정한다. 상기 인은 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.01%로 제한하는 것이며, 상기 황은 저융점 원소로 입계 편석되어 인성을 저하시키고 유화물을 형성시켜 지연파괴저항성 및 응력이완 특성에 유해한 영향을 미치므로 그 상한을 0.01% 로 제한하는 것이 바람직하다.The content of phosphorus (P) and sulfur (S) is limited to 0.01% or less. The phosphorus segregates at the grain boundaries and lowers the toughness, so the upper limit thereof is limited to 0.01%. The sulfur is segregated with low melting point elements to lower the toughness and forms an emulsion, which has a detrimental effect on delayed fracture resistance and stress relaxation characteristics. It is preferable to limit the upper limit to 0.01% since it is insane.

상기 니켈(Ni)은 열처리시 표면에 니켈 농화층을 형성하여 외부수소의 투과(permeation)를 억제하여 지연파괴저항성을 개선하는 원소이다. 그 함량이 0.3%미만인 경우에는 표면농화층 형성이 불완전하여 지연파괴저항성 개선효과를 기대하기 어려우며, 또한 탈탄제어 및 인성, 제조공정 다변화를 위한 흑연화처리시 열처리시간이 길어지며, 냉간볼트 가공시의 냉간성형성의 개선효과가 없고, 그 함량이 5.0%를 초과하는 경우에는 효과가 포화되기 때문이다.The nickel (Ni) is an element that forms a nickel enriched layer on the surface during heat treatment to suppress permeation of external hydrogen and thereby improves delayed fracture resistance. If the content is less than 0.3%, it is difficult to expect the effect of improving the delayed fracture resistance due to the incomplete formation of the surface thickening layer, and the heat treatment time is increased during the graphitization treatment for decarburization control, toughness, and diversification of the manufacturing process. This is because there is no improvement effect of cold forming property, and when the content exceeds 5.0%, the effect is saturated.

상기 붕소(보론, B)는 본 발명에서 소입성 및 지연파괴저항성 개선을 위한 입계 강호원소로 붕소의 함량을 0.0010-0.003%로 한정한다. 그 함량이 0.0010%미만에서는 열처리시 보론원자들의 입계편석에 따른 입계강화에 따른 입계강도 개선효과가 미흡하며, 또한 냉간성형성 개선을 위한 흑연화처리시 흑연화 촉진효과가 미흡하기 때문이며, 그 함량이 0.003%를 초과하면 효과가 포화되고 오히려 입계에 보론계 질화물이 석출로 입계강도의 저하를 초래하기 때문이다.The boron (boron, B) is a grain boundary element for improving the hardenability and delayed fracture resistance in the present invention, the content of boron is limited to 0.0010-0.003%. If the content is less than 0.0010%, the grain boundary strength improvement effect due to grain boundary strengthening due to the grain boundary segregation of boron atoms during heat treatment is insufficient, and the graphitization promoting effect is insufficient during the graphitization treatment to improve the cold formability. This is because if the content exceeds 0.003%, the effect is saturated, and the boron-based nitride precipitates at the grain boundary, resulting in a decrease in grain boundary strength.

상기 몰리브덴(Mo) 및 텅스텐(W)의 함량은 0.01-0.5%로 한정한다. 그 이유는 0.01%미만에서는 등온열처리시 세멘타이트가 입실론 카바이드에서 천이하여 성장할 때 세멘타이트의 성장을 억제하여 응력이완성의 개선효과를 얻기가 어렵고, 등온열처리시 몰리브덴계 석출물을 미세하게 분포시켜 고온에서 안정한 조직의 확보가 어렵기 때문이며, 0.5%를 초과하면 그 효과가 포하되고, 소입성의 증가로 선재 제조시 저온조직(마르텐사이트 + 베이나이트)의 생성이 쉽고 냉간성형성 개선을 위한 흑연화처리시 열처리시간이 길어지는 단점이 있기 때문이다.The content of the molybdenum (Mo) and tungsten (W) is limited to 0.01-0.5%. The reason is that less than 0.01%, it is difficult to obtain the effect of improving stress relaxation by suppressing the growth of cementite when cementite transitions from epsilon carbide to isothermal heat treatment, and finely distributes molybdenum precipitates in isothermal heat treatment. This is because it is difficult to secure stable tissues in the process. If it exceeds 0.5%, the effect is included, and the increase in hardenability makes it easier to form low-temperature tissues (martensite + bainite) during wire rod manufacture, and to graphitize to improve cold formability. This is because there is a disadvantage in that the heat treatment time is long during the treatment.

상기 구리(Cu)의 함량은 0.01-0.2%로 한정한다. 그 함량이 0.01%미만에서는 부식저항에 대한 개선효과가 미흡하며, 0.2%를 초과하면 개선효과가 포화되고 입계편석시 녹는점(melting point)이 낮아져 선재압연을 위한 가열로 장입시 결정입계 취화에 따른 표면흠 발생가능성이 높고, 최종 제품에서의 충격인성이 저하되기 때문이다.The content of copper (Cu) is limited to 0.01-0.2%. If the content is less than 0.01%, the improvement effect on the corrosion resistance is insufficient. If the content exceeds 0.2%, the improvement effect is saturated and the melting point is lowered at the grain boundary segregation. This is because the likelihood of surface flaw is high and the impact toughness in the final product is lowered.

상기 티타늄의 함량은 0.01-0.2%로 한정한다. 그 함량이 0.01%미만에서는 오스테나이트 결정입자 미세화 효과가 미흡하며, 지연파괴 저항성에 유효한 티타늄계 탄·질화물의 석출분포가 미흡하여 그 개선효과를 기대하기 어렵기 때문이며, 0.2% 초과하면 효과가 포화되고 조대한 티타늄계 질화물을 형성하여 피로특성에 유해하기 때문이다.The content of titanium is limited to 0.01-0.2%. If the content is less than 0.01%, the effect of miniaturizing austenite crystal grains is insufficient, and the precipitation distribution of titanium-based carbonitrides, which is effective for delayed fracture resistance, is insufficient. Therefore, the improvement effect is difficult to be expected. This is because it forms a coarse titanium nitride and is harmful to fatigue properties.

상기 코발트의 함량은 0.01-0.5%로 한정한다. 그 함량이 0.01%미만에서는 냉간단조를 위한 소재 연질화 열처리인 구상화 또는 흑연화열처리시 연화촉진 효과가 미흡하고, 입계 확산성 수소농도에 미치는 효과가 없으며, 0.5%를 초과하면 그 효과가 효과가 포화되고 연화열처리시 연질화 속도가 현격히 증가하여 열처리시 부분적 미세조직 불균질을 초래할 수 있어 바람직하지 않다.The content of cobalt is limited to 0.01-0.5%. If the content is less than 0.01%, the softening effect is not sufficient in spheroidization or graphitization heat treatment, which is a material soft-nitrification heat treatment for cold forging, and it has no effect on the grain boundary diffusive hydrogen concentration. It is undesirable because it is saturated and the soft nitriding rate is increased greatly during softening heat treatment, resulting in partial microstructure heterogeneity during heat treatment.

이하, 상기와 같은 화학성분을 갖는 강을 이용하여 볼트용 복합조직강을 제조하는 방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing a composite tissue steel for bolts using steel having the chemical composition as described above will be described in detail.

본 발명에서는 복합조직상의 페라이트 분율을 5-25%로 제어함으로서 그 효과를 얻는다. 환언하면, 본 발명의 효과는 결정입계의 석출물 분포의 저감에 있는데 이를 위해서는 반드시 페라이트의 미세조직분율이 5-25% 범위가 되어야 한다. 그 이유로 페라이트 조직분율 5%미만에서는 오스테나이트의 결정입계를 불연속화하기에 페라이트양이 너무 적어 그 효과가 미흡하기 때문이며, 25%를 초과하면 과다한 페라이트 분율에 의해 모재조직처럼 페라이트 조직이 연속성을 유지하게 되어 항복강도의 저하와 페라이트 분율 증가에 따른 오스테나이트내의 탄소농도의 증가로 고연신율에 유효한 베이나이트 조직을 확보하기 어렵기 때문이다.In the present invention, the effect is obtained by controlling the ferrite fraction on the complex structure to 5-25%. In other words, the effect of the present invention is to reduce the distribution of precipitates at the grain boundaries, and for this purpose, the microstructure fraction of ferrite must be in the range of 5-25%. For this reason, if the ferrite structure fraction is less than 5%, the amount of ferrite is too small to discontinue the grain boundaries of austenite, and the effect is insufficient. If the content exceeds 25%, the ferrite structure is maintained like the parent material due to the excessive ferrite fraction. This is because it is difficult to obtain a bainite structure effective at high elongation due to a decrease in yield strength and an increase in carbon concentration in austenite due to an increase in ferrite fraction.

보다 바람직한 페라이트 조직분율은 10-15% 범위이다. 즉, 최종 복합조직에서의 페라이트 조직 분율이 10-15% 일 때, 항복비(항복강도/인장강도 비를 칭함) 0.80 이상을 확보함과 동시에 결정입계의 석출물의 분포를 효과적으로 제어할 수 있어 지연파괴저항성의 개선효과를 극대화할 수 있기 때문이다.More preferred ferrite tissue fraction is in the range of 10-15%. In other words, when the fraction of ferrite tissue in the final composite tissue is 10-15%, the yield ratio (called yield strength / tensile strength ratio) of 0.80 or more is secured, and the distribution of grain boundaries can be effectively controlled and delayed. This is because the effect of improving the fracture resistance can be maximized.

또한, 이러한 페라이트 조직분율을 확보하기 위한 이상역 열처리 조건을 Ac3- (Ac3-Ac1)/1.3에서 Ac3-(Ac3-Ac1)/5.5 온도범위로 한정하는데, 그 한정 이유는 다음과 같다.In addition, the ideal reverse heat treatment conditions for securing such a ferrite structure fraction is limited to Ac3- (Ac3-Ac1) /1.3 to Ac3- (Ac3-Ac1) /5.5 temperature range, the reason for the limitation is as follows.

여기서, Ac3 는 가열시 오스테나이트 변태온도이며, Ac1 은 가열시 이상역(페라이트 + 오스테나이트)으로의 변태온도를 나타내며 합금성분계에 따라 Ac3, Ac1 변태온도는 합금성분계에 따라 상이하게 나타난다.Here, Ac3 is the austenite transformation temperature when heated, Ac1 is the transformation temperature in the abnormal region (ferrite + austenite) when heating, Ac3, Ac1 transformation temperature is different depending on the alloy component system according to the alloy component system.

Ac3-(Ac3-Ac1)/1.3 온도 이하에서는 이상역 열처리시 페라이트 생성량이 25%를 초과하여 앞서 언급한 바와같이 항복강도의 저하를 초래하기 때문에 바람직하지 않기 때문이며, Ac3-(Ac3-Ac1)/5.5 이상에서는 결정입계 불연속화에 필요한 페라이트양이 5%를 초과하기 때문에 그 효과를 기대하기 어렵기 때문이다.This is because it is not preferable that the amount of ferrite produced when the reverse heat treatment is higher than 25% at the temperature of Ac3- (Ac3-Ac1) /1.3 is lower than Ac3- (Ac3-Ac1) /, as mentioned above. This is because at 5.5 or higher, the ferrite amount required for grain boundary discontinuity exceeds 5%, so the effect is difficult to expect.

본 발명에서 보다 바람직한 이상열 열처리조건은 Ac3-(Ac3-Ac1)/1.7에서 Ac3-(Ac3-Ac1)/2.5 온도범위로, 구오스테나이트 결정입계의 불연속성, 입계석출물의 불연속성, 소입시 플레이트 마르텐사이트 생성가능성, 열처리소요시간, 탈탄제어등을 고려한 범위이다.The more ideal heat treatment condition in the present invention is the temperature range of Ac3- (Ac3-Ac1) /1.7 to Ac3- (Ac3-Ac1) /2.5, discontinuity of the grain boundary of austenite, discontinuity of the grain boundary precipitate, plate martensite at the time of hardening The range considers the possibility of formation, heat treatment time and decarburization control.

상기 열처리는 20분이상 행함으로써 원하는 변태를 완료할 수 있으며, 열처리 후에는 70℃/sec이상의 냉각속도로 급냉한다.The heat treatment may be completed by 20 minutes or more to complete the desired transformation, after the heat treatment is quenched at a cooling rate of 70 ℃ / sec or more.

한편, 가열후 베이나이트 조직제조를 위한 등온 열처리조건으로 마르텐사이트 변태온도(Ms)직상 Ms+(80℃±30℃)로 한정한다.On the other hand, isothermal heat treatment conditions for the production of bainite tissue after heating is limited to the martensite transformation temperature (Ms) directly Ms + (80 ℃ ± 30 ℃).

상기 등온 열처리가 Ms+50℃미만에서 행해지면 베이나이트 변태 소요시간이 길어지는 문제점과 등온열처리 온도편차 발생시 마르텐사이트가 발생할 가능성이 높기 때문에 바림직하지 않고, 연신율 및 충격인성이 감소하기 때문이며, Ms+110℃를 초과하면 항복비(항복강도/인장강도 비)의 급격한 감소로 적정 항복강도 확보에 문제점이 있으며 이에 따른 볼트 체결시 응력이완성이 열악해지는 문제점이 있고, 충격인성이 감소로 파괴저항성에 유해하고, 또한 임계지연파괴강도, 피로특성에 영향을 미치기 때문이다.If the isothermal heat treatment is carried out below Ms + 50 ° C., the bainite transformation time is long and the martensite is likely to occur when an isothermal heat treatment temperature deviation occurs, which is not desirable, and the elongation and impact toughness are reduced. If it exceeds + 110 ℃, there is a problem in securing proper yield strength due to the drastic reduction of yield ratio (yield strength / tensile strength ratio) .Therefore, there is a problem in that stress relaxation is poor when bolting, and fracture resistance is reduced by reducing impact toughness. This is because it is harmful to and also affects the critical delay strength and fatigue characteristics.

상기 등온처리에 의해 페라이트+베이나이트 복합조직으로 하는 것이다.The isothermal treatment is used to form a ferrite + bainite composite.

이하, 본 발명을 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

하기 표1과 같은 성분조성을 갖는 강들을 준비하였는데, 발명재(1-8)은 본 발명의 성분범위를 만족하는 것이고, 비교재(1-4)는 본 발명의 성분범위를 벗어난 것들이다. 준비된 강들을 시료로 하여 50kg 잉고트로 주조후 1250℃에서 48시간 균질화 열처리하여 두께 13mm로 열간압연하였다. 이때 마무리온도는 950℃ 이상으로 하여 열간압연후 공냉하였으며, 압연비는 80% 이상으로 하였다.Steels having a component composition as shown in Table 1 were prepared, and the inventive material (1-8) satisfies the component range of the present invention, and the comparative material (1-4) is those outside the component range of the present invention. The prepared steels were cast into 50 kg ingot, homogenized heat treated at 1250 ° C. for 48 hours, and hot rolled to 13 mm in thickness. At this time, the finishing temperature was 950 ℃ or more and hot-rolled after hot rolling, the rolling ratio was 80% or more.

CC SiSi MnMn CrCr VV NiNi MoMo TiTi WW BB PP SS N2 N 2 발명재1Invention 1 0.450.45 3.033.03 0.290.29 0.580.58 0.050.05 -- -- -- -- -- 0.0050.005 0.0040.004 0.0080.008 발명재2Invention 2 0.400.40 3.423.42 0.310.31 0.790.79 0.20.2 -- -- 0.010.01 -- 0.00130.0013 0.0060.006 0.0050.005 0.0140.014 발명재3Invention 3 0.600.60 2.992.99 0.320.32 0.330.33 0.050.05 0.540.54 -- -- 0.020.02 -- 0.0070.007 0.0090.009 0.0070.007 발명재4Invention 4 0.450.45 2.02.0 0.770.77 0.510.51 0.110.11 -- 0.20.2 0.030.03 -- -- 0.0060.006 0.0080.008 0.0090.009 발명재5Invention 5 0.440.44 3.963.96 0.230.23 0.270.27 0.060.06 -- -- -- 0.20.2 0.00150.0015 0.0080.008 0.0080.008 0.0080.008 발명재6Invention 6 0.530.53 3.013.01 0.350.35 0.550.55 -- -- 0.050.05 0.050.05 0.070.07 0.00100.0010 0.0040.004 0.0090.009 0.0040.004 발명재7Invention 7 0.580.58 2.562.56 0.800.80 0.290.29 -- 1.101.10 0.130.13 0.100.10 -- -- 0.0050.005 0.0060.006 0.0050.005 발명재8Invention Material 8 0.440.44 3.13.1 0.340.34 0.550.55 0.070.07 -- -- -- -- -- 0.0070.007 0.0060.006 0.0080.008 비교재1Comparative Material 1 0.350.35 0.190.19 0.670.67 0.950.95 tr.tr. 0.030.03 0.170.17 -- -- -- 0.0190.019 0.0150.015 0.0040.004 비교재2Comparative Material 2 0.310.31 0.200.20 0.620.62 0.950.95 tr.tr. 0.040.04 0.050.05 -- -- -- 0.0170.017 0.0100.010 0.0050.005 비교재3Comparative Material 3 0.340.34 0.220.22 0.360.36 1.261.26 0.0190.019 0.050.05 0.400.40 -- -- -- 0.0110.011 0.0120.012 0.0150.015 비교재4Comparative Material 4 0.200.20 0.200.20 0.800.80 0.720.72 -- -- 0.040.04 -- -- -- 0.0090.009 0.0040.004 0.0050.005

상기와 같이 열간압연된 소재들로부터 기계적 성질(인장 및 충격특성) 및 지연파괴저항성을 평가하기 위한 시험편들을 압연재의 압연방향에서 채취하였다.From the hot-rolled materials as described above, test pieces for evaluating mechanical properties (tensile and impact characteristics) and delayed fracture resistance were taken in the rolling direction of the rolled material.

이때, 열처리조건 및 템퍼링조건은 하기 표2 및 표3에 나타낸 열처리조건으로 열처리시험을 행하였다.At this time, the heat treatment conditions and tempering conditions were subjected to a heat treatment test in the heat treatment conditions shown in Table 2 and Table 3 below.

사용강종Steel grade used ·가열온도(℃)Ac3-[(Ac3-Ac1)/X]·가열온도(℃)Heating temperature (℃) Ac3-[(Ac3-Ac1) / X] Heating temperature (℃) 가열시간(min)Heating time (min) ·등온가열(℃)(Ms+X)·템퍼링온도(℃)Isothermal heating (℃) (Ms + X) Tempering temperature (℃) ·등온유지시간(min)·템퍼링시간(min)Isothermal holding time (min) Tempering time (min) Ferrite상분율(%)Ferrite Percentage (%) 변태온도Transformation temperature Ac3Ac3 Ac1Ac1 MsMs 발명예7Inventive Example 7 발명재2Invention 2 X=2X = 2 3030 X=80X = 80 4040 1717 955955 833833 290290 발명예8Inventive Example 8 발명재3Invention 3 X=2X = 2 7070 X=80X = 80 4040 1010 883883 803803 229229 발명예9Inventive Example 9 발명재4Invention 4 X=2X = 2 8080 X=80X = 80 4040 88 880880 782782 260260 발명예10Inventive Example 10 발명재5Invention 5 X=2X = 2 3030 X=80X = 80 4040 2020 961961 842842 288288 발명예11Inventive Example 11 발명재6Invention 6 X=2X = 2 4040 X=80X = 80 4040 1212 899899 817817 250250 발명예12Inventive Example 12 발명재7Invention 7 X=2X = 2 120120 X=80X = 80 4040 88 857857 775775 208208 비교예9Comparative Example 9 비교재1Comparative Material 1 900900 3030 템퍼링온도=450Tempering temperature = 450 6060 00 -- -- -- 비교예10Comparative Example 10 비교재2Comparative Material 2 900900 3030 템퍼링온도=450Tempering temperature = 450 6060 00 비교예11Comparative Example 11 비교재3Comparative Material 3 950950 3030 템퍼링온도=450Tempering temperature = 450 6060 00 비교예12Comparative Example 12 비교재4Comparative Material 4 900900 3030 템퍼링온도=450Tempering temperature = 450 6060 00

상기 표2에서의 발명예 1-6은 동일 합금성분계(발명재 1)의 이상역 온도범위인 818℃에서 915℃범위내의 830-890℃범위에서 페라이트 상분율이 5-25%범위가 되도록 제조한 후 베이나이트 변태를 위한 등온 열처리온도 범위인 Ms+(80±30℃)까지 70℃/sec이상의 냉각속도로 급냉하고 40분간 열처리하여 제조하였다. 여기서, Ms는 마르텐사이트 변태 시작 온도이다.Inventive Example 1-6 in Table 2 was prepared so that the ferrite phase fraction in the range of 830-890 ℃ within the range of 818 ℃ to 915 ℃ in the abnormal temperature range of the same alloy component system (Inventive material 1) 5-25% range After quenching at a cooling rate of 70 ° C./sec or more to Ms + (80 ± 30 ° C.), which is an isothermal heat treatment temperature range for bainite transformation, it was prepared by heat treatment for 40 minutes. Where Ms is the martensite transformation start temperature.

상기 표2에서의 비교예 1-4는 동일 합금성계(발명재 8)에서 이상역 가열온도를 Ac3-[(Ac3-Ac1)/(1.3-5.5)]로 하여 페라이트 상분율을 발명예와 동일하게 제조한 후 베이나이트 제조를 위한 등온가열온도 Ms+110이상인 조건과 Ms+50℃이하인 조건에서 등온유지시간 40분간 열처리하여 제조하였다.In Comparative Example 1-4 in Table 2, the ferrite phase fraction was the same as that of the Inventive Example, in which the ideal reverse heating temperature was Ac3-[(Ac3-Ac1) / (1.3-5.5)] in the same alloy system (Inventive Material 8). After the preparation, it was prepared by heat treatment for 40 minutes of isothermal holding time under conditions of isothermal heating temperature Ms + 110 or more and Ms + 50 ° C or less for bainite production.

또한, 상기 표2에서 비교예 5-8은 동일합금성분계(발명재 8)에서 페라이트 상분율이 0% 인 종래의 템퍼드 마르텐사이트 조직으로 제조하였다.In addition, in Table 2, Comparative Example 5-8 was prepared with a conventional tempered martensite structure having a ferrite phase percentage of 0% in the same alloy component system (Inventive Material 8).

상기 표3에서 발명예 7-12는 발명재 2-7의 각각 합금성분계별 이상역 중간 온도범위인 Ac3-[(Ac3-Ac1)/2)]의 온도에서 가열하여 페라이트 상분율을 5-25%범위로 제조하고 베이나이트 변태를 위한 Ms+80까지 70℃/sec이상의 냉각속도로 급냉하여 등온유지시간 40분 유지후 유냉하였다.In Table 3, Inventive Example 7-12 was heated at a temperature of Ac3-[(Ac3-Ac1) / 2)], which is the intermediate temperature range of each alloy component of Inventive Materials 2-7, to obtain a ferrite phase fraction of 5-25. Manufactured in% range and quenched at a cooling rate of 70 ℃ / sec or more to Ms + 80 for bainite transformation was maintained after 40 minutes of isothermal holding time and cooled.

한편, 비교예 9-12는 오스테나이트 단상영역인 900-950℃ 범위에서 가열하고 유냉하여 450℃에서 템퍼링하였다.On the other hand, Comparative Example 9-12 was heated in the 900 ~ 950 ℃ range of austenite single phase region, oil cooled and tempered at 450 ℃.

이후 미세조직 상분율, 이상역 범위를 결정하기 위한 Ac3, Ac1 및 Ms 변태온도는 열분석기(dilatometry)를 이용하여 측정하였으며 이에 대한 결과를 상기 표2 및 표3에 함께 나타내었다.Since Ac3, Ac1, and Ms transformation temperature for determining the microstructure phase fraction, the abnormal range was measured using a thermal analyzer (dilatometry) and the results are shown in Table 2 and Table 3 together.

상기와 같이 제조된 소재들에 대한 인장특성 및 충격특성, 지연파괴특성을 평가하기 위하여, 인장시험편은 KS 규격(KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스 헤드 스피드(cross head speed) 5mm/min에서 시험하였다. 충격시험편은 KS 규격(KS B 0809) 3호 시험편에 준하여 제조하였으며, 이때 노치방향은 압연방향의 측면(L-T 방향)에서 가공하였다. 미세조직 분율은 일반적인 광학현미경 측정법인 포인트 카운팅(point counting)법을 이용하여 조사하였으며, 이때 피검면은 1000mm2이었다.In order to evaluate the tensile, impact, and delayed fracture characteristics of the materials manufactured as described above, the tensile test piece was used by the KS standard (KS B 0801) No. 4 test piece, and the tensile test was cross head speed. Test at 5 mm / min. The impact test piece was manufactured according to KS standard (KS B 0809) No. 3 test piece, and the notch direction was processed from the side of the rolling direction (LT direction). The microstructure fraction was investigated using a point counting method, which is a general optical microscopy method, wherein the test surface was 1000 mm 2 .

본 발명의 효과를 보이기 위한 지연파괴저항성 평가는 일반적으로 사용되는 일정하중법을 적용하였다. 이 평가법은 부가응력별 또는 특정응력하에서 파괴까지의 소요시간으로 지연파괴저항성을 평가하는 일반적인 방법이다. 지연파괴시험시 시험응력은 노치인장강도(notched tensile strength)를 기준으로 부가응력(applied stress)을 결정하였다.In order to show the effect of the present invention, the delayed fracture resistance evaluation was applied to a generally used constant load method. This evaluation method is a general method for evaluating the delayed fracture resistance by the time required for breaking apart under a specific stress or under a specific stress. In the delayed fracture test, the test stress was determined based on the notched tensile strength.

지연파괴시험기는 일정하중형의 지연파괴시험기(constant loading type delayed fracture testing machine)를 이용하였다. 지연파괴시험편은 시편지름 6mmψ, 노치부 지름 4mmψ, 노치반경(notch root radius) 0.1mm 로 제조하였다. 시험편 분위기 용액은 월폴버퍼 용액(Walpole buffer solution, HCl + CH3COONa) 으로 pH 2 ± 0.5 의 상온 (25 ± 5℃)에서 실시하였다.The delayed fracture tester used a constant loading type delayed fracture testing machine. The delayed fracture specimens were prepared with a specimen diameter of 6 mm, a notch diameter of 4 mm, and a notch root radius of 0.1 mm. The test piece atmosphere solution was performed at room temperature (25 ± 5 ° C.) of pH 2 ± 0.5 with a wolpole buffer solution (HCl + CH 3 COONa).

임계지연파괴강도는 동일 응력비(부하응력/노치인장강도비, 0.5)에서 파단까지의 소요시간이 150시간 이상까지 미절손되는 인장강도를 의미하며, 노치강도는 노치시험편을 인장시험하여 (최대하중 ÷ 노치부 단면적)의 값으로 구하였다. 임계지연파괴강도의 설정을 위한 시험편수는 15개를 기준으로 하여 13개 이상 미절손되는 경우를 기준으로 하였다.The critical delay fracture strength is the tensile strength at which the time from failure to fracture is not broken up to 150 hours or more at the same stress ratio (load stress / notch tensile strength ratio, 0.5), and the notch strength is obtained by tensile testing the notched specimen (maximum load). ÷ notch area). The number of specimens for setting the critical delay fracture strength was based on the case where more than 13 specimens were not broken.

상기와 같이 제조된 발명예 및 비교예에 대하여 인장성질 및 충격인성을 측정하고, 그 결과를 하기 표4 및 표5에 나타내었다. 한편, 발명예 및 비교예의 미세조직적인 차이점을 도 1에 나타내었는데, 발명예 2에서 검은색 영역이 페라이트 조직이며 회색영역은 베이나이트 조직이다. 비교예는 전형적인 템퍼드마르텐사이트 조직이다. 도1에서 보는 바와같이 본 발명의 효과는 베이나이트모재에 페라이트를 무질서하게 분포시킴으로서 우수한 연신율과 지연파괴저항성을 함께 개선할 수 있는 것이다.Tensile properties and impact toughness of the inventive examples and comparative examples prepared as described above were measured, and the results are shown in Tables 4 and 5 below. On the other hand, the microstructure difference between the invention example and the comparative example is shown in Figure 1, in the invention example 2, the black region is the ferrite structure and the gray region is the bainite structure. The comparative example is a typical tempered martensite tissue. As shown in FIG. 1, the effect of the present invention is to distribute ferrite in the bainite base material in an orderly manner, thereby improving both excellent elongation and delayed fracture resistance.

인장강도(kg/mm2)Tensile Strength (kg / mm 2 ) 항복강도(kg/mm2)Yield strength (kg / mm 2 ) 연신율(%)Elongation (%) 단면감소율(%)Cross section reduction rate (%) 충격인성(J/cm2)Impact Toughness (J / cm 2 ) 임계지연 파괴강도(kg/mm2)Critical Delay Fracture Strength (kg / mm 2 ) 발명예1Inventive Example 1 130130 9090 2020 4545 7373 130130 발명예2Inventive Example 2 144144 105105 3333 5050 6060 140140 발명예3Inventive Example 3 150150 100100 3535 4646 5353 150150 발명예4Inventive Example 4 135135 103103 2525 5757 4545 135135 발명예5Inventive Example 5 137137 100100 2121 4848 110110 135135 발명예6Inventive Example 6 120120 8080 3030 4747 4545 120120 비교예1Comparative Example 1 125125 120120 1616 4040 7070 110110 비교예2Comparative Example 2 150150 7070 1818 4242 3030 110110 비교예3Comparative Example 3 151151 6060 1616 3737 3838 100100 비교예4Comparative Example 4 128128 5252 1717 2626 1818 9595 비교예5Comparative Example 5 225225 195195 66 2525 2020 100100 비교예6Comparative Example 6 220220 190190 88 3030 2525 110110 비교예7Comparative Example 7 180180 165165 1010 3535 4040 115115 비교예8Comparative Example 8 145145 130130 1111 4040 3030 120120

인장강도(kg/mm2)Tensile Strength (kg / mm 2 ) 항복강도(kg/mm2)Yield strength (kg / mm 2 ) 연신율(%)Elongation (%) 단면감소율(%)Cross section reduction rate (%) 충격인성(J/cm2)Impact Toughness (J / cm 2 ) 임계지연 파괴강도(kg/mm2)Critical Delay Fracture Strength (kg / mm 2 ) 발명예7Inventive Example 7 151151 120120 3333 5555 6060 150150 발명예8Inventive Example 8 164164 128128 2828 6060 6565 150150 발명예9Inventive Example 9 155155 120120 3333 4848 5656 150150 발명예10Inventive Example 10 153153 123123 3030 4949 5050 150150 발명예11Inventive Example 11 158158 124124 3232 5454 5656 150150 발명예12Inventive Example 12 166166 129129 2929 4747 5050 150150 비교예9Comparative Example 9 147147 135135 1515 5757 3030 130130 비교예10Comparative Example 10 147147 129129 1616 5858 2020 110110 비교예11Comparative Example 11 148148 139139 1515 5757 4040 140140 비교예12Comparative Example 12 110110 9595 1515 6060 5050 100100

상기 표4 및 표5에 나타난 바와같이 발명예들의 연신율은 21-35%이면서 임계지연파괴강도는 120-150kg/mm2 수준이나 비교예들은 연신율 8-18%이면서 95-140kg/mm2 수준으로, 페라이트+베이나이트로 구성된 복합조직을 이용한 발명예는 비교예 대비 임계지연파괴강도가 현저하게 개선되었음을 잘 알 수 있다. 여기서 본 발명의 효과를 보이기 위한 페라이트 조직분율은 5-25% 범위에서 임계지연파괴강도를 가장 효과적으로 개선할 수 있었다.As shown in Table 4 and Table 5, the elongation of the inventive examples is 21-35% and the critical delay fracture strength is 120-150kg / mm2, but the comparative examples are 8-18% and 95-140kg / mm2, ferrite. The invention using the composite structure consisting of + bainite can be seen that the critical delay strength is significantly improved compared to the comparative example. Here, the ferrite tissue fraction to show the effect of the present invention was able to most effectively improve the critical delay strength in the 5-25% range.

상술한 바와같이, 본 발명은 우수한 연신율과 지연파괴저항성의 개선을 위하여 페라이트+베이나이트로 구성된 복합조직강의 합금성분계 및 열처리조건을 제시함으로서, 볼트의 고강도화를 달성하면서 우수한 지연파괴저항성을 동시에 확보할 수 있게 됨에 따라 고강도 고연신율의 볼트용 복합조직강을 제공할 수 있는 것이다.As described above, the present invention proposes an alloy composition system and heat treatment conditions of the composite structure steel composed of ferrite + bainite to improve the excellent elongation and delayed fracture resistance, thereby attaining high strength of the bolts and at the same time ensuring excellent delayed fracture resistance. As it is possible to provide a high-strength, high elongation composite tissue steel for bolts.

Claims (6)

중량%로, 탄소 0.4-0.60%, 실리콘 2.0-4.0%, 망간 0.2-0.8%, 크롬 0.25-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.005-0.01%, 산소 0.005%이하를 함유하고, 여기에 바나듐 0.05-0.2%, 니요븀 0.05-0.2%, 니켈 0.3-2.0%, 보론 0.001-0.003%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%, 코발트 0.01-0.5%으로 이루어진 그룹중 1종 또는 2종 이상을 선택적으로 함유하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되고, 그 미세조직이 페라이트와 베이나이트의 복합조직을 갖으며 이때 상기 페라이트의 상분율이 5-25%인 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강By weight%, contains carbon 0.4-0.60%, silicon 2.0-4.0%, manganese 0.2-0.8%, chromium 0.25-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, nitrogen 0.005-0.01%, oxygen 0.005% or less In addition, vanadium 0.05-0.2%, niobium 0.05-0.2%, nickel 0.3-2.0%, boron 0.001-0.003%, molybdenum 0.01-0.5%, titanium 0.01-0.2%, tungsten 0.01-0.5%, copper 0.01- 0.2%, cobalt 0.01-0.5%, optionally containing one or two or more of the group consisting of the remaining Fe and other unavoidable impurities, the microstructure has a complex structure of ferrite and bainite, wherein High-strength, high elongation composite steel for bolts with excellent delayed fracture resistance, characterized in that the phase fraction of ferrite is 5-25% 볼트용 강을 제조하는 방법에 있어서, 중량%로, 탄소 0.4-0.60%, 실리콘 2.0-4.0%, 망간 0.2-0.8%, 크롬 0.25-0.8%, 인 0.01%이하, 황 0.01%이하, 질소 0.005-0.01%, 산소 0.005%이하를 함유하고, 여기에 바나듐 0.05-0.2%, 니요븀 0.05-0.2%, 니켈 0.3-2.0%, 보론 0.001-0.003%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%, 코발트 0.01-0.5%으로 이루어진 그룹중 1종 또는 2종 이상을 선택적으로 함유시키고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강을 Ac3-(Ac3-Ac1)/1.3에서 Ac3-(Ac3-Ac1)/5.5 까지의 범위내에서 20분 이상 가열하여, 페라이트와 오스테나이트의 복합조직에서 페라이트 상분율을 5-25%, 오스테나이트 분율을 75-95%로 제어하고, 70℃/sec 이상의 냉각속도로 Ms+(80℃±30℃)범위까지 급냉한 후 20분 이상 등온열처리하고, 이후 유냉 또는 공냉하는 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법In the method for producing steel for bolts, in weight percent, carbon 0.4-0.60%, silicon 2.0-4.0%, manganese 0.2-0.8%, chromium 0.25-0.8%, phosphorus 0.01% or less, sulfur 0.01% or less, nitrogen 0.005 -0.01%, oxygen 0.005% or less, including vanadium 0.05-0.2%, niobium 0.05-0.2%, nickel 0.3-2.0%, boron 0.001-0.003%, molybdenum 0.01-0.5%, titanium 0.01-0.2% , Steel containing 0.01 to 0.5% of tungsten, 0.01 to 0.2% of copper, 0.01 to 0.5% of cobalt and optionally containing one or two or more of the remaining Fe and other unavoidable impurities. Heated for at least 20 minutes in the range of Ac1) /1.3 to Ac3- (Ac3-Ac1) /5.5, the ferrite phase fraction is 5-25% and the austenite fraction is 75-95% in the composite structure of ferrite and austenite. Delayed, characterized in that the control is quenched and cooled to Ms + (80 ° C. ± 30 ° C.) at a cooling rate of 70 ° C./sec or more, and then isothermally treated for at least 20 minutes, followed by oil cooling or air cooling. How high strength and excellent resistance to the masses manufacturing a composite structure steel for the bolt elongation 제 2 항에 있어서,The method of claim 2, 상기 실리콘은 2.8-3.3%범위로 함유되는 것임을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법The silicon is a method of manufacturing a high-strength high elongation composite tissue steel for bolts with excellent delayed fracture resistance, characterized in that contained in the range of 2.8-3.3% 제 2 항에 있어서,The method of claim 2, 상기 강의 가열을 Ac3-(Ac3-Ac1)/1.7에서 Ac3-(Ac3-Ac1)/2.5의 범위내에서 20분 이상 가열하는 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법The high strength and high elongation of the composite tissue steel for bolts, characterized in that the heating of the steel is heated for more than 20 minutes within the range of Ac3- (Ac3-Ac1) /1.7 to Ac3- (Ac3-Ac1) /2.5. Manufacturing method 제 2 항에 있어서,The method of claim 2, 상기 페라이트 상분율이 10-15%인 것을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법The ferrite phase fraction is 10-15%, characterized in that the method of manufacturing a high-strength high elongation composite tissue steel for bolts excellent in delayed fracture resistance 제 2 항에 있어서,The method of claim 2, 상기 등온열처리는 Ms+(80℃±15℃)범위에서 행하는 것임을 특징으로 하는 지연파괴저항성이 우수한 고강도 고연신율의 볼트용 복합조직강의 제조방법The isothermal heat treatment is performed in the range of Ms + (80 ° C. ± 15 ° C.).
KR10-1998-0050899A 1998-11-26 1998-11-26 High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor KR100380739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0050899A KR100380739B1 (en) 1998-11-26 1998-11-26 High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0050899A KR100380739B1 (en) 1998-11-26 1998-11-26 High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor

Publications (2)

Publication Number Publication Date
KR20000033851A true KR20000033851A (en) 2000-06-15
KR100380739B1 KR100380739B1 (en) 2003-09-19

Family

ID=19559797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0050899A KR100380739B1 (en) 1998-11-26 1998-11-26 High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor

Country Status (1)

Country Link
KR (1) KR100380739B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415673B1 (en) * 1999-12-27 2004-01-31 주식회사 포스코 High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel
CN103128506A (en) * 2013-02-04 2013-06-05 繁昌县琪鑫铸造有限公司 Manufacturing method of anti-yield foundation bolt
KR20170118879A (en) * 2015-03-27 2017-10-25 가부시키가이샤 고베 세이코쇼 A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering,

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188840A (en) * 1993-12-28 1995-07-25 Kobe Steel Ltd High strength steel excellent in hydrogen embrittlement resistance and its production
JP3254108B2 (en) * 1995-05-19 2002-02-04 株式会社神戸製鋼所 Ultra-high-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
KR100415673B1 (en) * 1999-12-27 2004-01-31 주식회사 포스코 High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415673B1 (en) * 1999-12-27 2004-01-31 주식회사 포스코 High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel
CN103128506A (en) * 2013-02-04 2013-06-05 繁昌县琪鑫铸造有限公司 Manufacturing method of anti-yield foundation bolt
KR20170118879A (en) * 2015-03-27 2017-10-25 가부시키가이샤 고베 세이코쇼 A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering,

Also Published As

Publication number Publication date
KR100380739B1 (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP5281413B2 (en) High strength bolt excellent in delayed fracture resistance and method for manufacturing the same
KR20200136068A (en) Steel Material for Structural Fastening with Improved Delayed-Fracture Resistance and Manufacturing Method of Structural Fastener Using by This
KR20090071164A (en) High-strength steel bolt having excellent resistance for delayed fracture and notch toughness method for producing the same
KR100380739B1 (en) High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100415673B1 (en) High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100345714B1 (en) Manufacturing method of bainite steel for high strength bolts with resistance ratio
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100345715B1 (en) Manufacturing method of composite tissue steel for high strength bolts with resistance ratio
KR100368226B1 (en) High strength high toughness bainitic steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100376532B1 (en) High strength duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100415675B1 (en) High strength steel having a superior delayed fracture resistance and bolt made of the steel and method for manufacturing working product by using it
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100363194B1 (en) A method for high toughness bolts
KR100584765B1 (en) Method for manufacturing high strength working product having delayed fracture resistance and enlongation percentage
KR100363192B1 (en) A method for manufacturing high strength bolts
KR100516520B1 (en) Method for manufacturing high strength working product having low yield ratio
KR100415674B1 (en) High strength duplex steel having a superior delayed fracture resistance and mechanical properties and bolt made the steel and method for manufacturing working product by using the steel
KR100544744B1 (en) Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100544743B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburinized ferritic layer
KR100544753B1 (en) Method of manufacturing medium carbon wire rod having superior cold formability for bolt
KR20030054376A (en) Steel having superior cold formability and delayed fracture resistance, working product made of it and method for manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130402

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140404

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170309

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee