KR20000030069A - UV detector - Google Patents

UV detector Download PDF

Info

Publication number
KR20000030069A
KR20000030069A KR1019990034791A KR19990034791A KR20000030069A KR 20000030069 A KR20000030069 A KR 20000030069A KR 1019990034791 A KR1019990034791 A KR 1019990034791A KR 19990034791 A KR19990034791 A KR 19990034791A KR 20000030069 A KR20000030069 A KR 20000030069A
Authority
KR
South Korea
Prior art keywords
layer
sensing element
ito
pattern
xsnxoy
Prior art date
Application number
KR1019990034791A
Other languages
Korean (ko)
Inventor
유지범
Original Assignee
이정욱
주식회사 맷사이언스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정욱, 주식회사 맷사이언스텍 filed Critical 이정욱
Priority to KR1019990034791A priority Critical patent/KR20000030069A/en
Publication of KR20000030069A publication Critical patent/KR20000030069A/en
Priority to AU67360/00A priority patent/AU6736000A/en
Priority to PCT/KR2000/000933 priority patent/WO2001015241A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

PURPOSE: An ultra violet rays sensor is provided to have the excellent sensing performance of ultra violet rays without including a buffering layer and to enable a front illumination and a back illumination. CONSTITUTION: To produce an ultra violet rays sensor, a GaN light absorption layer(22) is grown to be 2 micrometers for 5-10 minutes at a temperature of 1000-1100°C by using HVPE(hydride vapor phase epitaxy) on a silicon substrate or a sapphire. Then, a photoresist pattern of Au is formed on the light absorption layer, and the Au is vapor deposited in a lift-off method to complete an Au pattern. Then, the photoresist pattern is formed again, and Ni is vapor deposited in the lift-off method to complete a Ni pattern. And, the Au pattern and the Ni pattern are thermal annealed at the temperature of 500-600°C for 2-10 minutes to produce a transparent Ni oxide. Therefore, a Ni oxide layer(24) of Schottky bonding and an Au electrode(25) of ohmic bonding with small contact resistance are produced. Then, the photoresist layer is formed on the Ni oxide electrode to the vapor deposition of ITO(In1-xSnxOy). And, the ITO is vapor deposited in a sputtering method to complete an ITO pattern in the lift-off method.

Description

자외선 감지소자{UV detector}UV detectors {UV detector}

본 발명은, 자외선 감지소자에 관한 것으로, 특히, 쇼트키(Schottky)접합을 갖는 자외선 감지소자에 관한 것이다.TECHNICAL FIELD The present invention relates to an ultraviolet sensing element, and more particularly, to an ultraviolet sensing element having a Schottky junction.

자외선 감지소자는 광대역 반도체(wide bandgap)에 조사된 빛에너지에 의해 상기 반도체 내에서 자유전자와 정공이 여기되고 내부전계(internal electric field)에 의해 반대극성을 따라 분리된 후, 외부전극에서 이를 포집하는 과정에 의한 광전변환을 통한 전기신호의 발생에 의하여 작동된다.The ultraviolet sensing element excites free electrons and holes in the semiconductor by light energy irradiated to a wide bandgap, and is separated along the opposite polarity by an internal electric field, and then collected by an external electrode. It is operated by the generation of an electrical signal through photoelectric conversion by a process.

자외선 감지소자로 사용될 수 있는 반도체로는 GaN 혹은 GaxAl1-xN와 같은 밴드갭이 큰 질화물반도체(nitride semiconductor)로서, 이들은 자외선을 흡수하여 전자와 정공이 여기되도록 하는 역할을 담당하므로 광흡수층이라고 불린다. 자외선에 의해 광흡수층에서 발생한 전자와 정공이 분리되도록 하기 위해서는 내부전계를 제공할 수 있는 pn접합이나 쇼트키접합과 같은 에너지준위가 상이한 접합이 필요하다.A semiconductor that can be used as an ultraviolet sensing element is a nitride semiconductor having a large band gap such as GaN or GaxAl1-xN, which is called a light absorbing layer because it plays a role of absorbing ultraviolet rays to excite electrons and holes. In order to separate electrons and holes generated in the light absorption layer by ultraviolet rays, a junction with different energy levels such as a pn junction or a Schottky junction that can provide an internal electric field is required.

그런데, 일반적으로 pn접합의 경우 광대역반도체에 억셉터를 도핑하면 p타입 반도체가 되지 않고 절연층이 형성되는 등 p형 광흡수층의 형성이 용이하지 않고, 억셉터를 도핑함에 의해 p타입 반도체가 형성되도록 하기 위해서는 별도의 열처리공정과 이에 따른 처리기술이 요구되므로 자외선 감지소자로서는 구조와 제작공정이 비교적 간단한 쇼트키접합이 주로 이용되고 있다.However, in the case of pn junctions, when the acceptor is doped into a wide band semiconductor, the p-type semiconductor does not become a p-type semiconductor and an insulating layer is formed. Thus, the p-type semiconductor is formed by doping the acceptor. In order to achieve a separate heat treatment process and processing technology according to this requires a Schottky junction is mainly used as a structure and a manufacturing process relatively simple as the ultraviolet sensing element.

쇼트키접합을 형성시키기 위해서는 사용하고자 하는 반도체에 적합한 금속물질을 증착하여 한다. 이를 위해 n형 GaN와 n형 GaxAl1-xN에는 그 동안 금(Au), 니켈(Ni), 텅스텐(W) 등 다양한 금속이 제안되었다.In order to form a Schottky junction, a metal material suitable for the semiconductor to be used is deposited. To this end, various metals such as gold (Au), nickel (Ni), and tungsten (W) have been proposed for n-type GaN and n-type GaxAl1-xN.

한편, 기판으로는 사파이어(sapphire)를 사용해 왔는데, 사파이어기판과 질화물반도체 간의 큰 격자상수 ??이와 열팽창계수 차이를 극복하기 위해, 먼저 사파이어기판위에 알루미늄 나이트라이드(AlN) 혹은 갈륨 나이트라이드(GaN) 등으로 형성된 완충층(buffer layer)을 증착하고 나서 그 위에 자외선 흡수를 위한 광흡수층인 GaN 혹은 GaxAl1-xN를 성장시키는 방법이 사용되었다.On the other hand, sapphire has been used as a substrate. To overcome the large lattice constant between the sapphire substrate and the nitride semiconductor and the difference in the coefficient of thermal expansion, aluminum nitride (AlN) or gallium nitride (GaN) is first used on the sapphire substrate. After depositing a buffer layer formed of the back and the like, a method of growing GaN or GaxAl1-xN, which is a light absorption layer for absorbing ultraviolet rays, was used.

도1은 도도도도도도 1은 종래 Khan 등에 의해 제안된 자외선 감지소자의 개략구조도이다.1 is a schematic structural diagram of an ultraviolet sensing element proposed by Khan et al.

도시된 바와 같이, 사파이어기판(1)위에 GaxAl1-xN광흡수층(3)과의 격자상수 및 열팽창계수의 부정합을 완충시키는 알루미늄 나이트라이드(AlN) 완충층(2)을 성장시키고 난 후, 알루미늄 나이트라이드(AlN) 완충층(2) 위에 다시 GaxAl1-xN의 광흡수층(3)을 2㎛정도 성장시킨다. 다음 Au/TiW/Au을 100Å/1000Å/5000Å을 사용하여, 쇼트키접합을 형성하는 쇼트키층(4)을, 금(Au)을 사용하여, 오믹(Ohmic)접합을 형성하는 오믹층(5)을 생성하였다.As shown, after the growth of the aluminum nitride (AlN) buffer layer (2) buffering the mismatch of the lattice constant and thermal expansion coefficient with the GaxAl1-xN light absorption layer (3) on the sapphire substrate (1), aluminum nitride On the (AlN) buffer layer 2, the light absorption layer 3 of GaxAl1-xN is grown about 2 mu m. Next, an Au / TiW / Au is used to form a Schottky junction using 100 Hz / 1000 Hz / 5000 Hz, and an ohmic layer 5 to form an Ohmic junction using gold (Au). Produced.

그러나, 상기와 같은 구조를 갖는 자외선 감지소자는 쇼트키접합의 형성을 위해 Au/TiW/Au와 같은 금속을 사용하므로, 자외선 감지에 있어 전면 조사(front illuminztion)방식에 의하게 되면 금속에 의한 자외선흡수로 인하여 정밀한 자외선감지가 불가능하다. 이에, 기판을 통하여 자외선을 조사시키는 배면조사(back illumination)방식에 의하여 자외선감지가 이루어지도록 하는 구성을 취해야 한다는 제약이 따른다.However, since the ultraviolet sensing element having the structure as described above uses a metal such as Au / TiW / Au to form a Schottky junction, the ultraviolet ray is absorbed by the metal by the front illuminztion method in the ultraviolet sensing. Because of this, precise UV detection is impossible. Accordingly, there is a constraint that ultraviolet rays are detected by a back illumination method of irradiating ultraviolet rays through the substrate.

배면조사 방식을 택할 경우 자외선이 쇼트키 접합 근처의 공핍층(depletion region)까지 도달하기 전에 광흡수층(3)에서 흡수되어 조사된 자외선의 손실이 일어나게 된다. 광흡수층의 흡수계수(absorption coefficient)는 1 x 105 cm-1 정도이므로, 예를 들어 0.1㎛두께의 광흡수층을 통과한다면 입사된 빛의 67%가 흡수되고, 0.2㎛ 두께인 경우에는 86%가 흡수되게 된다. 결국, 광흡수층의 두께가 1㎛ 이상인 경우 실제 쇼트키접합의 공핍층(depletion region)에 도달하는 자외선량은 매우 작아져서 효과적인 자외선 감지가 어려워진다.In the case of the back irradiation method, the ultraviolet rays are absorbed by the light absorption layer 3 before the ultraviolet rays reach the depletion region near the Schottky junction, causing the loss of the irradiated ultraviolet rays. Absorption coefficient of the light absorption layer (absorption coefficient) is about 1 × 105 cm -1, for example, 67% of the incident light is absorbed when passing through the 0.1 ㎛ thickness light absorption layer, 86% is 0.2 ㎛ thickness Will be absorbed. As a result, when the thickness of the light absorbing layer is 1 μm or more, the amount of ultraviolet rays reaching the depletion region of the actual Schottky junction is very small, which makes it difficult to detect ultraviolet rays effectively.

더욱이, 광여기된 전자와 정공이 외부전극에 포획되어 전기 신호로 변환될 수 있는 범위가 공핍층에다 전자의 확산거리(diffusion length)를 더한 거리라 하더라도 GaN의 전자 확산거리가 0.2㎛정도이므로, 배면조사 방식을 사용할 경우 광여기된 대부분의 자유전자와 정공이 외부전극에 의해 포획 되기 전에 재결합(recombination)하게 되어 전기신호로 전환되지 못한다는 문제점을 갖는다. 또한 상기와 같은 구조를 갖는 자외선 감지소자 칩을 패키징할 때는 마운트에 자외선이 통과할 수 있는 구멍을 형성시켜야 하므로, 제작공정이 복잡해지게 된다.Furthermore, even if the range where the photoexcited electrons and holes can be captured by the external electrode and converted into an electrical signal is the distance of the depletion layer plus the diffusion length of the electrons, the electron diffusion distance of GaN is about 0.2 μm, In case of using the backside irradiation method, most of the free-excited free electrons and holes are recombined before being captured by the external electrode and thus cannot be converted into an electrical signal. In addition, when packaging the ultraviolet sensing element chip having the structure described above, it is necessary to form a hole through which the ultraviolet light can pass through the mount, which makes the manufacturing process complicated.

특히, 자외선 감지소자의 저가격화를 위해 사파이어기판(1) 대신 실리콘(Si)과 같은 에너지 밴드갭이 3.0eV(파장(λ)= 410nm)이하의 기판을 사용할 경우 감지하고자 하는 자외선이 기판에서 대부분 흡수되게 되어 자외선 감지소자로서의 역할을 할 수 없게 된다.In particular, when using a substrate with an energy band gap of less than 3.0 eV (wavelength (λ) = 410 nm) such as silicon (Si) instead of the sapphire substrate (1) to reduce the cost of the ultraviolet sensing element, most of the ultraviolet rays to be detected are It becomes absorbed and cannot serve as an ultraviolet sensing element.

기타 종래 다양한 구조의 자외선 감지소자가 제안되고 있으나, 상기 Khan이 제안한 구조를 포함하여 이들 모두는 공통적으로 광흡수층의 고품위성장을 위한 완충층을 포함하고 있어 제작공정이 복잡해진다.Other conventional UV sensing devices have been proposed, but including the structure suggested by Khan, all of them commonly include a buffer layer for high quality growth of the light absorption layer, which makes the manufacturing process complicated.

따라서, 본 발명의 목적은, 전면조사가 가능한 자외선 감지소자를 제공하는 것이다.Accordingly, it is an object of the present invention to provide an ultraviolet sensing element capable of front irradiation.

본 발명의 다른 목적은, 완충층을 갖지 않음으로써 제작공정이 단순해지는 자외선 감지소자를 제공하는 것이다.Another object of the present invention is to provide an ultraviolet sensing element which does not have a buffer layer, which simplifies the manufacturing process.

도 1은 종래 Khan 등에 의해 제안된 자외선 감지소자의 개략구조도,1 is a schematic structural diagram of a ultraviolet sensing element proposed by Khan et al.

도 2는 본 발명의 제1실시예에 따른 자외선 감지소자의 구조도,2 is a structural diagram of an ultraviolet sensing element according to a first embodiment of the present invention;

도 3은 본 발명의 제1실시예에 따른 자외선 감지소자의 제작순서를 나타내기 위한 개략도,3 is a schematic view showing a manufacturing procedure of the ultraviolet sensing element according to the first embodiment of the present invention;

도 4는 본 발명의 제1실시예에 따른 자외선 감지소자의 니켈산화물의 광투과도,4 is a light transmittance of nickel oxide of the ultraviolet sensing device according to the first embodiment of the present invention,

도 5는 본 발명의 제1실시예에 따른 자외선 감지소자의 전류전압특성을 나타낸 그래프,5 is a graph showing the current voltage characteristics of the ultraviolet sensing element according to the first embodiment of the present invention;

도 6은 본 발명의 제2실시예에 따른 자외선 감지소자의 구조도,6 is a structural diagram of an ultraviolet sensing element according to a second embodiment of the present invention;

도 7은 본 발명의 제2실시예에 따른 자외선 감지소자의 전류전압특성을 나타낸 그래프이다.7 is a graph showing the current-voltage characteristics of the ultraviolet sensing element according to the second embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 사파이어기판 2 ; 알루미늄 나이트라이드(AlN)1: sapphire substrate 2; Aluminum Nitride (AlN)

3 : GaxAl1-xN 4 : 쇼트키층3: GaxAl1-xN 4: Schottky layer

5 : 오믹층 21 : 기판5: ohmic layer 21: substrate

22 : 갈륨 나이트라이드(GaN) 24 : 니켈산화물22 gallium nitride (GaN) 24 nickel oxide

25 : 금(Au) 26 : ITO(In1-xSnxOy)25: Au 26: ITO (In1-xSnxOy)

상기 목적은, 본 발명에 따라, 자외선 감지소자에 있어서, 기판; 상기 기판위에 에피성장된 광흡수층; 상기 광흡수층 상에 쇼트키(Schottky)접합을 형성하는 쇼트키(Schottky)층; 상기 광흡수층 상의 두 영역에 각각 오믹(Ohmic)접합을 형성하는 오믹(Ohmic)층을 포함하는 것을 특징으로 하는 자외선 감지소자에 의해서 달성된다.The object is, according to the present invention, the ultraviolet sensing element, a substrate; A light absorption layer epitaxially grown on the substrate; A Schottky layer forming a Schottky junction on the light absorption layer; It is achieved by the ultraviolet sensing element, characterized in that it comprises an ohmic layer to form an ohmic junction in each of the two areas on the light absorption layer.

여기서, 상기 기판은, 사파이어와 실리콘 중 어느 하나로 형성되는 것이 바람직하다.Here, the substrate is preferably formed of any one of sapphire and silicon.

그리고, 상기 광흡수층은, 갈륨 나이트라이드(GaN)로서, HVPE(Hydride Vapor Phase Epitaxy)에 의해 형성되며, 상기 쇼트키층은, 빛을 투과시키는 투명층으로 서, 상기 광흡수층 상에 형성된 니켈산화물(NiO)층과, 상기 니켈산화물(NiO)층의 직렬저항을 감소시키기 위한 직렬저항감소층을 포함하는 것이 바람직하다.The light absorbing layer is formed of gallium nitride (GaN) by HVPE (Hydride Vapor Phase Epitaxy), and the Schottky layer is a transparent layer through which light is transmitted, and nickel oxide (NiO) formed on the light absorbing layer. ) And a series resistance reducing layer for reducing the series resistance of the nickel oxide (NiO) layer.

여기서, 상기 니켈산화물층은, 상기 광흡수층 상에 포토레지스트패턴을 형성하고, 상기 형성된 포토레지스트패턴에 니켈(Ni)을 증착시키고, 리프트오프법을 사용하여 니켈(Ni)패턴을 형성시킨 후, 열처리를 통해 생성되며, 상기 니켈(Ni)의 증착은 스퍼터링법에 의하는 것이 효과적이다.Here, the nickel oxide layer, after forming a photoresist pattern on the light absorption layer, depositing nickel (Ni) on the formed photoresist pattern, and using a lift-off method to form a nickel (Ni) pattern, It is produced through heat treatment, and the deposition of nickel (Ni) is effective by the sputtering method.

그리고, 상기 직렬저항감소층은, ITO(In1-xSnxOy)로서, 상기 니켈산화물층상에 포토레지스트패턴을 형성하고, 상기 형성된 포토레지스트패턴에 ITO(In1-xSnxOy)을 증착시키고, 리프트오프법을 사용하여 ITO(In1-xSnxOy)패턴을 형성시킨 후, 열처리를 통해 생성되는 것이 효과적이다.The series resistance reducing layer is ITO (In1-xSnxOy), which forms a photoresist pattern on the nickel oxide layer, deposits ITO (In1-xSnxOy) on the formed photoresist pattern, and uses a lift-off method. After the ITO (In1-xSnxOy) pattern is formed, it is effective to generate through heat treatment.

한편, 상기 쇼트키층은, ITO(In1-xSnxOy)로서, ITO(In1-xSnxOy)를 증착시키고, 리프트오프법을 사용하여 ITO(In1-xSnxOy)패턴을 형성시킨 후, 열처리를 통해 생성되는 것이 바람직하다.On the other hand, the Schottky layer, ITO (In1-xSnxOy), is deposited by ITO (In1-xSnxOy), and formed by ITO (In1-xSnxOy) pattern using a lift-off method, and then generated by heat treatment. Do.

이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 제1실시예의 자외선 감지소자의 구조도이다.2 is a structural diagram of an ultraviolet sensing element of a first embodiment according to the present invention.

도시된 바와 같이, 본 발명에 따른 자외선 감지소자는, 사파이어기판 혹은 실리콘기판(21)과, 사파이어기판 혹은 실리콘기판(21)상에 직접 에피성장시킨 약 2㎛두께의 갈륨 나이트라이드(GaN) 광흡수층(22)과, 광흡수층(22)상에 성장된 쇼트키접합으로서의 니켈산화물(24), 오믹접합으로서의 금(Au)전극(25), 및 니켈산화물(24)의 직렬저항(series resistance)를 감소시키기 위해 니켈산화물(24)위에 증착된 전도성산화물인 ITO(In1-xSnxOy)(25)를 포함한다.As shown, the ultraviolet sensing element according to the present invention is gallium nitride (GaN) light having a thickness of about 2 μm directly epi-grown on a sapphire substrate or a silicon substrate 21 and a sapphire substrate or a silicon substrate 21. Series resistance of the absorbing layer 22, the nickel oxide 24 as the Schottky junction, the gold (Au) electrode 25 as the ohmic junction, and the nickel oxide 24 grown on the light absorbing layer 22 It includes ITO (In1-xSnxOy) 25, which is a conductive oxide deposited on nickel oxide 24 to reduce it.

도 3은 본 발명의 제1실시예에 따른 자외선 감지소자의 제작순서를 나타내기 위한 개략도이다.3 is a schematic diagram showing a manufacturing procedure of the ultraviolet sensing element according to the first embodiment of the present invention.

먼저, 사파이어 혹은 실리콘기판(21) 상에 에피층 성장속도가 빠른 HVPE (Hydride Vapor Phase Epitaxy)를 사용하여 1000∼1100℃에서 약 5∼10분간 GaN 광흡수층(22)을 2㎛정도 성장시킨다.First, the GaN light absorbing layer 22 is grown on the sapphire or silicon substrate 21 by about 2 μm using a HVPE (Hydride Vapor Phase Epitaxy) having a high epitaxial growth rate at 1000 to 1100 ° C. for about 5 to 10 minutes.

다음으로, 성장된 광흡수층(22)상에 오믹접합(25)의 생성을 위해 금(Au)의 포토레지스트(PR : Photo Resist)패턴을 형성시키고, 전자빔증착기(e-beam evaorator), 혹은 열증착기(thermal evaporator)를 사용하여 금(Au)을 증착한 후, 리프트오프(lift-off)법을 통해 금(Au)패턴을 완성시킨다.Next, a photoresist (PR) pattern of gold (Au) is formed on the grown light absorbing layer 22 to form an ohmic junction 25, and then an e-beam evaorator or heat After depositing Au using a thermal evaporator, the Au pattern is completed by a lift-off method.

또한, 쇼트키접합(24)의 생성을 위해 다시 포토레지스트패턴을 형성시키고, 스퍼터링법 등을 사용하여 니켈(Ni)을 증착한 후 상기와 마찬가지로 리프트오프법을 통해 니켈(Ni)패턴을 완성한다.In addition, to form the schottky junction 24, a photoresist pattern is formed again, and nickel (Ni) is deposited using a sputtering method, and the like, and then the nickel (Ni) pattern is completed through the lift-off method as described above. .

완성된 금(Au)패턴과 니켈(Ni)패턴을 500∼600℃에서 2∼10분간 열처리하여 투명한 니켈산화물을 생성함으로써 쇼트키접합의 니켈산화물층(24)과 접촉저항(contact resistance)이 작은 오믹접합의 금(Au)전극(25)이 만들어진다.The Au and Ni patterns are heat-treated at 500 to 600 ° C. for 2 to 10 minutes to form transparent nickel oxides, so that the Schottky junction nickel oxide layer 24 and the contact resistance are small. The gold (Au) electrode 25 of the ohmic junction is made.

마지막으로, 니켈산화물의 직렬저항을 감소시키기 위해 니켈산화물전극(24)위에 ITO(In1-xSnxOy)의 증착을 위한 포토레지스터층을 형성시키고 스퍼터링법을 사용하여 ITO(In1-xSnxOy)를 증착한 후, 리프트오프법으로 ITO(In1-xSnxOy)패턴을 완성시킨다. ITO(In1-xSnxOy)는 투명성전극으로서 디스플레이용으로 널리 사용되고 있는 물질이다.Finally, in order to reduce the series resistance of nickel oxide, a photoresist layer for depositing ITO (In1-xSnxOy) is formed on the nickel oxide electrode 24, and then ITO (In1-xSnxOy) is deposited by sputtering. The ITO (In1-xSnxOy) pattern is completed by the lift-off method. ITO (In1-xSnxOy) is a material that is widely used for display as a transparent electrode.

도 4는 본 발명의 제1실시예에 따른 자외선 감지소자의 쇼트키접합을 형성하는 니켈산화물(24)의 광투과도를 도시한 것이다.4 shows a light transmittance of nickel oxide 24 forming a schottky junction of an ultraviolet sensing element according to a first embodiment of the present invention.

광투과도는 니켈(Ni)을 유리기판 위에 증착시키고 550℃에서 10분간 열처리함으로써 생성된 니켈산화물층에 의해 측정되었다. 도시된 바와 같이, 측정된 광투과도는 350nm에서부터 80%정도의 투과성을 나타내고 있어, 니켈산화물층이 전면조사방식의 자외선 감지소자로서 사용될 수 있음을 보여준다. 광투과성은 열처리조건을 최적화시켜 보다 향상시킬 수 있다.Light transmittance was measured by the nickel oxide layer produced by depositing nickel (Ni) on a glass substrate and heat-processing at 550 degreeC for 10 minutes. As shown, the measured light transmittance is about 80% transmittance from 350nm, showing that the nickel oxide layer can be used as a UV irradiation element of the front irradiation method. Light transmittance can be further improved by optimizing heat treatment conditions.

이처럼, 본 발명에 따라 쇼트키접합을 형성하기 위해 사용된 니켈산화물(24)의 광투과성이 우수함에 따라 배면조사는 물론 전면조사도 가능하게 된다.As such, as the light transmittance of the nickel oxide 24 used to form the Schottky junction according to the present invention is excellent, the back irradiation as well as the front irradiation can be performed.

도 5는 본 발명의 제1실시예에 따른 자외선 감지소자의 전류전압특성을 나타낸 그래프이다.5 is a graph showing the current-voltage characteristics of the ultraviolet sensing element according to the first embodiment of the present invention.

쇼트키접합을 형성하는 니켈산화물(24)은 지름 1mm인 원형전극이 측정에 사용되었으며, 오믹접합으로는 금(Au)이 사용되었다.The nickel oxide 24 forming the Schottky junction was used for the measurement of a circular electrode having a diameter of 1 mm, and gold (Au) was used as the ohmic junction.

도 5에 도시된 바와 같이, 빛을 조사하지 않은 암전류-전압의 경우, 텅스텐을 이용한 쇼트키접합에 비교하였을 때 쇼트키특성이 잘 나타나고 있음을 알 수 있다.As shown in FIG. 5, in the case of the dark current-voltage not irradiated with light, it can be seen that the Schottky characteristic is well represented when compared to the Schottky junction using tungsten.

보다 상세히, 자외선 감지소자는 리버스바이어스상태에서 광흡수층에 흡수된 빛에너지에 의해 전류가 흐르게 되는 원리에 기초하고 있다. 그런데, 리버스바이어스상태에서의 누설전류량이 크다면 정밀한 자외선 감지가 어렵게 되는 것이다. 따라서, 리버스바이어스상태에서 누설전류량이 적을수록 자외선 감지소자의 성능은 우수한 것으로 평가되는 것이다.In more detail, the ultraviolet sensing element is based on the principle that current flows due to light energy absorbed in the light absorption layer in a reverse bias state. However, when the amount of leakage current in the reverse bias state is large, it is difficult to accurately detect ultraviolet rays. Therefore, the smaller the amount of leakage current in the reverse bias state, the better the performance of the ultraviolet sensing element.

즉, 본 발명에 따른 자외선 감지소자의 누설전류량은 종래 텅스텐을 이용한 자외선 감지소자의 그것보다 적음을 알 수 있고, 이는 본 발명에 따른 자외선 감지소자의 감지성능의 우수성을 증거하고 있다.That is, it can be seen that the amount of leakage current of the ultraviolet sensing element according to the present invention is smaller than that of the conventional ultraviolet sensing element using tungsten, which proves the superiority of the sensing performance of the ultraviolet sensing element according to the present invention.

도 6은 본 발명의 제2실시예에 따른 자외선 감지소자의 구조도이다. 다만, 제1실시예와 동일한 부분에 대해서는 동일한 참조번호를 부여하고 반복된 설명은 생략한다.6 is a structural diagram of an ultraviolet sensing element according to a second embodiment of the present invention. However, the same reference numerals are assigned to the same parts as the first embodiment, and repeated descriptions are omitted.

도시된 바와 같이, 제2실시예에서는, 제1실시예에서의 니켈산화막(24) 대신에 갈륨 나이트라이드(GaN) 광흡수층(22)상에 직접 ITO(In1-xSnxOy)를 사용하여 쇼트키접합을 형성시킨다.As shown, in the second embodiment, a Schottky junction using ITO (In1-xSnxOy) directly on the gallium nitride (GaN) light absorption layer 22 instead of the nickel oxide film 24 in the first embodiment. To form.

보다 상세히, ITO(In1-xSnxOy)의 증착을 위한 포토레지스터층을 형성시키고 스퍼터링법을 사용하여 ITO(In1-xSnxOy)를 증착한 후, 리프트오프법으로 ITO(In1-xSnxOy)패턴을 완성시킨다. 다음으로, 완성된 패턴을 500∼600℃에서 2∼10분간 열처리함으로써 ITO(In1-xSnxOy)의 쇼트키층(27)이 생성된다.More specifically, after forming a photoresist layer for deposition of ITO (In1-xSnxOy) and depositing ITO (In1-xSnxOy) using a sputtering method, the ITO (In1-xSnxOy) pattern is completed by a lift-off method. Next, the Schottky layer 27 of ITO (In1-xSnxOy) is produced by heat-processing the completed pattern at 500-600 degreeC for 2 to 10 minutes.

도 7은 본 발명의 제2실시예에 따른 전류-전압 특성을 나타낸 그래프이다. 도시된 바와 같이, 제1실시예에 따른 니켈산화물에 의해 쇼트키층을 형성한 자외선 감지소자와 동일한 접합특성을 보여주고 있다.7 is a graph showing the current-voltage characteristics according to the second embodiment of the present invention. As shown, the same bonding characteristics as those of the ultraviolet sensing element in which the Schottky layer is formed by the nickel oxide according to the first embodiment are shown.

한편, 널리 사용되고 있는 바와 같이, 본 발명에 따른 자외선 감지소자에 대해서도 금속패드 부분에 도금을 통하여 Au를 2~3㎛ 전착시킴으로써 wire bonding을 용이하게 할 수 있다.Meanwhile, as widely used, wire bonding can be facilitated by electrodeposition of Au to 2 to 3 μm through plating on the metal pad portion of the ultraviolet sensing element according to the present invention.

이상에서 설명한 바와 같이, 본 발명에 따르면, 완충층을 포함하지 않고서도 자외선감지성능이 우수한 자외선 감지소자가 제공된다.As described above, according to the present invention, there is provided an ultraviolet sensing element having excellent ultraviolet sensing performance without including a buffer layer.

종래 쇼트키접합을 위해 금속을 사용하던 것과 달리 광투과성이 우수한 니켈산화물이나 ITO를 사용함으로써 배면조사 뿐아니라 전면조사가 가능한 자외선 감지소자가 제공된다.Unlike conventional metals used for Schottky bonding, by using nickel oxide or ITO having excellent light transmittance, there is provided an ultraviolet sensing device capable of back irradiation as well as front irradiation.

Claims (12)

자외선 감지소자에 있어서,In the ultraviolet sensing element, 기판;Board; 상기 기판위에 에피성장된 광흡수층;A light absorption layer epitaxially grown on the substrate; 상기 광흡수층의 일부영역에 쇼트키(Schottky)접합된 쇼트키층;A Schottky layer bonded to a partial region of the light absorption layer; 상기 광흡수층 상에서 상기 쇼트키층과 이격되어 상기 광흡수층에 각각 오믹접합되어 전극을 형성하는 한 쌍의 상호 이격된 오믹층을 포함하는 것을 특징으로 하는 자외선 감지소자.And a pair of mutually spaced ohmic layers spaced apart from the Schottky layer on the light absorbing layer to be ohmic bonded to the light absorbing layer to form electrodes. 제 1 항에 있어서,The method of claim 1, 상기 기판은, 사파이어와 실리콘 중 어느 하나로 형성되는 것을 특징으로 하는 자외선 감지소자.The substrate is an ultraviolet sensing element, characterized in that formed of any one of sapphire and silicon. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 광흡수층은, 갈륨 나이트라이드(GaN)로 형성되는 것을 특징으로 하는 자외선 감지소자.The light absorbing layer is formed of gallium nitride (GaN), the ultraviolet sensing element, characterized in that. 제 3 항에 있어서,The method of claim 3, wherein 상기 갈륨 나이트라이드(GaN)는 HVPE(Hydride Vapor Phase Epitaxy)에 의해형성되는 것을 특징으로 하는 자외선 감지소자.The gallium nitride (GaN) is an ultraviolet sensing element, characterized in that formed by HVPE (Hydride Vapor Phase Epitaxy). 제 3 항에 있어서,The method of claim 3, wherein 상기 쇼트키층은, 빛을 투과시키는 투명층으로 형성되는 것을 특징으로 하는 자외선 감지소자.The schottky layer is formed of a transparent layer that transmits light. 제 5 항에 있어서,The method of claim 5, 상기 쇼트키층은, 상기 광흡수층 상에 형성된 니켈산화물(NiO)층과, 상기 니켈산화물(NiO)층의 직렬저항을 감소시키기 위한 직렬저항감소층을 포함하는 것을 특징으로 하는 자외선 감지소자.And the schottky layer comprises a nickel oxide (NiO) layer formed on the light absorbing layer and a series resistance reducing layer for reducing the series resistance of the nickel oxide (NiO) layer. 제 6 항에 있어서,The method of claim 6, 상기 니켈산화물층은, 상기 광흡수층 상에 포토레지스트패턴을 형성하고, 상기 형성된 포토레지스트패턴에 니켈(Ni)을 증착시키고, 리프트오프법을 사용하여 니켈(Ni)패턴을 형성시킨 후, 열처리를 통해 생성되는 것을 특징으로 하는 자외선 감지소자.The nickel oxide layer may be formed by forming a photoresist pattern on the light absorbing layer, depositing nickel (Ni) on the formed photoresist pattern, forming a nickel (Ni) pattern using a lift-off method, and then performing heat treatment. Ultraviolet sensing element, characterized in that generated through. 제 7 항에 있어서,The method of claim 7, wherein 상기 니켈(Ni)의 증착은 스퍼터링법에 의하는 것을 특징으로 하는 자외선 감지소자.The deposition of the nickel (Ni) is an ultraviolet sensing element, characterized in that by the sputtering method. 제 6 항에 있어서,The method of claim 6, 상기 직렬저항감소층은, ITO(In1-xSnxOy)로 형성되는 것을 특징으로 하는 자외선 감지소자.The series resistance reducing layer, the ultraviolet sensing element, characterized in that formed of ITO (In1-xSnxOy). 제 9 항에 있어서,The method of claim 9, 상기 직렬저항감소층은, 상기 니켈산화물층상에 포토레지스트패턴을 형성하고, 상기 형성된 포토레지스트패턴에 ITO(In1-xSnxOy)을 증착시키고, 리프트오프법을 사용하여 ITO(In1-xSnxOy)패턴을 형성시킨 후, 열처리를 통해 생성되는 것을 특징으로 하는 자외선 감지소자.The series resistive reduction layer forms a photoresist pattern on the nickel oxide layer, deposits ITO (In1-xSnxOy) on the formed photoresist pattern, and forms an ITO (In1-xSnxOy) pattern by using a lift-off method. After the UV sensing element, characterized in that generated through the heat treatment. 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5, 상기 쇼트키층은, ITO(In1-xSnxOy)로 형성되는 것을 특징으로 하는 자외선 감지소자.The Schottky layer is formed of ITO (In1-xSnxOy), the ultraviolet sensing element, characterized in that. 제 11 항에 있어서,The method of claim 11, 상기 쇼트키층은, ITO(In1-xSnxOy)를 증착시키고, 리프트오프법을 사용하여 ITO(In1-xSnxOy)패턴을 형성시킨 후, 열처리를 통해 생성되는 것을 특징으로 하는 자외선 감지소자.The Schottky layer is formed by heat treatment after depositing ITO (In1-xSnxOy), forming an ITO (In1-xSnxOy) pattern using a lift-off method, and then heat-treating.
KR1019990034791A 1999-08-21 1999-08-21 UV detector KR20000030069A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019990034791A KR20000030069A (en) 1999-08-21 1999-08-21 UV detector
AU67360/00A AU6736000A (en) 1999-08-21 2000-08-21 Ultraviolet-ray detecting device
PCT/KR2000/000933 WO2001015241A1 (en) 1999-08-21 2000-08-21 Ultraviolet-ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990034791A KR20000030069A (en) 1999-08-21 1999-08-21 UV detector

Publications (1)

Publication Number Publication Date
KR20000030069A true KR20000030069A (en) 2000-06-05

Family

ID=19608175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990034791A KR20000030069A (en) 1999-08-21 1999-08-21 UV detector

Country Status (3)

Country Link
KR (1) KR20000030069A (en)
AU (1) AU6736000A (en)
WO (1) WO2001015241A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642161B1 (en) * 2004-07-23 2006-11-03 (주)제니컴 Schottky type ultraviolet rays sensor and its method of making
KR101236811B1 (en) * 2006-03-10 2013-02-25 페어차일드코리아반도체 주식회사 GaN SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545973B2 (en) 2001-03-23 2010-09-15 富士通株式会社 Silicon-based composition, low dielectric constant film, semiconductor device, and method of manufacturing low dielectric constant film
JP5183913B2 (en) * 2006-11-24 2013-04-17 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor device
JP5540323B2 (en) * 2009-03-27 2014-07-02 独立行政法人物質・材料研究機構 Schottky junction element, photoelectric conversion element and solar cell using the same
DE102009030045B3 (en) 2009-06-22 2011-01-05 Universität Leipzig Transparent rectifying metal-metal oxide semiconductor contact structure and methods of making and using same
CN114823982B (en) * 2022-05-12 2024-03-19 深圳大学 Preparation method of GaN-GaON ultraviolet-deep ultraviolet broadband detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614961A (en) * 1984-10-09 1986-09-30 Honeywell Inc. Tunable cut-off UV detector based on the aluminum gallium nitride material system
JPS6220382A (en) * 1985-07-18 1987-01-28 Fujitsu Ltd Optical semiconductor device
US4811069A (en) * 1987-02-23 1989-03-07 Oki Electric Industry Co., Ltd. Photoelectric conversion device
JP3140751B2 (en) * 1988-09-16 2001-03-05 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
JP2860027B2 (en) * 1992-11-26 1999-02-24 株式会社フジクラ Manufacturing method of ultraviolet detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642161B1 (en) * 2004-07-23 2006-11-03 (주)제니컴 Schottky type ultraviolet rays sensor and its method of making
KR101236811B1 (en) * 2006-03-10 2013-02-25 페어차일드코리아반도체 주식회사 GaN SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

Also Published As

Publication number Publication date
WO2001015241A1 (en) 2001-03-01
AU6736000A (en) 2001-03-19

Similar Documents

Publication Publication Date Title
CN107863413B (en) A kind of AlGaN base day blind ultraviolet snowslide heterojunction phototransistor detector and preparation method thereof
Su et al. GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes
Ben‐Chorin et al. Band alignment and carrier injection at the porous‐silicon–crystalline‐silicon interface
US4614961A (en) Tunable cut-off UV detector based on the aluminum gallium nitride material system
KR101027225B1 (en) Ultraviolet photosensor
JP5526360B2 (en) Infrared light emitting element
TW591217B (en) UV detector
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
KR101671552B1 (en) Sensor, semiconductor substrate, and method for manufacturing semiconductor substrate
Wang et al. Highly-rectifying graphene/GaN Schottky contact for self-powered UV photodetector
Jiang et al. Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain
EP3930010B1 (en) Method for manufacturing a uv-radiation detector device based on sic, and uv-radiation detector device based on sic
KR20000030069A (en) UV detector
KR100788834B1 (en) Sensor for both ultraviolet rays and visible rays
CN114267747A (en) Ga having metal gate structure2O3AlGaN/GaN solar blind ultraviolet detector and preparation method thereof
Nwabunwanne et al. Boosting the external quantum efficiency of AlGaN-based metal–semiconductor–metal ultraviolet photodiodes by electrode geometry variation
Monroy et al. Application and performance of GaN based UV detectors
CN106653893A (en) Ultraviolet light detector based on porous GaN and preparation method of ultraviolet light detector
Seo et al. Characteristics of UV photodetector fabricated by Al0. 3Ga0. 7N/GaN heterostructure
Mimura et al. Optoelectrical properties of amorphous‐crystalline silicon heterojunctions
KR100350063B1 (en) ultraviolet sensing device and the manufacturing method and ultraviolet sensing system
Mosca et al. Effects of the buffer layers on the performance of (Al, Ga) N ultraviolet photodetectors
JP2003523617A (en) UV sensing element
Monroy et al. Low noise AlGaN metal-semiconductor-metal photodiodes
JPH11177119A (en) Photodiode and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening