JPS61232229A - Production of fluorine-doped high-purity quartz glass pipe - Google Patents

Production of fluorine-doped high-purity quartz glass pipe

Info

Publication number
JPS61232229A
JPS61232229A JP7278785A JP7278785A JPS61232229A JP S61232229 A JPS61232229 A JP S61232229A JP 7278785 A JP7278785 A JP 7278785A JP 7278785 A JP7278785 A JP 7278785A JP S61232229 A JPS61232229 A JP S61232229A
Authority
JP
Japan
Prior art keywords
fluorine
porous intermediate
pipe
glass pipe
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7278785A
Other languages
Japanese (ja)
Other versions
JPH0515648B2 (en
Inventor
Futoshi Mizutani
太 水谷
Gotaro Tanaka
豪太郎 田中
Hiroo Kanamori
弘雄 金森
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7278785A priority Critical patent/JPS61232229A/en
Publication of JPS61232229A publication Critical patent/JPS61232229A/en
Publication of JPH0515648B2 publication Critical patent/JPH0515648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To produce the titled quartz pipe having smooth and high-accuracy inner and outer surfaces without causing cracking in the pipe, by depositing pure silica glass soot by VAD process, preliminarily sintering the deposited soot to form a porous intermediate, boring the intermediate and melting and integrating the bored intermediate. CONSTITUTION:Deposited pure silica glass soot is preliminarily sintered to obtain a porous intermediate, which is bored and integrated by melting in a furnace. The preliminary sintering or melt integration is carried out in an atmosphere (e.g. He) added at least temporarily with fluorine. It is preferable to grind the outer surface of the above porous intermediate before or after the boring process to improve the dimensional accuracy of the produced glass pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弗素を添加した高純度石英ガラスパイプの1造
方法に関するもので、詳しくは光フアイバ用母材に要求
されるほどの高純度及び高い寸法精度を実現しながら内
外面ともに円滑で亀裂のない良質の上記ガラスパイプを
得る方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a high-purity quartz glass pipe doped with fluorine. The present invention relates to a method for obtaining the above-mentioned glass pipe of high quality, which has smooth inner and outer surfaces and is free from cracks while achieving high dimensional accuracy.

〔従来の技術〕[Conventional technology]

従来、VAD法(気相軸付は法)Kよル、光フアイバ用
母材として用い得るような弗素添加された高純度石英ガ
ラスパイプを製造する方法としては、例えば火炎中にガ
ラス原料等を導入することKよシ得られた微粒子状ガラ
ス(ヌス)を堆積してガラス微粒子堆積体とし、該堆積
体に弗素添加しながら加熱して脱水及び焼結を行いガラ
スロンドとした後、ガラス研削機等を用いて該ガラスロ
ンドに穴あけしてガラスパイプを得るという方法があっ
た。
Conventionally, the VAD method (vapor phase axis attachment method) was used to manufacture fluorine-doped high purity quartz glass pipes that could be used as base materials for optical fibers, for example, by placing glass raw materials in a flame. The fine particulate glass (nuss) obtained by introducing K is deposited to form a glass fine particle deposit, and the deposit is heated while adding fluorine to dehydrate and sinter to form a glass rond, followed by glass grinding. There is a method in which a glass pipe is obtained by drilling a hole in the glass iron using a machine or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記し友従米法には、1)穴開は時内面
よりクラックが入ルやす匹、2〕穴開は精度を出すのが
難かしい、という問題点があつ九。特K 2)の穴開は
精度を得がたい理由としては、焼結したガラスロッドの
外周形状が完全な円筒形でないために穴開は機への装置
時に同心を出しにくいこと、及びドリル位置の設定精度
がそのままパイプ穴の偏心に対応すること、等が挙げら
れる。
However, the above-mentioned method has the following problems: 1) cracks tend to form from the inner surface when drilling holes, and 2) it is difficult to achieve precision when drilling holes. Special K 2) The reason why it is difficult to obtain precision when drilling holes is that the outer circumference of the sintered glass rod is not perfectly cylindrical, so it is difficult to make the holes concentric when installing the machine, and the setting of the drill position is also difficult. For example, the accuracy corresponds directly to the eccentricity of the pipe hole.

ま九上記1)のクラック発生を解決しようとして、穴開
は前にガラスロッドを外周研削して、予め外形を完全な
円柱状に加工しておくという方法があるが、この研削の
際にガラス内にクラックが発生し、ファイバ用母材とし
て用いたときた、気泡発生の鳳因となルファイバ特性を
劣化してしまう欠点があった。
In order to solve the problem of cracking in 1) above, there is a method of grinding the outer circumference of the glass rod to make it into a perfect cylinder shape before drilling the hole. When used as a base material for a fiber, cracks occur inside the fiber, causing bubbles to form and deteriorating the properties of the fiber.

以上のように、従来法では未だ精度が高くクラック発生
の無いガラスパイプを#造することが困難であった。
As described above, it is still difficult to manufacture a glass pipe with high precision and no cracks using conventional methods.

本発明の目的は、上述の問題点を解決し、パイプ内にク
ラックを生ぜしめずに、内外面が円滑で高い寸法精度の
、弗素添加された高純度石英ガラスパイプを得る方法を
提供することkある。
An object of the present invention is to solve the above-mentioned problems and provide a method for obtaining a fluorine-doped high-purity quartz glass pipe with smooth inner and outer surfaces and high dimensional accuracy without causing cracks in the pipe. There are k.

〔問題点を解決するための手段〕 、本発明はVAD法によ勺純シリカガラス微粒子堆積体
を形成し、該堆積体を仮焼結して多孔質中間体を得、該
多孔質中間体に穴開は加工を施し、しかる後に加熱炉中
にて溶融一体となし、上記仮焼結又は上記溶融一体とす
る際の雰囲気には少なくとも一時期弗素を含有させるこ
とを特徴とする弗素を添加し九高純度石英ガラスパイプ
の製造方法である。
[Means for solving the problem] The present invention involves forming a pure silica glass fine particle deposit by a VAD method, pre-sintering the deposit to obtain a porous intermediate, and The holes are processed and then melted and integrated in a heating furnace, and the atmosphere during the temporary sintering or the melting and integration is made to contain fluorine for at least a period of time. This is a method for manufacturing nine high-purity quartz glass pipes.

本発明の特に好ましい実施態様としては、上記方法が挙
げられる。
Particularly preferred embodiments of the present invention include the methods described above.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは、従来法の問題点を種々検討、考察の結果
、VAD法によ)得たガラス微栽子堆積体のカサ密度は
はPiO,15Ii/−〜0.61/−の範囲で径方向
に分布を持つので非常に脆く、かつ堆積時に熱履歴を受
けるので歪みが残っているため、小さな衝撃によル亀裂
・破裂が起こるため、研削加工が困難であると気付き、
該堆積体(多孔質体)のカサ密度を研削加工がし易く、
亀裂が生じない程度に高めることを考えついた。
As a result of various studies and discussions on the problems of the conventional method, the present inventors found that the bulk density of the glass microspore deposit obtained by the VAD method was in the range of PiO,15Ii/- to 0.61/-. Because it has a distribution in the radial direction, it is very brittle, and because it is subjected to thermal history during deposition, it retains distortion, and a small impact can cause cracks and ruptures, making it difficult to grind.
The bulk density of the deposited body (porous body) can be easily ground,
I came up with the idea of increasing the height to a level that does not cause cracks.

本発明は上記した多孔質体のカサ密度を高めるためK、
該多孔質体を仮焼結することによル、多孔質中間体とす
る。研削加工がし易く亀裂が生じないための該多孔質中
間体のカサ密度としては、0.7117−以上が好まし
い。
In order to increase the bulk density of the above-described porous body, the present invention provides K,
By pre-sintering the porous body, a porous intermediate body is obtained. The bulk density of the porous intermediate is preferably 0.7117 or more so that it can be easily ground and cracks do not occur.

また脱水を行う必要のある場合には、多孔質体のカサ密
度を高くと多すぎると、脱水に長時間を要するようにな
るので、この場合にはカサ密度をIII/−以下とする
ことが好ましい。
In addition, if dehydration is required, if the bulk density of the porous material is too high, dehydration will take a long time, so in this case, the bulk density should be set to III/- or less. preferable.

本発明における仮焼結の方法としては、VAD法により
作成した純ガラス微粒子堆積体を温度1200C〜14
00cにてHe  雰囲気中で1時間程度加熱する。ま
た、同時に弗素を添加する場合には、He  ガス膠囲
気に弗化炭素ガス、弗化硫黄ガス、弗化珪素、弗素、弗
化ハロゲン等の弗素化合物を加える。
In the pre-sintering method of the present invention, a pure glass fine particle deposit body prepared by the VAD method is heated at a temperature of 1200C to 14C.
Heating was performed for about 1 hour at 00c in a He 2 atmosphere. When fluorine is added at the same time, a fluorine compound such as carbon fluoride gas, sulfur fluoride gas, silicon fluoride, fluorine, or halogen fluoride is added to the He 2 gas mixture.

以上のようにして、第1図に示すような多孔質中間体1
を得ることができる。なお第1図中の2は支持棒である
As described above, a porous intermediate 1 as shown in FIG.
can be obtained. Note that 2 in FIG. 1 is a support rod.

研削加工のうち穴開けに#:を機械加工に一般に用いら
れているボール盤に所要径のドリルを装着して使用する
ことができる。好ましくは、砥石層の研削刃、特に好ま
しくは工業用ダイヤモンド砥石層の研削刃を用いると精
度の良い研削加工ができる。
For drilling holes in the grinding process, #: can be used by attaching a drill of the required diameter to a drill press commonly used for machining. Preferably, a grinding blade of a grindstone layer, particularly preferably a grinding blade of an industrial diamond grindstone layer, is used to achieve highly accurate grinding.

外周研削加工には送)込み型及び旋盤型のもののどちら
でも使用できるが、外表面の円筒形状と穴の同心度真直
度が必要な場合には後者のほうを用いる。
Both the feeding type and the lathe type can be used for the outer circumference grinding process, but the latter is used when the cylindrical shape of the outer surface and the concentricity and straightness of the hole are required.

次に上記に述ぺた研削加工について旋盤を使用する場合
の一例を図面を参照して具体的に説明する。
Next, an example in which a lathe is used for the above-described grinding process will be specifically described with reference to the drawings.

第2図に示すようK、旋盤の片側のチャック3にて、第
を図に示し九多孔質中間体1の支持棒2を把持する。次
に旋盤の主軸芯と多孔質中間体1の中心軸を一致させる
九めに、酸水素バーナ4にて支持棒2の一部を加熱軟化
させて多孔質中間体1の位置を調節する。次いで旋盤の
もう一方のチャック又は研削刃固定台6にダイヤそンド
砥石製の棒状研削刃5をとシつけ、回転させている多孔
質中間体10内部に上記棒状研削刃5を進入させてゆき
、開穴する。なお必中1′は研削屑をまた矢印は回転方
向及び進入方向を示す。
As shown in FIG. 2, the support rod 2 of the porous intermediate body 1 is gripped by the chuck 3 on one side of the lathe. Next, at the ninth point when the main axis of the lathe and the central axis of the porous intermediate body 1 are aligned, a part of the support rod 2 is heated and softened using an oxyhydrogen burner 4 to adjust the position of the porous intermediate body 1. Next, the rod-shaped grinding blade 5 made of a diamond grindstone is attached to the other chuck or grinding blade fixing base 6 of the lathe, and the rod-shaped grinding blade 5 is introduced into the rotating porous intermediate body 10. , open a hole. Incidentally, 1' indicates the grinding debris, and the arrows indicate the direction of rotation and the direction of approach.

外周研削は第3図に示すように1研削刃固定台6に多孔
質中間体支持リーマ7を装置して、これによシ両側から
多孔質中間体1を支持しておき、多孔質中間体1を矢印
の如く回転させ、その外周を矢印方向に回転しているグ
ラインダ8にて研削する。々お1/は研削屑である。
As shown in FIG. 3, the outer circumferential grinding is carried out by installing a porous intermediate support reamer 7 on a grinding blade fixing table 6, which supports the porous intermediate 1 from both sides, and 1 is rotated in the direction of the arrow, and its outer periphery is ground by a grinder 8 rotating in the direction of the arrow. 1/2 is grinding waste.

以上の工程によシ得られたパイプ形状多孔質゛中間体を
炉中に投入し、仮焼結と同様にHa  ガス又はこれに
弗素化合物を加えた雰囲気中で溶融一体化する。ま九、
塩素ガスを含有する雰囲気にて脱水を行う必要のある場
合には、溶融一体化以前[1000C〜1100Cの炉
中にてHe  ガスと塩素ガスを含む雰囲気で1時間程
度処理する。
The pipe-shaped porous intermediate obtained by the above steps is placed in a furnace and melted and integrated in an atmosphere of Ha gas or a fluorine compound added thereto, as in the case of preliminary sintering. Maku,
If it is necessary to perform dehydration in an atmosphere containing chlorine gas, treatment is performed in an atmosphere containing He gas and chlorine gas in a furnace at 1000C to 1100C for about 1 hour before melting and integration.

このように透明ガラス化以前の多孔質中間体の段階でガ
ラスパイプ状に研削すると、加工時の寸法誤差は透明ガ
ラス化の際に、はぼ比カサ密度の5乗根だけ小さくする
ことができる。したがって透明ガラスパイプとした後に
加工を施す従来法よシも、ガラスパイプと′したときの
寸法精度を向上することができる。
In this way, by grinding into a glass pipe shape at the porous intermediate stage before transparent vitrification, the dimensional error during processing can be reduced by the fifth root of the relative bulk density when transparent vitrification is achieved. . Therefore, even with the conventional method of processing the transparent glass pipe after forming it, the dimensional accuracy of the glass pipe can be improved.

〔実施例〕〔Example〕

実施例1 VAD法によ)a!水素炎に4塩化珪素を投入して、長
さ60国、平均カサ密度が約0.21.9/cI!Iの
純石英ガラス微粒子堆積体を作製した。
Example 1 By VAD method) a! By adding silicon tetrachloride to a hydrogen flame, the length is 60 mm and the average bulk density is approximately 0.21.9/cI! A pure silica glass fine particle deposit body of I was prepared.

次にこの堆積体を加熱炉によJHθ5 J7 m1in
 eC1250cc / winを流し死界囲気で温度
1050C1下降速度5■/winにて脱水を行い、更
に雰囲気をHa 5 J3/ win # 13160
−2 J / 1ain #炉温を155DCとして5
 tm/ m1nで下降させて仮焼結した。以上により
外径6.5〜7.5cIII、長さ約42cnR1平2
均カサ密度が約0.8777an3ノ多孔質多孔体中得
た。この多孔質中間体コを第2図に示すような横型旋盤
に装着し、多孔質体を回転させながら旋盤のチャック3
に把持させた支持棒2の一部を酸水素バーナ4で加熱し
て多孔質中間体1の芯出しを行った。多孔質中間体1を
固定しているチャン230回転を停止しもう一方のチャ
ック6に、外径811111.長さ453のパイプ状シ
ャンクの先端に外径9顛、長さ100の円筒状ダイヤモ
ンド砥石5をつけたものを装着し、240 rpmで回
転させて多孔質中間体1を穴開は研削した。次に研削刃
5をチャック6から取外し替わシに第3図のようにリー
マ7を装着してこれで多孔質体のふれ回りを抑えつつ、
旋盤の研削刃台に取ル付けた外径127131.厚み1
9tmのディスク状グラインダ8を45゜rpmで回転
させて、多孔質中間体1の外周面を研削し外径64.0
±0°2nとした。上記によシ得られたパイプ状多孔質
中間体をHe 10 #′win8F60.4137 
minの雰囲気にて温度1650C’の炉中に、下降速
度4m/Winで通過させて透明ガラス化を行った。以
上の工程によって、外径45.2±0°03ICI、内
径5.9±0°03i11と肉厚の均一な全長303の
内外面とも平滑で内申に気泡のない良質のガラスパイプ
が得られた。また純石英ガラスとの比屈折率差は0.3
%で赤外光吸収法によシ測定したOH基の含有蓋1d 
O,1ppm+以下と元ファイバ母材用として良好な特
性のものであつ九。
Next, this deposited body was heated to a heating furnace of JHθ5 J7 m1in.
Flowing eC1250cc/win, dehydration was performed at a temperature of 1050C1 with a descending rate of 5cm/win in a dead atmosphere, and the atmosphere was further changed to Ha 5 J3/win #13160.
-2 J/1ain #5 with furnace temperature as 155DC
Temporary sintering was performed by lowering the temperature at tm/m1n. As a result of the above, the outer diameter is 6.5 to 7.5cIII, and the length is approximately 42cnR1 flat 2
A porous body having an average bulk density of about 0.8777an3 was obtained. This porous intermediate body is mounted on a horizontal lathe as shown in Fig. 2, and the chuck 3 of the lathe is rotated while the porous body is rotated.
A part of the support rod 2 held by the support rod 2 was heated with an oxyhydrogen burner 4 to center the porous intermediate body 1. The rotation of the chuck 230 fixing the porous intermediate body 1 is stopped, and the outer diameter of the chuck 6 is 811111. A cylindrical diamond grindstone 5 having an outer diameter of 9 mm and a length of 100 mm was attached to the tip of a pipe-shaped shank having a length of 453 cm, and was rotated at 240 rpm to drill and grind the porous intermediate body 1. Next, remove the grinding blade 5 from the chuck 6 and attach the reamer 7 to it as shown in Fig. 3, thereby suppressing the wobbling of the porous body.
Outer diameter 127131 attached to the grinding blade stand of a lathe. Thickness 1
A 9tm disc-shaped grinder 8 was rotated at 45°rpm to grind the outer peripheral surface of the porous intermediate body 1 to an outer diameter of 64.0.
±0°2n. The pipe-shaped porous intermediate obtained above was heated with He 10 #'win8F60.4137
Transparent vitrification was performed by passing the sample through a furnace at a temperature of 1650 C' at a descending speed of 4 m/Win in an atmosphere of 50 min. Through the above process, a high-quality glass pipe with an outer diameter of 45.2±0°03ICI, an inner diameter of 5.9±0°03i11, a uniform wall thickness, a total length of 303, smooth on both the inner and outer surfaces, and without any air bubbles was obtained. . Also, the relative refractive index difference with pure silica glass is 0.3
OH group content measured by infrared absorption method in % 1d
O, 1 ppm+ or less, which has good characteristics for the original fiber base material.

比較例1 実施例1と同様のガラス微粒子堆積体を炸裂し、該堆積
体をそのまま実施例と同様の条件で脱水、弗素添加、透
明ガラス化を行い外径約460、全長的30a1Mのガ
ラスパイプを得た。
Comparative Example 1 A glass particle deposit similar to that in Example 1 was exploded, and the deposit was dehydrated, fluoridated, and made transparent under the same conditions as in Example to produce a glass pipe with an outer diameter of about 460 mm and a total length of 30 mm. I got it.

次にこれを実施例と同じ横型旋盤に装着し、実施例1と
同様の方法にて開穴を試みたが研削中にパイプ内面よシ
バイブ内申に深さ数顛の傘状のクラックが全長にわたっ
て発生した。また続いて実施例と同様に外周研削を施し
て外径を均一としたが肉厚は0.2111の変動があシ
、本発明の実施例のものに比ベファイバ用母材に供する
には相補寸法精度の劣ったものであった。
Next, this was mounted on the same horizontal lathe as in Example 1, and an attempt was made to open a hole using the same method as in Example 1. However, during grinding, an umbrella-shaped crack of several depths was found on the inner surface of the pipe and the inner surface of the pipe, extending over the entire length. Occurred. Subsequently, the outer periphery was ground to make the outer diameter uniform in the same manner as in the example, but the wall thickness varied by 0.2111. The dimensional accuracy was poor.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によシ従米法に比べ良質
かつ寸法精度の高いガラスパイプを得ることができ効果
大である。
As described above, the method of the present invention is more effective in that it is possible to obtain glass pipes of better quality and higher dimensional accuracy than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予め仮焼結した多孔質中間体を示す図、 第2図は横型旋盤での穴開は加工を示す図、第3図は横
型旋盤での外周研削加工を示す図である。
FIG. 1 is a diagram showing a pre-sintered porous intermediate, FIG. 2 is a diagram showing hole drilling with a horizontal lathe, and FIG. 3 is a diagram showing outer periphery grinding with a horizontal lathe.

Claims (2)

【特許請求の範囲】[Claims] (1)VAD法により純シリカガラス微粒子堆積体を形
成し、該堆積体を仮焼結して多孔質中間体を得、該多孔
質中間体に穴開け加工を施し、しかる後に加熱炉中にて
溶融一体となし、上記仮焼結又は上記溶融一体とする際
の雰囲気には少なくとも一時期弗素を含有させることを
特徴とする弗素を添加した高純度石英ガラスパイプの製
造方法。
(1) A pure silica glass fine particle deposit is formed by the VAD method, the deposit is pre-sintered to obtain a porous intermediate, the porous intermediate is punched, and then placed in a heating furnace. A method for producing a high-purity quartz glass pipe doped with fluorine, characterized in that the atmosphere during the temporary sintering or the melting and integration includes fluorine at least temporarily.
(2)穴開け加工の前又は後に該多孔質中間体に外周研
削を施こす特許請求の範囲第(1)項に記載される弗素
を添加した高純度石英ガラスパイプの製造方法。
(2) A method for manufacturing a high-purity fluorine-doped quartz glass pipe as set forth in claim (1), wherein the porous intermediate is subjected to peripheral grinding before or after drilling.
JP7278785A 1985-04-08 1985-04-08 Production of fluorine-doped high-purity quartz glass pipe Granted JPS61232229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278785A JPS61232229A (en) 1985-04-08 1985-04-08 Production of fluorine-doped high-purity quartz glass pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278785A JPS61232229A (en) 1985-04-08 1985-04-08 Production of fluorine-doped high-purity quartz glass pipe

Publications (2)

Publication Number Publication Date
JPS61232229A true JPS61232229A (en) 1986-10-16
JPH0515648B2 JPH0515648B2 (en) 1993-03-02

Family

ID=13499445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278785A Granted JPS61232229A (en) 1985-04-08 1985-04-08 Production of fluorine-doped high-purity quartz glass pipe

Country Status (1)

Country Link
JP (1) JPS61232229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256554A1 (en) * 2001-05-11 2002-11-13 Alcatel Step index optical fibre with doped core and cladding, preform and manufacturing process for such a fibre
CN113264670A (en) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 Method for preparing large-size fluorine-doped quartz tube and fluorine-doped quartz tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256554A1 (en) * 2001-05-11 2002-11-13 Alcatel Step index optical fibre with doped core and cladding, preform and manufacturing process for such a fibre
FR2824642A1 (en) * 2001-05-11 2002-11-15 Cit Alcatel INSPECTION FIBER WITH DOPED SHEATH AND HEAD INDEX, PREFORM AND METHOD OF MANUFACTURE FOR SUCH A FIBER
US6904213B2 (en) 2001-05-11 2005-06-07 Alcatel Step index optical fiber with doped cladding and core, a preform, and a method of fabricating such a fiber
CN113264670A (en) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 Method for preparing large-size fluorine-doped quartz tube and fluorine-doped quartz tube

Also Published As

Publication number Publication date
JPH0515648B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP5922649B2 (en) High purity synthetic silica and products such as jigs made from the high purity synthetic silica
JP3406107B2 (en) Manufacturing method of quartz glass
CN105330140A (en) Preparing method of high purity quartz sleeve for large-size optical fiber preform
KR890003707B1 (en) A preparation method of low-damage optical-fiber
EP0163752A1 (en) A method for the preparation of a synthetic quartz glass tube
CN100335430C (en) Method for the production of a hollow cylinder made of synthetic quartz glass with the aid of a holding device, and appropriate holding device for carrying out said method
JPH0380740B2 (en)
JP2006294440A (en) Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
JP3017990B1 (en) Porous glass base material sintering equipment
JPS61232229A (en) Production of fluorine-doped high-purity quartz glass pipe
JP4565221B2 (en) Optical fiber preform
JPS63147840A (en) Production of quartz glass material
EP4112570B1 (en) Optical fiber glass preform and method for manufacturing optical fiber glass preform
JP2000264665A (en) Production of optical fiber preform
JP2957171B1 (en) Optical fiber preform, optical fiber preform, and methods for producing them
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JP2008239454A (en) Method for producing synthetic silica glass
JPH0383829A (en) Preparation of base material for optical fiber
JPS63107825A (en) Production of synthetic quartz tube
JP2002249342A (en) Glass body and method for manufacturing it
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
JPS6278124A (en) Production of high-purity quartz pipe
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JP2957170B1 (en) Optical fiber preform, optical fiber preform, and methods for producing them
JP3131032B2 (en) Manufacturing method of preform for optical fiber