KR20000028947A - Preform for Optical fiber and manufacturing method thereof - Google Patents

Preform for Optical fiber and manufacturing method thereof Download PDF

Info

Publication number
KR20000028947A
KR20000028947A KR1019990043575A KR19990043575A KR20000028947A KR 20000028947 A KR20000028947 A KR 20000028947A KR 1019990043575 A KR1019990043575 A KR 1019990043575A KR 19990043575 A KR19990043575 A KR 19990043575A KR 20000028947 A KR20000028947 A KR 20000028947A
Authority
KR
South Korea
Prior art keywords
optical fiber
base material
quartz glass
less
molecules
Prior art date
Application number
KR1019990043575A
Other languages
Korean (ko)
Other versions
KR100345355B1 (en
Inventor
시마다아쯔시
카토토시유키
스즈키마사노리
와타베유타카
Original Assignee
마쯔자끼히로시
신에쯔 세끼에이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마쯔자끼히로시, 신에쯔 세끼에이 가부시키가이샤 filed Critical 마쯔자끼히로시
Publication of KR20000028947A publication Critical patent/KR20000028947A/en
Application granted granted Critical
Publication of KR100345355B1 publication Critical patent/KR100345355B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE: Quartz glass preform for optical fiber and the manufacturing method are provided to provide high quality capable of minimizing the clearance between a quartz glass tube and a core glass rod without air bubbles at the welded inter surface. CONSTITUTION: Preform for optical fiber after heating the synthetic quartz glass tube and the core glass rod for the preform of optical fiber is characterized by follows: the OH-radical concentration in that tube for the materials, below 1ppm; chlorine content, below 3000ppm; hydrogen gas and water vapor releasing amount, below 1.0 x1018 molecule/cm¬3 and 2.0 x1017 molecule/cm¬3, respectively.

Description

광파이버용 모재 및 그 제조방법{Preform for Optical fiber and manufacturing method thereof}Base material for optical fiber and manufacturing method thereof

본 발명은, 광파이버용 모재 및 그 제조방법, 더욱 상세하게는 상기 모재에 있어서 석영유리관과 코어유리로드와의 용착이 양호하고, 또한 그 용착계면에 기포가 존재하지 않는 광파이버용 모재 및 그 제조방법에 관한 것이다.The present invention provides an optical fiber base material and a method for manufacturing the fiber, and more particularly, an optical fiber base material and a method of manufacturing the same, in which the quartz glass tube and the core glass rod are welded well and there are no bubbles in the welding interface. It is about.

최근, 광파이버, 특히 싱글모드용 광파이버의 실용화에 따라 대량의 광파이버가 이용되기에 이르렀으나, 광파이버가 장거리간선으로부터 일반가입자계로 그 이용범위가 확대됨에 따라 더욱 대량의 광파이버가 필요해지는 것이 예측된다. 이러한 이용범위의 확대에는 광파이버의 양산화, 저코스트화가 불가결하며, 그 때문에 대형, 장척의 광파이버용 모재를 작성하고, 그것을 와이어드로잉하는 것이 가장 간편한 방법이다. 그러나, 종래 실용화되어온 축부착법(VAD법)이나 외부부착법(OVD)에 의한 광파이버모재의 제조방법에서는, 코어부도 클래드부도 모두 VAD법이나 OVD법으로 작성되기 때문에, 더한층의 대형화, 장척화를 도모하려고하면, 원료나 연소가스, 설비 등의 관계때문에 제조코스트의 증대를 초래한다고하는 결점이 있다. 또, 대형, 장척의 광파이버용 모재를 작성하기 위해서는, 광파이버모재의 전구체에 해당되는 수트체(실리카미립자가 퇴적한 다공질체로서, 투명유리화되기전의 실리카체를 말하며, 이하 다공질수트체라고한다)를 대형으로 하는 것이 전제가되기 때문에, 이 다공질수트체 그자체를 크게 형성하려고하면, 균열등이 발생하거나, 다공질수트체의 낙하등의 트러블이 발생하거나 하는 것때문에 현저하게 생산성을 저하시킬 염려가 있다. 이들 결점을 해소하는 광파이버의 제조방법으로서, 단면적의 80%이상을 차지하는 클래드부용의 관을 고성능이고 저코스트화가 가능한 방법으로 작성하고, 이 클래드부용의 관과 VAD법이나 OVD법 등에 의해 작성한 코어유리로드를 가열하여 용착일체화하는, 소위 로드인튜브법에 의한 광파이버모재의 제조방법이 일본국 특개평 7-109136호 공보등에서 제안되고 있다.In recent years, the use of optical fibers, especially single-mode optical fibers, has led to the use of a large number of optical fibers. However, it is expected that a larger amount of optical fibers will be required as the use range of the optical fibers is extended from the long distance trunk to the general subscriber system. Mass production and low cost of optical fibers are indispensable for the expansion of such an application range. Therefore, it is the easiest way to prepare a base material for large and long optical fibers and wire draw them. However, in the method of manufacturing the optical fiber base material by the shaft attachment method (VAD method) or the external attachment method (OVD), which has been put to practical use, both core and clad parts are made by the VAD method or the OVD method. In other words, there is a drawback that the production cost is increased due to the relationship between raw materials, combustion gas, and equipment. In addition, in order to produce a large and long base material for an optical fiber, a soot body corresponding to a precursor of the optical fiber base material (a porous body in which silica fine particles have been deposited, refers to a silica body before transparent vitrification, hereinafter referred to as a porous suit body) Since it is assumed that the formation of the porous suit body itself is large, there is a concern that the productivity will be remarkably reduced due to cracks or troubles such as falling of the porous suit body. . As a manufacturing method of an optical fiber which eliminates these drawbacks, a tube for cladding, which occupies 80% or more of the cross-sectional area, is made by a high-performance and low-cost method, and a core glass prepared by the cladding tube and the VAD method or the OVD method. A method for producing an optical fiber base material by a so-called rod in tube method, in which a rod is heated and welded integrally, has been proposed in JP-A-7-109136.

그러나, 상기 공보등에 기재의 제조방법에서는, 광파이버모재용 석영유리관과 광파이버모재용 코어유리로드와의 용착일체화시에 용착계면에 미용착부나 거품이 잔존하여, 와이어드로잉시에 광파이버의 정밀도 악화나 단선을 초래하거나, 또, 와이어드로잉후의 광파이버의 접속에 지장을 초래하는 등의 결점이 있었다. 그러나, 이 공보기재의 제조방법은, 광파이버용 모재의 대형화, 장착화가 용이하고, 양산화, 저코스트화에 최적의 제조방법이기 때문에, 본 발명자들은 그 개량에 대해서 예의 연구한 결과, 광파이버용 모재의 계면의 미용착기부(氣部)의 발생이나 거품의 존재가, 그것을 구성하는 광파이버모재용 석영유리관속의 OH기농도, 염소농도, 수소가스방출량 및 수증기방출량에 기인하는 것을 알았다. 그리고, 상기 석영유리관속의 OH기농도를 1ppm이하, 염소함유량을 3000ppm이하, 수소가스방출량을 1.0×1018분자/㎤이하, 수증기방출량을 2.0×1017분자이하로 함으로써 상기 결점이 없는 광파이버용 모재를 얻을 수 있는 것을 발견해서, 본 발명을 완성한 것이다. 즉,However, in the manufacturing method described in the above publication or the like, unbonded parts and bubbles remain on the welding interface at the time of integral welding between the quartz glass tube for the optical fiber base material and the core glass rod for the optical fiber base material. Or defects in the connection of the optical fiber after wire drawing. However, since the manufacturing method of this publication is the manufacturing method which is easy to enlarge and mount | attach the base material for optical fibers, and is the optimal manufacturing method for mass production and low cost, the present inventors earnestly researched about the improvement, It was found that the occurrence of undesired portion at the interface and the presence of bubbles were caused by the OH group concentration, chlorine concentration, hydrogen gas emission amount and water vapor emission amount in the quartz glass tube for the optical fiber base material constituting it. The OH-based concentration in the quartz glass tube is 1 ppm or less, chlorine content is 3000 ppm or less, hydrogen gas emission is 1.0 × 10 18 molecules / cm 3 or less, and water vapor emission is 2.0 × 10 17 molecules or less. Finding that can be obtained, to complete the present invention. In other words,

본 발명은, 광파이버모재용 합성석영유리관과 광파이버모재용 코어유리로드의 용착이 양호하고, 또한 용착계면에 기포가 존재하지 않는 광파이버모재를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an optical fiber base material in which the welding of the synthetic quartz glass tube for the optical fiber base material and the core glass rod for the optical fiber base material is good and there are no bubbles in the welding interface.

또, 본 발명은, 상기 광파이버용 모재의 제조방법을 제공하는 것을 목적으로 한다.Moreover, an object of this invention is to provide the manufacturing method of the said base material for optical fibers.

상기 목적을 달성하는 본 발명은, 광파이버모재용 합성석영유리관과 광파이버모재용 코어유리로드를 가열하여 용착일체화한 광파이버용 모재로서, 상기 모재용 합성석영유리관속의 OH기 농도가 1ppm이하, 염소함유량이 3000ppm이하, 수소가스방출량이 1.0×1018분자/㎤이하 및 수증기방출량이 2.0×1017분자/㎤이하인 것을 특징으로 하는 광파이버용 모재 및 그 제조방법에 관한 것이다.The present invention, which achieves the above object, is an optical fiber base material obtained by heating and integrating a composite quartz glass tube for an optical fiber base material and a core glass rod for an optical fiber base material, wherein the OH group concentration in the synthetic quartz glass tube for the base material is 1 ppm or less, and the chlorine content The present invention relates to a base material for an optical fiber and a method of manufacturing the same, wherein the amount of released hydrogen gas is 1.0 × 10 18 molecules / cm 3 or less and the amount of water vapor released is 2.0 × 10 17 molecules / cm 3 or less.

상기 광파이버모재용 합성석영유리관은, 고순도의 4염화규소, 유기규소화합물등의 휘발성의 규소화합물을 산수소화염속에서 화염가수분해해서 생성한 실리카미립자를 내열성기체위에 퇴적해서 다공질수트체를 형성하고, 탈수처리한 후, 투명유리화해서 얻은 석영유리잉곳을 기계적 연삭하고, 또 필요에 따라서 기계적 연삭함으로써 제조된다. 그리고 상기 합성석영유리관속의 OH기농도를 1ppm이하, 염소함유량을 3000ppm이하, 수소가스방출량을 1.0×1018분자/㎤이하 및 수증기발충량을 2.0×1017분자/㎤이하로 각각 콘트롤한다. 상기 콘트롤은, 연소가스인 산소 및 수소의 공급량, 및 원료가스의 공급량을 적당히 선택하는 동시에, 다공질수트체를 탈수처리함으로써 행하여 진다. 상기 산소의 공급량은 1∼10㎥/h의 범위로부터, 또 수소의 공급량은 1∼20㎥/h의 범위로부터, 또 휘발성의 규소화합물의 공급량은 1000∼3000g/h의 범위로부터 선택된다. 또, 상기 탈수처리는 염소 또는 염소 및 질소의 혼합가스분위기속, 1000℃이상으로 가열함으로써 행하여진다. 얻게된 모재용 석영유리관속의 OH기농도, 염소함유량, 수소가스방출량 및 수증기방출량이 상기 범위를 초과하면, 광파이버용 모재의 석영유리관과 코어유리로드와의 용착계면에 기포가 존재하게 되어, 와이어드로잉 그 자체 또는 와이어드로잉후의 광파이버에 있어서 악영향을 미치게 된다.The synthetic quartz glass tube for optical fiber base material is formed by depositing silica fine particles produced by flame hydrolysis of volatile silicon compounds such as high purity silicon tetrachloride and organosilicon compounds on a heat resistant gas to form a porous suit body. After the dehydration treatment, the quartz glass ingot obtained by vitrification is mechanically ground and manufactured by mechanical grinding as necessary. The OH group concentration in the synthetic quartz glass tube is controlled to 1 ppm or less, the chlorine content to 3000 ppm or less, the hydrogen gas emission to 1.0 × 10 18 molecules / cm 3 or less, and the steam content to 2.0 × 10 17 molecules / cm 3 or less, respectively. The control is performed by appropriately selecting the supply amount of oxygen and hydrogen as the combustion gas and the supply amount of the source gas, and dehydrating the porous soot body. The supply amount of oxygen is selected from the range of 1 to 10 m 3 / h, the supply amount of hydrogen to 1 to 20 m 3 / h, and the supply amount of volatile silicon compound to 1000 to 3000 g / h. The dehydration treatment is performed by heating to chlorine or a mixed gas atmosphere of chlorine and nitrogen at 1000 占 폚 or higher. When the OH group concentration, chlorine content, hydrogen gas emission and water vapor emission in the obtained quartz glass tube for the base material exceed the above ranges, bubbles are present in the welding interface between the quartz glass tube and the core glass rod of the base material for the optical fiber, and wire drawing It will adversely affect itself or the optical fiber after wire drawing.

상기 제조방법에 의해 얻게된 모재용 석여유리관을 또 대기 또는 불활성가스속, 또는 진공분위기속, 800∼2500℃에서 가열처리하면 수소가스방출량 및 수증기방출량을 저감할 수 있어, 광파이버용 모재의 석영유리관과 코어유리로드와의 용착상태가 한층 더 양호하게 된다. 상기 대기 또는 불활성가스하에서의 가열의 경우에는, 수소가스방출량은 5.0×1017분자/㎤이하로, 수증기방출량은 1.0×1017분자/㎤로 된다. 또 진공분위기속, 800∼2500℃에서의 가열처리의 경우에는, 수소가스방출량은 2.0×1016분자/㎤이하, 수증기방출량은 5.0×1016분자/㎤이하로 된다. 특히, 진공분위기속, 800∼2500℃의 가열처리에서는 수소가스방출량 및 수증기방출량을 검출한계까지 저감할 수 있어서 썩알맞다. 상기 진공처리에 있어서의 진공도는 10Pa이하, 바람직하게는 0.5Pa이하가 좋다.When the base glass obtained by the above manufacturing method is heat treated at atmospheric or inert gas or in a vacuum atmosphere at 800 to 2500 ° C., the amount of hydrogen gas emitted and the amount of vapor released can be reduced, and the quartz glass tube of the base material for optical fibers And the welding state between the core glass rod is further improved. In the case of heating under the air or inert gas, the amount of hydrogen gas released is 5.0 × 10 17 molecules / cm 3 or less, and the amount of water vapor released is 1.0 × 10 17 molecules / cm 3. In the case of heat treatment at 800 to 2500 ° C in a vacuum atmosphere, the amount of hydrogen gas released is 2.0 × 10 16 molecules / cm 3 or less, and the amount of water vapor released is 5.0 × 10 16 molecules / cm 3 or less. In particular, in the vacuum atmosphere and the heat treatment of 800-2500 degreeC, the amount of hydrogen gas emission and water vapor emission can be reduced to the detection limit, and it is suitable. The vacuum degree in the vacuum treatment is 10 Pa or less, preferably 0.5 Pa or less.

이와 같이 본 발명에서 사용하는 모재용 석영유리관은, 연소가스 및 원료가스를 콘트롤해서 다공질수트체를 형성한 후 탈수처리하는 것을 필수로하기 때문에, 석영유리관의 제조방법으로서 종래부터 알려져 있는, 실리카미립자를 내열성기체위에 퇴적한 후, 전기로속에서 가열하여 용융·유리화하는 소위 수트법에 의해 제조하는 것을 필수로하고, 실리카미립자를 내열성기판위에 퇴적하는 동시에 투명유리화하는 직접법이나 천연결정질 2산화규소를 사용하는 베르누이법은 채용할 수 없다.As described above, since the quartz glass tube for a base material used in the present invention is required to control the combustion gas and the source gas to form a porous soot body, and then dehydrate it, the silica fine particles conventionally known as a method for producing a quartz glass tube. Is deposited on a heat-resistant gas and then manufactured by the so-called soot method, which is heated and melted and vitrified in an electric furnace, and a direct method or a transparent crystalline silicon dioxide is deposited on a heat-resistant substrate and transparent vitrification is used. Bernoulli law cannot be adopted.

상기 모재용석영유리관의 제조에 있어서의 기계적연삭으로서는, 외주연삭장치, 코어드릴구멍뚫기장치 등을 사용할 수 있고, 또 기계적연마로서는, 정밀호닝장치 등을 사용할 수 있다.As the mechanical grinding in the production of the quartz glass tube for the base metal, an external grinding device, a core drill hole drilling device and the like can be used, and as the mechanical grinding, a precision honing device or the like can be used.

상기 석영유리관속의 OH기농도는 D.M. DODD and D. B. FRASER Optical determination of OH in fused silica, Jounal of Applied Physics, Vol. 37(1966)에 기재의 측정방법에 의해, 또, 염소함유량은, 질산은비탁법에 의해 측정된다. 또, 수소가스 및 수증기방출량은, 1000℃진공하에 있어서의 가스방출량으로서 측정되며, Y. MORIMOTO. et. al., Analysis of gas release from vitreous silica, Jounal of Non-Crystalline Solids, Vol. 139(1992)에 기재의 측정법에 의해 측정된다. 그리고, 상기 측정방법에 있어서, 수소가스방출량은 2.0×1016분자/㎤, 수증기방출량은 5.0×1016분자/㎤이 검출한계이다.The concentration of OH in the quartz glass tube is determined by DM DODD and DB FRASER Optical determination of OH in fused silica, Jounal of Applied Physics, Vol. By the measuring method described in 37 (1966), the chlorine content is also measured by the silver nitrate turbidity method. The amount of hydrogen gas and water vapor is measured as the amount of gas released under 1000 ° C. vacuum, and Y. MORIMOTO. et. al., Analysis of gas release from vitreous silica, Jounal of Non-Crystalline Solids, Vol. It is measured by the measuring method as described in 139 (1992). In the above measuring method, the hydrogen gas emission amount is 2.0 × 10 16 molecules / cm 3, and the water vapor emission amount is 5.0 × 10 16 molecules / cm 3.

한편, 광파이버용 코어유리로드로서는, 광의 전송부로서, 석영유리로드 또는 그 주위에 광학적클래드부가 형성된 석영유리로드를 들 수 있다. 즉, 본 발명에 있어서는 「코어유리로드」란, 코어로드와 클래드부착코어로드를 총칭한다. 클래드부를 가지지 않는 코아로드는, 공지의 VAD법이나 OVD법등에 의해 형성할 수 있고, 또, 클래드부착코어로드를 작성하는 수단으로서는, 코어로드에 석영유리관을 씌우는 (jacket)방법이나, 코어로드의 주위에 OVD법 등에 의해 클래드부를 형성하는 방법을 들 수 있다.On the other hand, as a core glass rod for optical fibers, a quartz glass rod or the quartz glass rod in which the optical clad part was formed in the circumference | surroundings of light is mentioned. That is, in the present invention, "core glass rod" refers to the core rod and the clad core rod. The core rod which does not have a clad part can be formed by a well-known VAD method, an OVD method, etc. Moreover, as a means of producing a cladding core rod, the method of covering a core rod with a quartz glass tube, or a core rod The method of forming a clad part by OVD method etc. around is mentioned.

상기 광파이버모재용석영유리관을 사용한 광파이버용 모재의 제조에 있어서는, 상기 모재용 석영유리속에 모재용 코어유리로드를 관내주면과 접촉하는 일이 없도록 주의깊에 삽입하여, 모재용코어유리로드와 모재용석영유리관의 각원중심을 맞추어서 고정하고, 바람직하게는 양단부를 더미석영재료연결한 다음에, 전체를 회전시키면서 접속가공에 의한 구부러짐, 비틀어짐을 교정하여, 하단부로부터 세로형전기로의 위쪽으로부터 삽입하고, 온도 1900∼2800℃에서 순차 띠형상으로 가열함으로써 용착일체화하는 것이 좋다. 상기 순차띠형상으로 가열한다함은, 소위 띠형상용융(zone melt)이라 호칭되는 것이며, 가열영역이 차차로 이동하는 가열을 말한다.In the production of an optical fiber base material using the optical fiber base material quartz glass tube, the core glass rod for the base material is carefully inserted in the quartz glass for the base material so as not to come into contact with the inner circumferential surface of the base material, and the core glass rod for the base material and the base material are used. The centers of the quartz glass tubes are fixed and aligned. Preferably, both ends are connected with the dummy quartz material. Then, the entire surface is rotated to correct the bends and twists caused by the connecting process. It is good to integrally weld by heating at 1900-2800 degreeC in strip shape one by one. The heating in the sequential band shape is referred to as so-called zone melt, and refers to heating in which the heating zone moves gradually.

이하에 본 발명의 실시예에 대해서 설명하나 이에 의해서 본 발명은 하등 한정되는 것은 아니다.Examples of the present invention will be described below, but the present invention is not limited thereto.

실시예 1Example 1

VAD법을 사용해서, 고순도의 4염화규소를 기화하고, 산수소화염속에서 화염가수분해하여, 10rpm으로 회전하는 석영유리막대에 실리카유리미립자를 퇴적시켜서 축방향으로 다공질수트체를 작성했다. 상기 화염가수분해하는 버너에는, 각각 4염화규소 1500g/h, 수소가스 3.0㎥/h, 산소가스 2.3㎥/h를 공급했다. 얻게된 다공질수트체는 외경약 250㎜, 길이약 2000㎜였다. 이 다공질수트체를 전기로에 넣고, 코어유리로드의 굴절률등의 조건을 고려하여, 질소가스 0.5㎥/h와 염소가스 0.05㎥/h와의 혼합가스분위기속에서 1100℃로 가열탈수처리하고, 이어서 1Pa이하의 진공분위기속, 1600℃에서 투명유리화해서 원기둥형상석영유리잉곳을 제조했다. 얻게된 원기둥형상석영유리잉곳은, 외경약 120㎜, 길이약 1500㎜였다. 이 잉곳의 양단부를 절단하고, 원통연삭장치에 의해 외경을 90㎜로 연삭하여, 외경의 중심을 구하고, 이원중심에 맞추어서 코어드릴구멍뚫기장치에 의해 구멍을 뚫고, 정밀호닝가공장치에 의해 25㎜의 치수로 연마했다. 얻게된 석영유리관의 외경은 90㎜, 내경은 25㎜이고, 길이 1000㎜로 절단했다.The VAD method was used to vaporize high-purity silicon tetrachloride, flame hydrolyze in an oxyhydrogen flame, and deposit silica silica particles on a quartz glass rod rotating at 10 rpm to form a porous suit body in the axial direction. The tetrahydrochloride burner was supplied with 1500 g / h of silicon tetrachloride, 3.0 m 3 / h of hydrogen gas, and 2.3 m 3 / h of oxygen gas, respectively. The obtained porous suit body had an outer diameter of about 250 mm and a length of about 2000 mm. The porous soot body was placed in an electric furnace and heated and dewatered at 1100 ° C. in a mixed gas atmosphere of nitrogen gas 0.5 m 3 / h and chlorine gas 0.05 m 3 / h, taking into account the conditions such as the refractive index of the core glass rod. Cylindrical quartz glass ingots were prepared by transparent vitrification at the following vacuum atmosphere and 1600 degreeC. The obtained cylindrical quartz glass ingot was about 120 mm in outer diameter and about 1500 mm in length. The both ends of the ingot are cut, the outer diameter is ground to 90 mm by a cylindrical grinding device, the center of the outer diameter is obtained, and the hole is drilled by the core drill boring device according to the dual center, and 25 mm by the precision honing processing device. Polished to the dimensions of. The obtained quartz glass tube had an outer diameter of 90 mm, an inner diameter of 25 mm, and cut into a length of 1000 mm.

상기 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃의 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기 농도는 0.1ppm, 염소농도는 1500ppm, 수소가스방출량은 5.5×1017분자/㎤, 수증기방출량은 1.8×1017분자/㎤였다.For the samples of the quartz glass tube, the amount of OH groups and chlorine and the gas discharged under vacuum at 1000 ° C. were measured. The residual OH group concentration was 0.1 ppm, the chlorine concentration was 1500 ppm, and the hydrogen gas emission was 5.5 × 10 17 molecules /. Cm 3 and the amount of water vapor released was 1.8 × 10 17 molecules / cm 3.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미 석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 진공펌프에 의해 석영유리관내를 감압해서 순차 띠형상으로 가열하여 용착일체화해서 광파이버용 석여유리모재를 제조했다. 얻게된 광파이버용 석영유리모재를 1000㎜단위로 절단하고, 그 1개에 대해서 암실에서 단부면으로부터 백색광을 쬐였던바, 눈으로 볼 수 있는 최소단위인 0.1㎜이상의 기포수는 길이 1000㎜당 7개였다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heated and extended to the outer diameter of 20 mm and the length of 1000 mm in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to contact the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After the upper end was welded to the vertical electric furnace at 90 mm / min, and the lower end was welded, the inside of the quartz glass tube was decompressed by a vacuum pump, heated in sequential order to be integrally welded, and thus a glass fiber base material for optical fibers was prepared. The obtained quartz glass base material for optical fibers was cut in units of 1000 mm, and one of them was exposed to white light from the end face in the dark room. The minimum number of visible bubbles of 0.1 mm or more was 7 per 1000 mm in length. It was a dog.

실시예 2Example 2

실시예 1과 마찬가지로, VDA법에 의해 다공질수트체를 작성한 후 탈수처리해서 투명유리화를 행하여, 실시예 1과 마찬가지의 연삭, 연마방법에 의해, 얻게된 석영유리관을 외경 100㎜로 연삭하고, 내경 25㎜로 연마했다. 이어서 그 석영유리관을 가스빼기 및 표면경면화하기 위해, 2000℃로 가열된 가로형 전기로에 넣고, 석영유리관의 내외에 불활성가스를 흐르게 하면서 가열처리를 행하였다. 처리후의 석영유리관의 외경은 90㎜, 내경은 25㎜이고, 길이 1000㎜로 절단했다. 이 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃의 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기농도는 약 0.1ppm, 염소농도는 1500ppm, 수소가스방출량은 2.5×1017분자/㎤이하, 수증기방출량은 8.0×1016분자/㎤이하였다.In the same manner as in Example 1, a porous soot body was prepared by the VDA method, followed by dehydration to perform transparent vitrification, and the obtained quartz glass tube was ground to an outer diameter of 100 mm by the same grinding and polishing method as in Example 1. Polished to 25 mm. Subsequently, the quartz glass tube was degassed and surface-hardened, and placed in a horizontal electric furnace heated at 2000 ° C., and subjected to heat treatment while flowing an inert gas into and out of the quartz glass tube. The outer diameter of the quartz glass tube after the treatment was 90 mm, the inner diameter was 25 mm, and cut to a length of 1000 mm. For the samples of this quartz glass tube, the amount of OH groups and chlorine and gas discharged under vacuum at 1000 ° C. was measured. The residual OH group concentration was about 0.1 ppm, the chlorine concentration was 1500 ppm, and the hydrogen gas emissions were 2.5 × 10 17 molecules. / Cm 3 or less, and the amount of water vapor released was 8.0 × 10 16 molecules / cm 3 or less.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원 중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 석영유리관내를 감압해서 순차 띠형상으로 가열하여 용착일체화해서 광파이버용 모재를 제조했다. 얻게된 석영유리모재에 대해서, 암실에서 그 단부면으로부터 백색광을 쬐였던바, 눈으로 볼 수 있는 최소단위인 0.1㎜이상의 기포수는 길이 1000㎜당 4개였다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heated and extended to the outer diameter of 20 mm and the length of 1000 mm in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to contact the inner circumferential surface of the core glass rod, fix the core glass rod and the center of each circle of the quartz glass tube, and connect both ends to the dummy quartz material. After the upper end was welded to the vertical electric furnace at 90 mm / min, and the lower end was welded, the inside of the quartz glass tube was depressurized, heated in a continuous band shape, and welded to form a base material for the optical fiber. The obtained quartz glass base material was exposed to white light from its end face in the dark room, and the number of bubbles having a minimum unit of 0.1 mm or more, which was visible to the eye, was 4 per 1000 mm in length.

실시예 3Example 3

실시예 1과 마찬가지로, VAD법에 의해 다공질수트체를 작성한 후 탈수처리해서 투명유리화를 행하고, 실시예 1과 마찬가지로 연삭, 연마해서 외경 90㎜, 내경 25㎜, 길이 1000㎜의 합성석영유리관을 얻었다. 이 광르 가스빼기 및 표면경면화하기 위하여, 1000℃로 가열된 가로형전기로에 삽입하고, 노내부를 1Pa이하의 진공분위기로해서 가열탈가스처리를 행하였다. 이 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃이 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기농도는 약 0.1ppm, 염소농도는 1500ppm, 수소가스방출량은 검출한계인 2.0×1016분자/㎤이하, 수증기방출량은 검출한계인 5.0×1016분자/㎤이하였다.In the same manner as in Example 1, a porous soot body was prepared by the VAD method, followed by dehydration treatment, followed by transparent vitrification, and grinding and polishing in the same manner as in Example 1 to obtain a synthetic quartz glass tube having an outer diameter of 90 mm, an inner diameter of 25 mm, and a length of 1000 mm. . In order to remove this gas and surface-mirror, it inserted into the horizontal type electric furnace heated at 1000 degreeC, and heat-degassing-processing was carried out by making furnace interior into the vacuum atmosphere below 1 Pa. For the samples of this quartz glass tube, the amount of OH groups, chlorine and gas discharged under vacuum at 1000 ° C was measured. The residual OH group concentration was about 0.1 ppm, the chlorine concentration was 1500 ppm, and the hydrogen gas emission amount was 2.0 ×. 10 16 molecules / cm 3 or less, and the amount of water vapor released was 5.0 × 10 16 molecules / cm 3 or less, which is a detection limit.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 석영유리관내를 감압해서 순차띠형상으로 가열하여 용착일체화해서 광파이버용 모재를 제조했다. 얻게된 석영유리모재에 대해서, 암실에서 그 단부면으로부터 백색광을 쬐였던바, 눈으로 볼 수 있는 최소단위인 0.1㎜이상의 기포는 전혀 관찰되지 않았다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heated and extended to the outer diameter of 20 mm and the length of 1000 mm in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to come into contact with the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After the upper end was welded to the vertical electric furnace at 90 mm / min, and the lower end was welded, the inside of the quartz glass tube was decompressed, heated in a sequential band shape, and integrally welded to prepare a base material for the optical fiber. The obtained quartz glass base material was exposed to white light from its end face in the dark room, and no bubbles of 0.1 mm or more, the smallest visible unit, were observed.

실시예 4Example 4

OVD법을 사용하여, 고순도의 4염화규소를 기화하고, 산수소화염속에서 화염가수분해하여, 50rpm으로 회전하는 외경 50㎜의 기체의 주위에 퇴적시켜서 다공질수트체를 작성했다. 상기 화염가수분해하는 버너에는, 각각 원료인 4염화규소를 1500g/h, 수소가스를 1.8㎥/h, 산소가스를 0.9㎥/h를 공급했다. 얻게된 다공질수트체의 외경은 약 400㎜, 길이는 약 3500㎜였다. 이 다공질수트체를 전기로에 넣고, 코어유리로드의 굴절률등의 조건을 고려하여, 질소가스 0.5㎥/h와 염소가스 0.05㎥/h와의 혼합가스분위기속에서 1100℃로 가열탈수처리하고, 이어서 1Pa이하의 진공분위기속, 1600℃에서 투명유리화한 후, 기체를 뽐아내고 원기둥형상석영유리잉곳을 제조했다. 이 원기둥형상석영유리잉곳은, 외경약 200㎜, 내경약 50㎜, 길이 약 3500㎜였다. 이 석영유리잉곳의 양단부를 절단하고, 내외주를 기계적연삭가공 및 연마가공해서, 외경 195㎜, 내경 55㎜, 길이 3000㎜의 합성석영유리관을 작성했다.The OVD method was used to vaporize high-purity silicon tetrachloride, flame hydrolyze in an oxyhydrogen flame, and deposit it around a gas having an outer diameter of 50 mm rotating at 50 rpm to prepare a porous suit body. The burner for flame hydrolysis was supplied with 1500 g / h of silicon tetrachloride, 1.8 m 3 / h of hydrogen gas, and 0.9 m 3 / h of oxygen gas, respectively. The obtained porous suit body had an outer diameter of about 400 mm and a length of about 3500 mm. The porous soot body was placed in an electric furnace and heated and dewatered at 1100 ° C. in a mixed gas atmosphere of nitrogen gas 0.5 m 3 / h and chlorine gas 0.05 m 3 / h, taking into account the conditions such as the refractive index of the core glass rod. After transparent vitrification at the following vacuum atmosphere and 1600 degreeC, the gas was degassed and the cylindrical quartz glass ingot was produced. This cylindrical quartz glass ingot was about 200 mm in outer diameter, about 50 mm in inner diameter, and about 3500 mm in length. Both ends of this quartz glass ingot were cut, and the inner and outer circumferences were mechanically ground and polished to prepare a synthetic quartz glass tube having an outer diameter of 195 mm, an inner diameter of 55 mm, and a length of 3000 mm.

상기 석영유리관으로부터 얻게된 샘플에 대해서, OH기 및 염소농도 및 1000℃의 진공하에 있어서의 가스방출량을 측정했다. 그 결과, 잔류OH기농도는 0.1ppm, 염소농도는 2000ppm, 수소가스방출량은 6.0×1017분자/㎤ 및 수증기방출량량은 2.0×1017분자/㎤였다.About the sample obtained from the said quartz glass tube, OH group and chlorine concentration, and the amount of gas discharge | emission under the vacuum of 1000 degreeC were measured. As a result, the residual OH group concentration was 0.1 ppm, the chlorine concentration was 2000 ppm, the hydrogen gas emission amount was 6.0 × 10 17 molecules / cm 3 and the water vapor emission amount was 2.0 × 10 17 molecules / cm 3.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 50㎜, 길이 3000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2300℃의 세로형전기로에 25㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 석영유리관내를 감압해서 순차 띠형상으로 가열하여 용착일체화해서 광파이버용 석영유리모재를 제조했다. 얻게된 광파이버용 석영유리모재를 1000㎜단위로 절단하고, 그 1개에 대해서 암실에서 단부면으로부터 백색광을 쬐였던바, 눈으로 볼 수 있는 최소단위인 0.1㎜이상의 기포수는 길이 1000㎜당 9개이고, 대구경의 석영유리관으로부터 기포가 적은 대형의 광파이버용 석영유리모재를 얻을 수 있었다.On the other hand, the cladding core rod for an optical fiber base material was produced by the VAD method, and it heated and extended to the outer diameter 50mm and length 3000mm in the vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to come into contact with the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After putting into a vertical electric furnace of 25 mm / min from upper part, and welding a lower end part, the inside of a quartz glass tube was pressure-reduced, it heated in strip shape one by one, and integrally welded, and produced the quartz glass base material for optical fibers. The obtained quartz glass base material for optical fibers was cut in units of 1000 mm, and one of them was exposed to white light from the end face in a dark room. As a result, the number of bubbles having a minimum size of 0.1 mm or more was 9 per 1000 mm in length. It was possible to obtain a large-scale quartz glass base material for large optical fibers with small bubbles from a large-diameter quartz glass tube.

비교예 1Comparative Example 1

실시예 1과 마찬가지로해서 다공질수트체를 작성하고, 염소가스에 의한 탈수처리를 행하지 않고, 질소가스 0.5㎥/h의 분위기속의 노내부에서 1000℃로 가열한 후, 1600℃에서 투명유리화했다. 얻게된 석영유리잉곳은, 외경약 120㎜, 길이약 1500㎜였다. 이 잉곳의 양단부를 절단하고, 외주를 원통연삭장치에 의해 90㎜로 연삭하여, 외경의 원중심을 구하고, 이 원중심에 맞추어서 코어드릴구멍뚫기장치에 의해 구멍을 뚫고, 정밀호닝가공장치에 의해 25㎜의 치수로 연마했다. 석영유리관의 외경은 90㎜, 내경은 25㎜이고, 길이 1000㎜로 절단했다.A porous soot body was prepared in the same manner as in Example 1, and was heated to 1000 ° C. in a furnace inside a nitrogen gas of 0.5 m 3 / h without dehydration treatment, followed by transparent glass at 1600 ° C. The obtained quartz glass ingot was about 120 mm in outer diameter and about 1500 mm in length. The both ends of the ingot are cut, the outer periphery is ground to 90 mm by a cylindrical grinding device, the center of the outer diameter is obtained, and the hole is drilled by the core drill boring device in accordance with the center of gravity, and the precision honing processing device is used. Polished to a dimension of 25 mm. The outer diameter of the quartz glass tube was 90 mm, the inner diameter was 25 mm, and cut into a length of 1000 mm.

상기 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃의 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기농도는 300ppm, 염소농도는 10ppm, 수소가스방출량은 1.2×1018분자/㎤, 수증기방출량은 2.3×1017분자/㎤였다.For the samples of the quartz glass tube, the amount of OH groups and chlorine and gas discharged under vacuum at 1000 ° C. was measured. The residual OH group concentration was 300 ppm, the chlorine concentration was 10 ppm, and the hydrogen gas emission was 1.2 × 10 18 molecules / cm 3. The amount of water vapor released was 2.3 × 10 17 molecules / cm 3.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 석영유리관내를 감압해서 순차 띠형상으로 가열하여 용착일체화해서 광파이버용 모재를 제조했다. 얻게된 석영유리모재에 대해서, 암실에서 그 단부면으로부터 백색광을 쬐였던바, 눈으로 볼수있는 최소단위인 0.1㎜이상의 기포수는 1000㎜당 19개였다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heated and extended to the outer diameter of 20 mm and the length of 1000 mm in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to come into contact with the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After the upper end was welded to the vertical electric furnace at 90 mm / min, and the lower end was welded, the inside of the quartz glass tube was depressurized, heated in a continuous band shape, and welded to form a base material for the optical fiber. The obtained quartz glass base material was exposed to white light from its end face in the dark room, and the number of bubbles of 0.1 mm or more, which is the smallest visible unit, was 19 per 1000 mm.

비교예 2Comparative Example 2

20rpm으로 회전하는 유리막대에 고순도의 4염화규소를 화염가수분해해서 생성한 실리카유리미립자를 퇴적시킴과 동시에 투명유리화하는 소위 직접법에 의해 투명석영유리관을 작성했다. 화염가수분해하는 버너에는, 각각 원료의 4염화규소 2000g/h, 수소가스 20㎥/h, 산소가스 10㎥/h를 공급했다. 얻게된 투명유리잉곳의 외경은 약 120㎜, 길이는 약 1300㎜였다. 이 석영유리잉곳의 양단부를 절단하고, 외주를 원통연삭장치에 의해 90㎜로 연삭하여, 외경의 원중심을 구하고, 이 원중심에 맞추어서 코어드릴구멍꿇기장치에 의해 구멍을 뚫고, 정밀호닝가공장치에 의해 25㎜의 치수로 연마했다. 얻게된 석영유리관의 외경은 90㎜, 내경은 25㎜이고, 길이 1000㎜로 절단했다.Transparent quartz glass tubes were prepared by the so-called direct method of depositing silica glass fine particles produced by flame hydrolysis of high-purity silicon tetrachloride on a glass rod rotating at 20 rpm and transparent vitrification. The flame hydrolysis burner was supplied with 2,000 g / h of silicon tetrachloride, 20 m 3 / h of hydrogen gas, and 10 m 3 / h of oxygen gas, respectively. The obtained transparent glass ingot had an outer diameter of about 120 mm and a length of about 1300 mm. The both ends of the quartz glass ingot are cut, the outer periphery is ground to 90 mm by a cylindrical grinding device, the center of the outer diameter is obtained, and the hole is drilled by the core drill hole kneeling device according to the center of the precision, and a precision honing processing device Was polished to a size of 25 mm. The obtained quartz glass tube had an outer diameter of 90 mm, an inner diameter of 25 mm, and cut into a length of 1000 mm.

상기 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃의 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기농도는 약 1000ppm, 염소농도는 100ppm, 수소가스방출량은 4.0×1018분자/㎤, 수증기방출량은 2.2×1017분자/㎤였다.For the samples of the quartz glass tube, the amount of OH groups and chlorine and gas discharged under vacuum at 1000 ° C. was measured. The residual OH group concentration was about 1000 ppm, the chlorine concentration was 100 ppm, and the hydrogen gas emission was 4.0 × 10 18 molecules /. Cm 3 and water vapor release were 2.2 × 10 17 molecules / cm 3.

한편, VAD법에 의해 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1000㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨 후, 석영유리관내를 감압해서 순차띠형상으로 가열하여 용착일체화해서 광파이버용 모재를 제조했다. 얻게된 석영유리모재에 대해서, 암실에서 그 단부면으로부터 백색광을 쬐였던바, 눈으로 볼수있는 최소단위인 0.1㎜이상의 기포수는 1000㎜당 28개였다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heated and extended to the outer diameter of 20 mm and the length of 1000 mm in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to contact the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After the upper end was welded to the vertical electric furnace at 90 mm / min, and the lower end was welded, the inside of the quartz glass tube was decompressed, heated in a sequential band shape, and integrally welded to prepare a base material for the optical fiber. The obtained quartz glass base material was exposed to white light from its end face in the dark room, and the number of bubbles having a minimum unit of 0.1 mm or more was 28 per 1000 mm.

비교예 3Comparative Example 3

천연으로 산출되는 수정을 사용하여, 수소가스 30㎥/h와 산소가스 15㎥/h의 산수소화염속에서, 외경약 120㎜, 길이약 1300㎜의 투명석영유리잉곳을 제조했다. 이 잉곳의 양단부를 절단하고, 외주를 원통연삭장치에 의해 90㎜로 연삭하고, 외경의 원중심을 구하여, 이 원중심에 맞추어서 코어드릴구멍뚫기장치에 의해 구멍을 뚫고, 정밀호닝가공장치에 의해 25㎜의 치수로 연마했다. 석영유리관의 외경은 90㎜, 내경은 25㎜이고, 길이는 1000㎜였다.Using quartz produced naturally, a transparent quartz glass ingot having an outer diameter of about 120 mm and a length of about 1300 mm was produced in an oxyhydrogen flame of hydrogen gas 30 m 3 / h and oxygen gas 15 m 3 / h. The both ends of the ingot are cut, the outer periphery is ground to 90 mm by a cylindrical grinding machine, the center of the outer diameter is obtained, and the hole is drilled by the core drill boring machine in accordance with the center of gravity, and the precision honing processing device is used. Polished to a dimension of 25 mm. The outer diameter of the quartz glass tube was 90 mm, the inner diameter was 25 mm, and the length was 1000 mm.

상기 석영유리관의 샘플에 대해서, OH기 및 염소 및 1000℃의 진공하에 있어서의 가스방출량을 측정하였던바, 잔류OH기농도는 약 180ppm, 염소는 검출되지 않고, 수소가스방출량은 1.3×1019분자/㎤, 수증기방출량은 6.0×1017분자/㎤였다.For the sample of the quartz glass tube, the amount of OH groups and chlorine and gas discharged under vacuum at 1000 ° C. was measured. The residual OH group concentration was about 180 ppm, chlorine was not detected, and the hydrogen gas emission amount was 1.3 × 10 19 molecules. / Cm 3, and the amount of water vapor released was 6.0 × 10 17 molecules / cm 3.

한편, VAD법에 의해, 광파이버모재용의 클래드부착코어로드를 작성하고, 세로형 전기로속에서 외경 20㎜, 길이 1300㎜로 가열연신했다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이없도록 주의깊게 삽입하여, 코어유리로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양단부를 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 세로형 전기로에 90㎜/분으로 위쪽으로부터 넣고, 하단부를 용착시킨후, 석영유리관내를 감압해서 순차 띠형상으로 가열하여 용착일체화해서 광파이버용 모재를 제조했다. 얻게된 석영유리모재에 대해서, 암실에서 그 단부면으로부터 백색광을 쬐였던바, 눈으로 볼수있는 최소단위인 0.1㎜이상의 기포수는 1000㎜당 48개였다.On the other hand, the cladding core rod for an optical fiber base material was created by the VAD method, and it heat-stretched by 20 mm of external diameters and 1300 mm in length in a vertical electric furnace. Carefully insert the core glass rod into the quartz glass tube so as not to contact the inner circumferential surface of the core glass rod, fix the core glass rod and the center of the center of the quartz glass tube, and fix both ends to the dummy quartz material. After the upper end was welded at 90 mm / min in the vertical electric furnace at 0 ° C., the lower end was welded, and the inside of the quartz glass tube was decompressed, and subsequently heated in a strip shape to be integrally welded to prepare a base material for the optical fiber. The obtained quartz glass base material was exposed to white light from its end face in the dark room, and the number of bubbles of 0.1 mm or more, which is the smallest visible unit, was 48 per 1000 mm.

본 발명의 광파이버용 석영유리모재는, 모재용의 석영유리관과 코어유리로드와의 용착계면에 미용착부분도 기포도 존재하지 않는 뛰어난 광파이버용 석영유리모재이다. 또한 광파이버용 석영유리모재의 대형화, 장척화가 가능하고, 이 광파이버용 모재를 와이어드로잉함으로써 고품질의 광파이버를 생산성좋게, 저코스트로 제조할 수 있다.The quartz glass base material for optical fibers of the present invention is an excellent quartz glass base material for optical fibers in which no unbonded portion or bubbles are present at the welding interface between the quartz glass tube for the base material and the core glass rod. In addition, it is possible to enlarge and lengthen the quartz glass base material for the optical fiber. By wire drawing the base material for the optical fiber, a high quality optical fiber can be produced with low productivity.

Claims (5)

광파이버모재용 합성석영유리관과 광파이버모재용 코어유리로드를 가열하여 용착일체화한 광파이버용 모재로서, 상기 모재용 합성석영유리관속의 OH기농도가 1ppm이하, 염소하유량이 3000ppm이하, 수소가스방출량이 1.0×1018분자/㎤이하 및 수증기방출량이 2.0×1017분자/㎤이하인 것을 특징으로 하는 광파이버용 모재.An optical fiber base material obtained by heating and integrating a composite quartz glass tube for an optical fiber base material and a core glass rod for an optical fiber base material, wherein the OH group concentration in the synthetic quartz glass tube for the base material is 1 ppm or less, the chlorine loading is 3000 ppm or less, and the hydrogen gas emission amount is 1.0. A base material for an optical fiber, wherein × 10 18 molecules / cm 3 or less and water vapor emission amount are 2.0 × 10 17 molecules / cm 3 or less. 고순도의 규소화합물을 화염가수분해해서 얻은 실리카미립자를 내열성기체위에 퇴적해서 다공질수트체를 형성하고, 탈수처리하여, 투명유리화한 후, 기계적연삭에 의해 작성한 OH기농도가 1ppm이하, 염소함유량이 3000ppm이하, 수소가스방출량이 1.0×1018분자/㎤이하 및 수증기방출량이 2.0×1017분자/㎤이하의 광파이버모재용 합성석영유리관에 광파이버용 코어유리로드를 삽입하여 가열해서 용착일체화하는 것을 특징으로 하는 광파이버용모재의 제조방법.Silica fine particles obtained by flame hydrolysis of high-purity silicon compounds are deposited on a heat-resistant gas to form a porous soot body, dehydrated, and transparent vitrified, and the OH group concentration produced by mechanical grinding is 1 ppm or less, and chlorine content is 3000 ppm. Hereinafter, the core glass rod for optical fibers is inserted into a synthetic quartz glass tube for an optical fiber base material having a hydrogen gas emission amount of 1.0 × 10 18 molecules / cm 3 or less and a water vapor emission amount of 2.0 × 10 17 molecules / cm 3 or less so as to be integrally welded. Method for producing an optical fiber base material. 고순도의 규소화합물을 화염가수분해해서 얻은 실리카미립자를 내열성기체위에 퇴적해서 다공질수트체를 형성하고, 탈수처리하여, 투명유리화한 후, 기계적연삭에 의해 작성한 OH기농도가 1ppm이하, 염소함유량이 3000ppm이하, 수소가스방출량이 1.0×1018분자/㎤이하 및 수증기방출량이 2.0×1017분자/㎤이하의 광파이버모재용 합성석영유리관을 또 대기속 또는 불활성가스속에서, 800∼2500℃에서 가열처리하여, 수소가스방출량을 5.0×1017분자/㎤이하, 수증기방출량을 1.0×1017분자/㎤이하로 하는 광파이버모재용 합성석영유리관으로하고, 이 광파이버모재용 합성석영유리관에 광파이버모재용 코어유리로드를 삽입하여 가열해서 용착일체화하는 것을 특징으로 하는 광파이버용 모재의 제조방법.Silica fine particles obtained by flame hydrolysis of high-purity silicon compounds are deposited on a heat-resistant gas to form a porous soot body, dehydrated, and transparent vitrified, and the OH group concentration produced by mechanical grinding is 1 ppm or less, and chlorine content is 3000 ppm. Hereinafter, a synthetic quartz glass tube for optical fiber base material having a hydrogen emission amount of 1.0 × 10 18 molecules / cm 3 or less and a water vapor emission amount of 2.0 × 10 17 molecules / cm 3 or less is further heated at 800 to 2500 ° C. in an air or an inert gas. A synthetic quartz glass tube for an optical fiber base material having a hydrogen gas emission amount of 5.0 × 10 17 molecules / cm 3 or less and a water vapor emission amount of 1.0 × 10 17 molecules / cm 3 or less, and the synthetic quartz glass tube for an optical fiber base material is a core glass for an optical fiber base material. A method of manufacturing a base material for an optical fiber, comprising inserting a rod and heating the film to integrally weld the rod. 고순도의 규소화합물을 화염가수분해해서 얻은 실리카미립자를 내열성기체위에 퇴적해서 다공질수트체를 형성하고, 탈수처리하여, 투명유리화한 후, 기계적연삭에 의해 작성한 OH기농도가 1ppm이하, 염소함유량이 3000ppm이하, 수소가스방출량이 1.0×1018분자/㎤이하 및 수증기방출량이 2.0×1017분자/㎤이하의 광파이버모재용 합성석영유리관을 또 진공분위기속에서, 800∼2500℃에서 가열처리하여, 수소가스방출량을 2.0×1016분자/㎤이하, 수증기방출량을 5.0×1016분자/㎤이하로하는 광파이버모재용 합성석영유리관으로하고, 이 광파이버모재용 합성석영유리관에 광파이버용 코어유리로드를 삽입하여 가열해서 용착일체화하는 것을 특징으로 하는 광파이버용 모재의 제조방법.Silica fine particles obtained by flame hydrolysis of high-purity silicon compounds are deposited on a heat-resistant gas to form a porous soot body, dehydrated, and transparent vitrified, and the OH group concentration produced by mechanical grinding is 1 ppm or less, and chlorine content is 3000 ppm. Hereinafter, a synthetic quartz glass tube for optical fiber base material having a hydrogen gas emission amount of 1.0 × 10 18 molecules / cm 3 or less and a water vapor emission amount of 2.0 × 10 17 molecules / cm 3 or less is further heated in a vacuum atmosphere at 800 to 2500 ° C. to obtain hydrogen. A synthetic quartz glass tube for an optical fiber base material having a gas discharge amount of 2.0 × 10 16 molecules / cm 3 or less and a vapor discharge amount of 5.0 × 10 16 molecules / cm 3 or less, and a core glass rod for an optical fiber is inserted into the optical fiber base synthetic quartz glass tube. A method for producing an optical fiber base material, characterized in that the welding is integrated by heating. 제 2항∼제 4항의 어느 한 항에 있어서, 탈수처리가 염소계분위기속, 1000℃이상으로 가열하는 처리인 것을 특징으로 하는 광파이버용 모재의 제조방법.The method for producing the base material for an optical fiber according to any one of claims 2 to 4, wherein the dehydration treatment is a treatment in which the chlorine-based atmosphere is heated at 1000 ° C or higher.
KR1019990043575A 1998-10-09 1999-10-08 Preform for Optical fiber and manufacturing method thereof KR100345355B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP30332898 1998-10-09
JP1998-303328 1998-10-09
JP1999-9406 1999-01-18
JP00940699A JP4565221B2 (en) 1998-10-09 1999-01-18 Optical fiber preform

Publications (2)

Publication Number Publication Date
KR20000028947A true KR20000028947A (en) 2000-05-25
KR100345355B1 KR100345355B1 (en) 2002-07-24

Family

ID=26344125

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990043575A KR100345355B1 (en) 1998-10-09 1999-10-08 Preform for Optical fiber and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4565221B2 (en)
KR (1) KR100345355B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918265B1 (en) * 2002-05-31 2009-09-18 신에쓰 가가꾸 고교 가부시끼가이샤 A preform and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753975B2 (en) * 2001-11-29 2006-03-08 株式会社フジクラ Single-mode optical fiber manufacturing method and single-mode optical fiber
WO2004083141A1 (en) * 2003-03-21 2004-09-30 Heraeus Tenevo Gmbh Synthetic silica glass tube for the production of a preform, method for producing the same in a vertical drawing process and use of said tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208114A (en) * 1987-07-01 1989-03-01 Pirelli General Plc Optical fibre preforms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918265B1 (en) * 2002-05-31 2009-09-18 신에쓰 가가꾸 고교 가부시끼가이샤 A preform and method for manufacturing same

Also Published As

Publication number Publication date
KR100345355B1 (en) 2002-07-24
JP2000178040A (en) 2000-06-27
JP4565221B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US7469559B2 (en) Method for making low loss optical fiber
JP4870573B2 (en) Alkali-doped optical fiber, preform thereof and method for producing the same
CN1352623A (en) Optical fiber and method for producing low polarization-mode dispersion and low attenuation of optical fiber
WO2016021576A1 (en) Optical fiber base material and method for producing optical fiber
CN102149648A (en) Process for producing optical-fiber base material
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
JPS6081033A (en) Manufacture of optical fiber
US5163987A (en) Method for producing glass preform for optical fiber
KR100345355B1 (en) Preform for Optical fiber and manufacturing method thereof
JP4514748B2 (en) Method of manufacturing a hollow cylinder of synthetic quartz glass using a holding device and a holding device suitable for carrying out this method
KR100345358B1 (en) Quartz glass tube for optical fiber preform and manufacturing method therefor
CN113461322B (en) Optical fiber and method for manufacturing optical fiber preform
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
US5236482A (en) Method for producing glass preform for optical fiber
US7391946B2 (en) Low attenuation optical fiber and its producing method in MCVD
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP3290612B2 (en) Method of detecting core tube crack in sintering process of optical fiber preform and method of manufacturing optical fiber preform
JPS6036343A (en) Production of glass material for optical transmission
KR101211309B1 (en) Base material for optical fiber and method for production thereof and method for production of optical fiber
RU2385297C1 (en) Method of making pipes from quartz glass
RU2281260C1 (en) Method of manufacture of large-sized blanks for quartz light conduits
KR20000029134A (en) manufacturing method of qurtz glass preform for optical fiber
JPS63147840A (en) Production of quartz glass material
KR20000028911A (en) manufacturing method of Qurtz glass preform for optical fiber
JPS61232229A (en) Production of fluorine-doped high-purity quartz glass pipe

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120621

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee