KR20000024516A - Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building) - Google Patents

Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building) Download PDF

Info

Publication number
KR20000024516A
KR20000024516A KR1020000007691A KR20000007691A KR20000024516A KR 20000024516 A KR20000024516 A KR 20000024516A KR 1020000007691 A KR1020000007691 A KR 1020000007691A KR 20000007691 A KR20000007691 A KR 20000007691A KR 20000024516 A KR20000024516 A KR 20000024516A
Authority
KR
South Korea
Prior art keywords
vav
temperature
fuzzy
purge
controller
Prior art date
Application number
KR1020000007691A
Other languages
Korean (ko)
Inventor
박문수
조정민
Original Assignee
박문수
조정민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박문수, 조정민 filed Critical 박문수
Priority to KR1020000007691A priority Critical patent/KR20000024516A/en
Publication of KR20000024516A publication Critical patent/KR20000024516A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/50HVAC for high buildings, e.g. thermal or pressure differences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Feedback Control In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE: An indoor temperature controlling method is provided to control the indoor temperature in an intelligent building equipped with a VAV(Variable Air Volume conditioning) by judging the indoor temperature based on the detected value of a thermistor and outputting a control signal according to the judged result. CONSTITUTION: A method comprises the steps of: purge-varying the errors of the detected temperature of a temperature detecting sensor input to a central control unit and the predetermined target temperature, the change of the errors and input and output variables thereof; purge-assuming by using the values input from a VAV and the central control unit of hot water and cooling and heating plate, purge assuming rules and various purge functions; and controlling the VAV by non-purging the result of purge-assuming output from the central control unit. Herein, the response to the set up temperature is performed promptly and the temperature is kept in uniform state. Therefore, the management of energy and the pleasant indoor condition are satisfied by using a purge-controller.

Description

인텔리젼트 빌딩의 실내환경 개선을 위한 퍼지 VAV DDC 제어방법에 관한 개발{Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)}Fuzzy-VAV DDC control method to improve indoor environment in IB (Intelligent Building)}

일반적으로 VAV 제어기는 설정온도와 현재 실내온도를 비교하여 설정온도에 빠르게 도달하지만 소음이 거슬리지 않는 풍량이 공급되도록 공조기의 밸브를 제어하는 것을 목적으로 한다.In general, the VAV controller compares the set temperature with the current room temperature, and aims to control the valve of the air conditioner so as to supply the air volume that reaches the set temperature quickly but does not bother the noise.

기존의 VAV제어기로는 단순비교방식제어기나 PI제어기가 일반적이다. 그러나 단순비교방식제어기는 우수한 특성을 기대하기 어렵다. 그래서 이에 대한 대안으로 도면 1과 같은 PI제어기가 이용되어 향상된 제어특성을 제공하였다.As a conventional VAV controller, a simple comparison type controller or a PI controller is common. However, it is difficult to expect superior characteristics of simple comparison controller. So, as an alternative to this, the PI controller as shown in FIG. 1 was used to provide improved control characteristics.

여기서, PI제어기의 일반적인 형태는 다음과 같다.Here, the general form of the PI controller is as follows.

이때,는 각각 비례이득(gain), 적분이득을 나타낸다.At this time, Denote proportional gain and integral gain, respectively.

오차와 오차의 미분값에 적당한 이득을 곱하여 조작량을 산출하는 PI제어기에서 조절해야 할 파라미터는 기본적으로등 2가지이며, 결정된 파라미터를 내장한 프로그램에 따라 일정한 시간간격 또는 프로그램의 실행에 종속된 시간간격으로 VAV를 제어하는 것이 보통이다.In the PI controller that calculates the manipulated value by multiplying the error and the derivative of the error by the appropriate gain, the parameter to be adjusted is basically There are two types, and it is common to control the VAV at a predetermined time interval or a time interval dependent on the execution of the program according to the program in which the determined parameters are embedded.

상기와 같은 방식으로는 제어응답이 늦고 ,비선형적인 실내온도를 제어하기위해서, PI제어기 게인값을 양호한 특성을 얻을수 있도록 튜닝하는데에 많은 시간과 노력이 필요할 뿐만 아니라, 제어환경이 바뀌면 그 게인값 역시 다시 튜닝하여야 하는 문제점을 갖고있다. 그러나, 실제로 적용함에 있어서, 각각의 제어기에 대하여 제어 대상(실내환경)이 다른 조건인 경우가 많은 것을 고려한다면 PI제어기 역시 효율적인 제어기라 할 수 없다. 게다가 PI제어기 게인값이 적당하지 않을 경우에는 설정온도를 유지하는데에 많은 과도현상을 갖게 됨으로 쾌적한 환경유지나 또는 효과적인 에너지 비용 관리에 있어서 문제를 초래하게 된다.In this way, the control response is slow and in order to control the non-linear indoor temperature, it takes a lot of time and effort to tune the PI controller gain value to obtain a good characteristic, and the gain value also changes when the control environment is changed. I have a problem that requires tuning again. However, in practical application, considering that there are many cases where the control object (indoor environment) is different for each controller, the PI controller is not an efficient controller. In addition, if the PI controller gain value is not appropriate, there is a lot of transients to maintain the set temperature, which causes problems in maintaining a pleasant environment or effective energy cost management.

따라서, 본 발명은 상기의 제반 문제점을 해결하기 위하여 인출된 것으로서, 제어기에 입력되는 써미스터의 검출온도신호를 설정된 목표온도와의 오차 및 오차의 변화를 퍼지변수와 퍼지추론 규칙을 사용하여 제어기에서 처리하여 지령치 풍량값을 산출하고, 그 다음 과정으로는 산출된 풍량값을 현재의 풍량과 비교하여 풍량의 오차 및 오차의 변화를 퍼지풍량변수와 퍼지풍량추론 규칙을 사용하여 제어대상의 입력값으로 사용함으로서 최적제어 상황에 맞는 VAV 밸브각 제어를 목적으로 한다.Accordingly, the present invention has been drawn to solve the above-mentioned problems, and processing the detected temperature signal of the thermistor input to the controller to the error and the change of the error with the set target temperature in the controller using fuzzy variables and fuzzy inference rules The setpoint airflow value is calculated, and the next step is to compare the calculated airflow value with the current airflow and use the error and the change of the airflow as the input values to be controlled using the fuzzy airflow variable and the fuzzy airflow inference rule. By doing so, it aims to control the VAV valve angle according to the optimum control situation.

제 1도는 일반적인 VAV제어 블록도1 is a general VAV control block diagram

제 2도는 본 발명에 의한 VAV제어 블록도2 is a block diagram of a VAV control according to the present invention.

제 3도는 퍼지 제어기의 구조3 is the structure of the fuzzy controller

제 4도는 제어입력값에 대한 제어대상의 시간응답4 is a time response of a control object to a control input value.

제 5도는 일반적인 PI제어기에 의한 VAV제어 모의실험5 is a simulation of VAV control by a general PI controller.

제 6도는 본 발명(퍼지 제어알고리즘)에 의한 VAV제어 모의 실험6 is a simulation of VAV control by the present invention (fuzzy control algorithm)

제 7도는 일반적인 PI제어기와 본 발명(퍼지 제어알고리즘)에 의한 제어기의 비교실험결과7 is a comparison test result between a general PI controller and a controller according to the present invention (fuzzy control algorithm).

제 8도는 시간에 따른 일반적인 PI제어기와 본 발명(퍼지 제어알고리즘)에 의한 제어기로 제어되는 VAV 궤적8 shows a general PI controller over time and a VAV trajectory controlled by a controller according to the present invention (fuzzy control algorithm).

본 발명은 VAV(Variable Air Volume conditioning)가 구비된 IB(Intelligent Building)에서 실내온도를 제어하기 위하여, 써미스터의 검출값에 근거하여 제어부가 판단한 후 그 결과에 의해 제어신호를 출력하여 실내온도를 제어하는 방법에 관한 것으로 제어대상이 비선형적이고 수학적 모델링이 어려운 실내온도를 양호한 온도 특성을 얻을 수 있도록 퍼지변수와 퍼지추론규칙을 사용하여 VAV를 제어하는 VAV퍼지제어 알고리즘이다.The present invention, in order to control the room temperature in the Intelligent Building (IB) equipped with Variable Air Volume conditioning (VAV), after the control unit judges based on the detection value of the thermistor and outputs a control signal based on the result to control the room temperature It is a VAV purge control algorithm that controls the VAV using fuzzy variables and fuzzy inference rules so that the control object can obtain good temperature characteristics of the room temperature which is nonlinear and difficult to model mathematically.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;

제 1도는 일반적인 VAV 시스템의 제어 블록도, 제 2도는 본 발명에 의한 VAV제어 블록도, 제 3도는 퍼지 제어기의 구조, 제 4도는 제어입력값에 대한 제어대상의 시간응답, 제 5도는 일반적인 PI제어기에 의한 VAV제어 모의실험, 제 6도는 본 발명(퍼지 제어알고리즘)에 의한 VAV제어 모의 실험, 제 7도는 일반적인 PI제어기와 본 발명(퍼지 제어알고리즘)에 의한 제어기의 비교 실험결과, 제 8도는 시간에 따른 일반적인 PI제어기와 본 발명(퍼지 제어알고리즘)에 의한 제어기로 제어되는 VAV궤적을 나타낸다.1 is a control block diagram of a general VAV system, FIG. 2 is a VAV control block diagram according to the present invention, FIG. 3 is a structure of a fuzzy controller, FIG. 4 is a time response of a control object to a control input value, and FIG. 5 is a general PI. VAV control simulation by the controller, FIG. 6 is a VAV control simulation by the present invention (purge control algorithm), FIG. 7 is a comparison experiment result of the general PI controller and the controller by the present invention (purge control algorithm), FIG. A general PI controller over time and a VAV trajectory controlled by a controller according to the present invention (purge control algorithm) are shown.

퍼지제어기의 구성을 살펴보면 도면 3과 같이 나타낼수 있다.Looking at the configuration of the fuzzy controller can be shown as shown in FIG.

온도검출센서의 검출온도와 기설정된 목표온도와의 오차 및 오차의 변화와 풍량 등을 각각의 입력변수로 하여 특정한 값을 인간의 판단에 적합하도록 적절한 언어변수로 바꾸어 주는 퍼지함수화하는 단계이다. 그 다음 과정으로는 이렇게 변환된 값을 인간의 사고방식을 도입하여 제어기의 출력을 판단하게 되는데, 이 퍼지추론부분은 산업체에서 양호한 특성을 보여주는 PI제어기 특성을 고려하여 이를 언어변수로 표현한다.It is a step of fuzzy function that converts a specific value into an appropriate language variable suitable for human judgment using the error between the detected temperature of the temperature detection sensor and the preset target temperature, the change of the error and the air volume as the input variables. In the next process, the converted value is introduced to the human mind, and the output of the controller is judged. This fuzzy inference part takes into account the characteristics of the PI controller showing good characteristics in the industry and expresses it as a language variable.

퍼지 제어기의 퍼지제어규칙 부분을 구성하기 위하여, P1제어기의 입출력 관계를 나타내면 식 (2)와 같다.In order to construct the fuzzy control rule part of the fuzzy controller, the input / output relationship of the P1 controller is expressed by Equation (2).

인터럽트 시간마다 제어기의 출력을 알아보기 위해서 식(2)를 시간에 대하여 미분을 취하면,To find the output of the controller at each interrupt time, take the derivative of equation (2) with respect to time,

라고 표현될 수 있다. 여기서,이고,이다. 또한, 입력에 대한의 관계는 도면 4처럼 나타난다.It can be expressed as. here, ego, to be. Also, enter For Wow The relationship of is shown in Figure 4.

도면 4에서 입력에 대한를 특정구간 n개로 나누어 언어변수로 나타내면, 다음과 같다.For input in Figure 4 Wow Is expressed as a language variable by dividing n into specific sections.

여기서는 공정상태(process state)를 나타내는 언어변수(Linguistic variable)이고,는 제어변수(control variable)이다.은 상태 변수의 퍼지값이고은 제어값이다.here Is a linguistic variable representing the process state, Is a control variable. and Is the fuzzy value of the state variable Is the control value.

주어진 퍼지제어 규칙과 입력된 값으로부터 새로운 사실을 유추해 내기 위해서는 추론법이 필요하다.Inference is needed to derive new facts from a given fuzzy control rule and input values.

퍼지추론에는 여러 가지가 있으나 본 발명에 적용된 추론법은 Mandani의 Minimum 연산이다.There are various fuzzy inferences, but the inference method applied to the present invention is Mandani's Minimum operation.

그 다음 공정으로, 이러한 퍼지값은 직접 제어대상 시스템에 입력으로 줄 수 있는 값이 아니기 때문에 추론된 퍼지값을 가장 적절히 표현할 수 있는 명확한 값으로 바꾸어주는 비퍼지화 방법이 요구되는데, 본 발명에서는 다른 비퍼지화 방법에 비해서 우월한 성능을 보이는 경향이 있는 무게 중심법(center of area method)를 이용하였다.In the next process, since the fuzzy value is not a value that can be directly input to the system to be controlled, a non-fuzzy method of converting the inferred fuzzy value into a clear value that can be most appropriately expressed is required. The center of area method was used, which tended to show superior performance over the non-fuzzy method.

무게 중심법은 합성된 출력 퍼지집합의 무게중심을 구하여, 무게중심의 좌표를 제어입력으로 사용하는 방법으로The center of gravity method finds the center of gravity of the synthesized output fuzzy set and uses the center of gravity coordinates as the control input.

n = 제어변수 전체집합의 이산화 준위n = discretization level of the whole set of control variables

과 같이 구해진다.Obtained as

위와 같이 구성된 퍼지제어기의 특성을 검증하기 위하여, 컴퓨터에 의한 모의 실험을 행하였으며 이에 대한 결과로 도면5 ,도면 6을 첨부하였다. 또한 실제 대상의 온도제어 특성을 살펴보기위하여, VAV가 설치된 IB(종로타워)에서 실험을 행하였으며 이에 대한 결과로 도면 7,도면 8을 첨부하였다.In order to verify the characteristics of the fuzzy controller configured as described above, a computer simulation was performed, and as a result, FIGS. 5 and 6 were attached. In addition, in order to examine the characteristics of the actual temperature control, the experiment was performed in IB (Jongno Tower) equipped with VAV, and as a result, Figure 7 and Figure 8 are attached.

상기와 같이 온도제어를 수행하는 본 고안은 실세계의 근사적이고 불확실한 제어대상을 기존의 논리 체계보다 인간의 사고나 자연어의 특성과 많은 유사성을 갖는 퍼지논리 제어기를 이용하여, 설정온도에 대한 빠른 응답과 온도 유지로 적절한 에너지관리와 쾌적한 조건이 만족시키는데 효과가 있다.The present invention, which performs temperature control as described above, uses a fuzzy logic controller that has more similarities to the characteristics of human thinking or natural language than the existing logic system, and provides fast response to the set temperature. It is effective to maintain proper energy management and comfortable condition by maintaining temperature.

..

Claims (2)

VAV, 온수, 냉난방온돌 중앙제어장치에 구비된 온도 제어방법에 있어서, 중앙제어장치에 입력되는 온도검출센의 검출온도와 기설정된 목표온도와의 오차 및 오차의 변화, 각각의 입출력 변수에 대하여 퍼지 변수화하는 단계; VAV, 온수, 냉난방온돌 중앙제어장치에서 입력되어진 값들과 퍼지추론 규칙, 여러 가지 퍼지함수를 사용하여 퍼지추론하는 단계; 및 상기 중앙제어장치에서 출력되는 퍼지추론의 결과를 비퍼지화 하여 VAV를 제어하는 단계를 포함하는 것을 특징으로 하는 VAV퍼지 온도제어방법.In the temperature control method provided in the VAV, hot water, and heating / heating central heating control device, an error and a change of the error between the detected temperature of the temperature detection line input to the central control device and a predetermined target temperature, and fuzzy for each input / output variable Parameterizing; Fuzzy inference using values inputted from the central control unit (VAV), hot water, heating / cooling ondol, fuzzy inference rule, and various fuzzy functions; And controlling the VAV by defusing the result of the fuzzy inference output from the central controller. VAV 온도제어방법에 있어서, 기설정된 목표온도와 오차의 변화로 지령치 풍량을 구하며, 이렇게 구해진 지령치풍량값을 현재의풍량과의 오차 및 오차의 변화를 가지고 지령치 VAV제어를 하는 방법.In the VAV temperature control method, a command value air volume is obtained by a change of a predetermined target temperature and an error, and the command value VAV control is performed using the thus obtained command value air volume value with a change of an error and an error from the current air volume.
KR1020000007691A 2000-02-17 2000-02-17 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building) KR20000024516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000007691A KR20000024516A (en) 2000-02-17 2000-02-17 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000007691A KR20000024516A (en) 2000-02-17 2000-02-17 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)

Publications (1)

Publication Number Publication Date
KR20000024516A true KR20000024516A (en) 2000-05-06

Family

ID=19647554

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000007691A KR20000024516A (en) 2000-02-17 2000-02-17 Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)

Country Status (1)

Country Link
KR (1) KR20000024516A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131844A (en) * 1984-07-23 1986-02-14 Matsushita Electric Ind Co Ltd Control of vav air conditioner
KR100202688B1 (en) * 1997-01-22 1999-06-15 권태웅 Amount of air control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131844A (en) * 1984-07-23 1986-02-14 Matsushita Electric Ind Co Ltd Control of vav air conditioner
KR100202688B1 (en) * 1997-01-22 1999-06-15 권태웅 Amount of air control method

Similar Documents

Publication Publication Date Title
JP3556956B2 (en) System identification device and method
US6477439B1 (en) Method of programming and executing object-oriented state machine logic in a controller
CN102748827B (en) Room pressure controlling system
US20080139105A1 (en) Duct static pressure control
CN103823368B (en) Based on the PID Fuzzy logic control method of weight rule table
Kobersi et al. Control of the heating system with fuzzy logic
ATE421073T1 (en) CONTROL METHOD AND APPARATUS FOR AN AIR CONDITIONING SYSTEM USING RESIDENT FEEDBACK
Khan et al. Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit
JPH11218354A (en) Room pressure controller and method having feedfoward as well as feedback control
JPH11224128A (en) Room temperature controller having feedforward and feedback control and method therefor
JP6004228B2 (en) Air conditioner
CN109708278B (en) Method and system for controlling differential operation of compressors
Zhang et al. Experimental study on a novel fuzzy control method for static pressure reset based on the maximum damper position feedback
JP2019203670A (en) Air conditioner and method
CN110895015A (en) Fuzzy self-adaptation based air conditioner temperature control method and control system
US20230250989A1 (en) Gain-scheduling system and method for improving fan speed control in air handling units
JP6344018B2 (en) Temperature and humidity control system
KR20000024516A (en) Fuzzy-VAV DDC control method to improve indoor environment in IB( Intelligent Building)
JP3383901B2 (en) Air conditioner
JPH05322279A (en) Control device for air conditioner
Bogdanovs et al. Smith Predictor for Control of the Temperature Process with Long Dead Time.
JP3805968B2 (en) Air conditioning system
JPH0632136A (en) Automobile air conditioner having fluctuation air blowing function
JP3388305B2 (en) Multi-room air conditioner
CN113606735B (en) Intelligent control method of air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application