KR20000018897A - Method for coating hydroxyapatite thin film and complex having thin film formed thereby - Google Patents

Method for coating hydroxyapatite thin film and complex having thin film formed thereby Download PDF

Info

Publication number
KR20000018897A
KR20000018897A KR1019980036733A KR19980036733A KR20000018897A KR 20000018897 A KR20000018897 A KR 20000018897A KR 1019980036733 A KR1019980036733 A KR 1019980036733A KR 19980036733 A KR19980036733 A KR 19980036733A KR 20000018897 A KR20000018897 A KR 20000018897A
Authority
KR
South Korea
Prior art keywords
apatite hydroxide
thin film
hydroxyapatite
coating
gun
Prior art date
Application number
KR1019980036733A
Other languages
Korean (ko)
Inventor
이인섭
송점식
최재만
김현이
Original Assignee
김정규
재단법인 산재의료관리원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정규, 재단법인 산재의료관리원 filed Critical 김정규
Priority to KR1019980036733A priority Critical patent/KR20000018897A/en
Publication of KR20000018897A publication Critical patent/KR20000018897A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Abstract

PURPOSE: A method for coating hydroxyapatite thin film, which provides a hydroxyapatite coating layer having enhanced adhesive powder between a base materials and stably existing in the human body, and a complex having the thin film formed thereby are provided. CONSTITUTION: The method comprises steps of: (i) adding a fixed amount of calcium compound to the hydroxyapatite; (ii) placing the hydroxyapatite and a material where the hydroxyapatite is coated in the chamber having an electronic gun and an ionic gun; (iii) make the inside of the chamber vacuously; (iv) shooting the ionic gun on the surface of the material to eliminate oxide film formed on the surface layer of the material; and (v) shooting the electronic gun on the hydroxyapatite to make the hydroxyapatite evaporate and then deposit on the surface of the material. In the complex formed by coating the hydroxyapatite thin film on the base material, the hydroxyapatite thin film is prepared by adding the fixed amount of calcium compound to the hydroxyapatite.

Description

수산화아파타이트 박막 코팅방법 및 그 박막이 형성된 복합체Apatite hydroxide thin film coating method and composite formed with the thin film

본 발명은 세라믹스 재료의 하나로서 경조직 생체재료로 사용되는 수산화아파타이트[Ca10(PO4)6(OH)2; hydroxyapatite; HA]를 베이스 재료 표면에 코팅하기 위한 수산화아파타이트 박막 코팅방법 및 그 박막이 형성된 복합체에 관한 것이다.The present invention relates to apatite hydroxide [Ca 10 (PO 4 ) 6 (OH) 2 ; hydroxyapatite; HA] coating method for coating the surface of the base material with a thin film of apatite hydroxide and a composite formed with the thin film.

최근 뼈나 관절과 같은 신체 경조직을 대체할 수 있는 인공생체재료로서 칼슘 포스페이트(calcium phosphate)의 일종인 수산화아파타이트가 각광을 받고 있다. 이 수산화아파타이트는 인체내의 뼈를 구성하는 무기질 성분과 화학적, 결정학적으로 동일한 물질로서, 이를 인체내의 뼈에 이식하면 주변세포들과 잘 어울리고 접합부위의 뼈와 직접적이고 빠른 화학적 결합을 이루는 생체활성의 특성을 지니고 있다. 그러나 이 수산화아파타이트는 뼈에 비해 경도가 너무 높고, 파괴인성이 낮은 등의 열악한 특성도 지니고 있기 때문에, 비교적 큰 하중이 걸리지 않는 귓속뼈 같은 정도에 그 응용이 제한되고 있다. 하기의 표 1은 상기 수산화아파타이트 소결체와 뼈와의 물리적 특성을 비교하여 나타낸 것이다.Recently, as an artificial biomaterial that can replace body hard tissues such as bones and joints, hydroxyapatite, a kind of calcium phosphate, has been in the spotlight. This hydroxide apatite is chemically and crystallographically identical to the minerals that make up the bones in the human body. When implanted into the bones of the human body, the apatite is well-organized and biocompatible with the surrounding cells and forms a direct and rapid chemical bond with the bones at the junction. Has characteristics. However, since the apatite hydroxide has poor properties such as too high hardness and low fracture toughness, its application is limited to the level of the inner ear bone which does not take a relatively large load. Table 1 below shows the physical properties of the apatite hydroxide sintered body and bone.

구분division bone 수산화아파타이트 소결체Apatite Hydroxide Sintered Body 밀도(g/㎤)Density (g / cm 3) 1.5∼2.21.5 to 2.2 3.1563.156 압축강도(MPa)Compressive strength (MPa) 140∼300140-300 270∼900270 to 900 굽힘강도(MPa)Bending strength (MPa) 100∼200100-200 80∼25080-250 인장강도(MPa)Tensile Strength (MPa) 20∼11420-114 90∼12090 to 120 탄성계수(GPa)Modulus of elasticity (GPa) 10∼2210 to 22 35∼12035 to 120 파괴인성(MPam1/2)Fracture Toughness (MPam 1/2 ) 2.2∼4.62.2 to 4.6 0.7∼1.20.7 to 1.2 비커스 경도(GPa)Vickers Hardness (GPa) 0.4∼0.70.4 to 0.7 3.0∼7.03.0 to 7.0

한편, 티타늄(Ti)과 그 합금들도 다른 금속(316L 스테인레스스틸, Co-Cr합금)들과 비교하여 물리적 성질이 인체 뼈와 흡사하고 기계적 강도도 뛰어나 임플란트(implant) 재료로서 많이 사용되고 있다. 그러나 상기 티타늄 합금과 같은 금속성 재료는 상기한 수산화아파타이트와 같은 세라믹 재료에 비해 생체친화성이 떨어지며, 인체 내에서 장시간 있게 되면 금속 이온의 용해가 진행되어 그로 인한 체내 무기물질의 생성이 초래되는 등의 문제가 생길 수 있다.Meanwhile, titanium (Ti) and its alloys are also widely used as implant materials because their physical properties are similar to those of human bones and their mechanical strengths are higher than those of other metals (316L stainless steel, Co-Cr alloy). However, the metallic material such as titanium alloy is less biocompatible than the ceramic material such as apatite hydroxide, and if it is in the human body for a long time, the dissolution of metal ions proceeds, resulting in the generation of inorganic substances in the body. Problems can arise.

따라서 최근에는 상기한 티타늄 합금 임플란트에 수산화아파타이트를 코팅함으로써 양쪽 재료의 장점을 겸비한 즉, 기계적 강도도 우수하고 생체 친화성도 우수한 생체 경조직용 재료를 얻으려는 시도가 진행되고 있다. 이를 위해 현재 진행되고 있는 대표적인 코팅방법으로는 플라스마 스프레이법(plasma spraying)과, 이온빔 증착법(ion beam deposition)등이 제안되고 있다.Therefore, in recent years, attempts have been made to obtain a material for biological hard tissue having both the advantages of both materials by coating the titanium alloy implant with apatite hydroxide, that is, having excellent mechanical strength and excellent biocompatibility. To this end, representative coating methods currently in progress include plasma spraying, ion beam deposition, and the like.

이중 상기 플라스마 스프레이법은 비교적 고융점을 가지는 세라믹 재료 코팅에 주로 사용되는 방법으로, 플라스마 플레임(flame)으로 수산화아파타이트 분말을 녹여서 증착 대상물에 분사하게 된다. 이는 코팅공정이 비교적 간편하고 한번에 다량의 코팅작업을 수행할 수 있는 이점이 있으나, 수산화아파타이트 분말이 코팅공정 동안 고온에 노출됨에 따라 조직이 불균일해지는 단점이 있다. 이로 인해 인체 내에서 사용될 경우 코팅층의 퇴화되고 조직이 다공질화 되거나 또는 균열이 발생될 수 있는 등의 문제점을 가지고 있다. 그리고 이 방법으로 코팅처리된 수산화아파타이트와 임플란트 사이의 밀착력은 6.7±1.5MPa정도에 불과하여, 정형외과나 치과 분야에서 요구되는 강하고 치밀한 수산화아파타이트 코팅층 생성에는 적합치 않다.The plasma spray method is a method mainly used for coating a ceramic material having a relatively high melting point. The plasma spray method dissolves the apatite hydroxide powder in a plasma flame and sprays it onto the deposition target. This has the advantage that the coating process is relatively simple and can perform a large amount of coating work at one time, but the disadvantage is that the tissue is uneven as the apatite hydroxide powder is exposed to high temperatures during the coating process. Because of this, when used in the human body has a problem such as deterioration of the coating layer and porous or cracking of the tissue may occur. The adhesion between the coated apatite hydroxide and the implant in this way is only about 6.7 ± 1.5 MPa, which is not suitable for producing the strong and dense apatite hydroxide layer required in orthopedic or dental applications.

한편 상기 이온빔 증착법을 이용하여 수산화아파타이트 코팅층을 형성한 경우, 상기한 플라스마 스프레이법에 비해서 밀착력이 8∼45MPa 정도까지 증가하기는 하지만 이 또한 실제 인체 내에 사용하기에는 다소 미흡한 수준이다.On the other hand, when the apatite hydroxide coating layer is formed by using the ion beam deposition method, the adhesion strength is increased to about 8 ~ 45MPa as compared to the plasma spray method, but this is also somewhat insufficient for use in the human body.

뿐만 아니라, 인체내에서 수산화아파타이트의 용해도 즉, 안정적으로 존재할 수 있는 수명을 결정하는데는 코팅층 내의 Ca/P비가 영향을 미치는데, 상기와 같은 종래의 방법에서는 수산화아파타이트 코팅층의 Ca/P비를 능동적으로 조절할 수 없는 단점이 있다.In addition, the Ca / P ratio in the coating layer affects the solubility of the apatite hydroxide in the human body, that is, the life that can be stably existed. In the conventional method, the Ca / P ratio of the apatite hydroxide coating layer is active. There is a disadvantage that can not be adjusted.

본 발명은 상기의 점을 감안하여 창출된 것으로서, 베이스 재료와의 밀착력이 강화되고, 인체 내에서 보다 안정적으로 존재할 수 있는 수산화아파타이트 코팅층을 형성시키기 위한 수산화아파타이트 박막 코팅방법 및 그 박막이 형성된 복합체를 제공하는데 목적이 있다.The present invention has been made in view of the above, and the adhesion between the base material and the apatite hydroxide thin film coating method for forming a hydroxyapatite coating layer that can be more stably present in the human body and the composite formed with the thin film The purpose is to provide.

도 1은 본 발명의 수산화아파타이트 박막 코팅방법을 수행하기 위한 진공 챔버 구조를 개략적으로 도시한 도면,1 is a view schematically showing a vacuum chamber structure for performing the apatite hydroxide thin film coating method of the present invention,

도 2는 본 발명의 수산화아파타이트 박막 코팅방법에 의해 형성된 코팅층과 베이스 재료간의 밀착력 측정 결과를 나타낸 그래프,Figure 2 is a graph showing the adhesion measurement results between the coating layer and the base material formed by the apatite hydroxide thin film coating method of the present invention,

도 3a는 종래의 플라스마 스프레이법에 의해 형성된 코팅층의 전자현미경 사진,3a is an electron micrograph of a coating layer formed by a conventional plasma spray method,

도 3b는 본 발명의 수산화아파타이트 박막 코팅방법에 의해 형성된 코팅층의 전자현미경 사진,Figure 3b is an electron micrograph of the coating layer formed by the coating method of the apatite hydroxide thin film of the present invention,

도 4는 본 발명의 수산화아파타이트 박막 코팅방법에 의해 형성된 코팅층의 Ca/P비 측정 결과를 나타낸 그래프,4 is a graph showing the results of measuring the Ca / P ratio of the coating layer formed by the apatite hydroxide thin film coating method of the present invention,

도 5는 본 발명의 수산화아파타이트 박막 코팅방법에 의해 형성된 코팅층의 용해도 측정 결과를 나타낸 그래프.5 is a graph showing the results of measurement of the solubility of the coating layer formed by the coating method of apatite hydroxide thin film of the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

10...전자총 20...이온총10 ... electron gun 20 ... ion gun

30...베이스 재료(Ti-6Al-4V) 40...로테이터30 ... base material (Ti-6Al-4V) 40 ... rotator

50...챔버 60...수산화아파타이트 증기50 ... chamber 60 ... apatite hydroxide vapors

70...이온빔70.Ion Beam

상기의 목적을 달성하기 위한 본 발명의 수산화아파타이트 박막 코팅방법은, 수산화아파타이트에 소정량의 Ca계 화합물을 첨가하는 첨가단계; 전자총 및 이온총이 구비된 챔버내에 상기 수산화아파타이트 및 그 수산화아파타이트가 코팅될 재료를 각각 설치하는 준비단계; 상기 챔버내를 진공화시키는 진공화단계; 상기 이온총으로 상기 재료 표면에 이온을 주사하여 그 재료 표면층의 산화막을 제거하는 이온총 주사단계; 및, 상기 전자총으로 상기 수산화아파타이트에 전자빔을 주사하여, 그 수산화아파타이트가 증발되면서 상기 재료 표면에 증착되도록 하는 증착단계;를 포함하는 것을 특징으로 한다.Apatite hydroxide thin film coating method of the present invention for achieving the above object, the addition step of adding a predetermined amount of Ca-based compound to the apatite hydroxide; Preparing steps of installing the apatite hydroxide and a material to be coated with the apatite hydroxide in a chamber equipped with an electron gun and an ion gun; Evacuating the chamber; An ion gun scanning step of scanning ions onto the material surface with the ion gun to remove an oxide film of the material surface layer; And a vapor deposition step of scanning the electron beam on the apatite hydroxide with the electron gun to deposit the apatite on the surface of the material while the apatite hydroxide is evaporated.

또한 상기 목적을 달성하기 위한 본 발명은, 베이스재료 위에 수산화아파타이트 박막이 코팅되어 형성된 복합체에 있어서, 상기 수산화아파타이트 박막에는 소정량의 Ca계 화합물이 첨가되어 이루어진 것을 특징으로 한다.In addition, the present invention for achieving the above object, in the composite formed by coating the apatite hydroxide thin film on the base material, characterized in that a predetermined amount of Ca-based compound is added to the apatite hydroxide thin film.

이하 첨부된 도면을 참조하면서, 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 수산화아파타이트 박막 코팅방법에서는, 먼저 도 1에 도시된 바와 같이 전자총(10)이 장착되고 내부의 진공화가 가능한 챔버(50)를 마련하고, 그 안에 수산화아파타이트(미도시; 전자총 내부에 장착됨) 및 그 수산화아파타이트 박막을 코팅시키고자 하는 베이스 재료로서 예컨대 티타늄 함금인 Ti-6Al-4V(30)를 각각 설치한다. 여기서 상기 수산화아파타이트에는 Ca계 화합물을 소정량 미리 첨가하여 둔다. 이 Ca계 화합물로는 예컨대 CaO, CaF2, CaCO3, CaCl2 중 선택할 수 있는데 본 실시예에서는 CaO(칼시아)를 첨가하였다. 이는 수산화아파타이트의 인체내에서의 용해도 즉, 수명에 영향을 주는 Ca/P비를 조절하기 위한 것으로서, 이 CaO의 첨가량에 따라 코팅완료후 수산화아파타이트 박막층의 Ca/P비가 변하게 된다. 따라서 이와 같이 Ca/P비를 조절할 수 있다면, 예를 들어 수산화아파타이트가 빨리 용해되기를 바라는 부위와, 반대로 오래 용해되지 않고 남아있기를 바라는 부위에 따라 Ca/P비를 적절히 선택할 수 있는 것이다. 본 발명에서는 이와 같이 코팅완료후 Ca/P비가 조절됨을 보이기 위해 CaO 12.5wt%를 첨가한 수산화아파타이트와, 25wt%를 첨가한 수산화아파타이트를 각각 코팅재로서 테스트해 보았다. 한편, 상기 챔버(50)내에 상기 전자총(10)과는 별도로 아르곤(Ar)과 같은 불활성가스를 사용하는 이온총(20)을 설치한다. 이 이온총(20)은, 상기 전자총(10) 작동 전에 상기 Ti-6Al-4V(30) 표면에 이온을 주사하여 그 표면 산화층을 제거하기 위해 설치된다. 물론 이 이온총(20)이 없이도 수산화아파타이트의 코팅을 수행할 수는 있으나, 이를 사용하게 되면 베이스 재료와 코팅층 사이에 혼합층이 형성되어 밀착력이 더 향상되는 효과가 있어 유리하다. 참조부호 40은 베이스 재료인 Ti-6Al-4V(30)를 지지하여 회전시키기 위한 로테이터를 나타낸다.In the method for coating a thin layer of apatite hydroxide of the present invention, as shown in FIG. 1, an electron gun 10 is mounted and a chamber 50 capable of vacuuming therein is provided, and an apatite hydroxide (not shown) is mounted inside the gun. And Ti-6Al-4V (30), each of which is a titanium alloy, is provided as a base material to be coated with the thin layer of apatite hydroxide. Here, a predetermined amount of Ca-based compound is added to the apatite hydroxide in advance. As the Ca-based compound, for example, CaO, CaF 2, CaCO 3 or CaCl 2 can be selected. In this embodiment, CaO (calcia) was added. This is to adjust the Ca / P ratio affecting the solubility in the human body, that is, the lifetime of the apatite hydroxide, the Ca / P ratio of the thin film of the apatite hydroxide layer after the coating is changed according to the addition amount of this CaO. Therefore, if the Ca / P ratio can be adjusted in this way, for example, the Ca / P ratio can be appropriately selected depending on the site where the apatite hydroxide is desired to dissolve quickly, and on the contrary, the site that is desired to remain undissolved for a long time. In the present invention, in order to show that the Ca / P ratio is controlled after the completion of the coating, the apatite hydroxide added with CaO 12.5wt% and the apatite hydroxide added with 25wt% were tested as coating materials. Meanwhile, an ion gun 20 using an inert gas such as argon (Ar) is installed in the chamber 50 separately from the electron gun 10. The ion gun 20 is installed to inject ions onto the surface of the Ti-6Al-4V 30 and remove the surface oxide layer before the electron gun 10 is operated. Of course, it is possible to perform the coating of the apatite hydroxide without the ion gun 20, it is advantageous to use it because the mixed layer is formed between the base material and the coating layer to further improve the adhesion. Reference numeral 40 denotes a rotator for supporting and rotating the base material Ti-6Al-4V 30.

이와 같이 전자총(10)과 이온총(20) 등이 구비된 챔버(50)내에 Ti-6Al-4V(30)와 수산화아파타이트가 각각 준비되면, 그 챔버 내부를 약 10-7Torr 수준의 고진공 상태로 만든다. 그리고 이어서 상술한 바와 같이 이온총(20)으로 상기 Ti-6Al-4V(30) 표면에 소정 시간동안 이온을 주사하여 표면 산화층을 제거한다. 다음으로 상기 전자총(10)을 가동하여 수산화아파타이트에 전자빔을 주사함으로써 그 수산화아파타이트를 증발시킨다. 이와 같이 증발된 수산화아파타이트 증기(60)는 챔버(50)내의 진공 공간을 비행하여 상기 Ti-6Al-4V(30)의 표면에 달라붙음으로써 코팅이 이루어지게 된다.As described above, when Ti-6Al-4V 30 and apatite hydroxide are prepared in the chamber 50 including the electron gun 10 and the ion gun 20, the inside of the chamber is in a high vacuum state of about 10 −7 Torr level. Make it. Subsequently, as described above, the surface of the Ti-6Al-4V 30 is injected into the surface of the Ti-6Al-4V 30 to remove the surface oxide layer. Next, the electron gun 10 is operated to inject the electron beam into the apatite hydroxide to evaporate the apatite hydroxide. The vaporized apatite hydroxide vapor 60 is thus coated by flying the vacuum space in the chamber 50 and sticking to the surface of the Ti-6Al-4V 30.

한편 이와 같은 코팅방식은 저온 즉, 실온 이하에서도 수행될 수 있어서, 상술한 금속 위의 코팅뿐 아니라 고분자재료 위에 수산화아파타이트를 코팅하는데도 적용할 수 있다.On the other hand, such a coating method can be carried out at a low temperature, that is, room temperature or less, and can be applied to coating apatite hydroxide on a polymer material as well as the coating on the above-described metal.

상기와 같이 본 발명의 코팅방법에 따라 수산화아파타이트 박막 코팅이 이루어진 재료의 특성을 알아보기 위해 다음과 같은 시험을 수행해 보았다. 시험 대상재는 순수한 수산화아파타이트를 코팅한 것과, 상기한 바와 같이 CaO를 각각 12.5wt% 와 25wt%씩 첨가한 수산화아파타이트를 코팅한 것이다.As described above, the following tests were performed in order to find out the characteristics of the material in which the apatite hydroxide thin film coating was made according to the coating method of the present invention. The test material was coated with pure apatite hydroxide and coated with apatite hydroxide added with CaO of 12.5wt% and 25wt%, as described above.

먼저 각 케이스별로 베이스 재료인 Ti-6Al-4V와 코팅층간의 밀착력을 측정해본 결과를 도 2에 도시하였다. 도시된 바와 같이 먼저 순수한 수산화아파타이트를 코팅한 경우 약 35MPa정도의 밀착력을 보이고, CaO를 12.5wt% 와 25wt%씩 함유한 수산화아파타이트를 코팅한 경우 그 밀착력이 각각 70MPa과 55MPa정도로 나타나게 된다. 이는 기존에 플라스마 스프레이법을 사용하여 코팅한 경우 밀착력이 6.7±1.5MPa정도로 나타나는 것에 비해, 상당히 증가된 값임을 알 수 있다. 이러한 결과의 원인은 도 3a 및 도 3b의 전자현미경 사진에 비교되는 바와 같이, 전자빔 증착에 의한 코팅층(도 3a)이 플라스마 스프레이법에 의한 것(도 3b)에 비해 더 균일해지고 치밀해졌기 때문으로 판단된다. 따라서 본 발명의 코팅방법에 의하면 수산화아파타이트 코팅층과 베이스 재료와의 밀착력이 더욱 견고해짐을 확인할 수 있었다.First, the results of measuring adhesion between the base material Ti-6Al-4V and the coating layer for each case are shown in FIG. 2. As shown in the drawing, when the pure apatite hydroxide is coated, the adhesion of about 35MPa is shown, and when the apatite hydroxide containing CaO 12.5wt% and 25wt% is coated, the adhesion is about 70MPa and 55MPa, respectively. This can be seen that when the coating using the conventional plasma spray method, the adhesion is significantly increased compared to the 6.7 ± 1.5MPa. The reason for this result is that, as compared with the electron micrographs of FIGS. 3A and 3B, the coating layer (FIG. 3A) by electron beam deposition is more uniform and dense than that by the plasma spray method (FIG. 3B). Judging. Therefore, according to the coating method of the present invention, the adhesion between the apatite hydroxide coating layer and the base material was confirmed to be more firm.

다음으로는 상기 각 경우에 대해 코팅층에 형성된 Ca/P비와, 그에 따른 생리 식염수 내에서의 용해도를 측정해 보았다. 그 결과 도 4 및 도 5에 도시된 바와 같이, 순수 수산화아파타이트를 코팅한 경우는, 수산화아파타이트 증발원 자체의 Ca/P비가 1.626이었고, 코팅 후 코팅층에 나타난 Ca/P비가 1.124였다. 그리고 이를 생리 식염수 내에 8시간 방치해 두었을 때 6000Å 정도가 용해되었다. 그러나 CaO를 12.5wt%와 25wt%씩 첨가한 수산화아파타이트의 경우는, 증발원 자체의 Ca/P비가 각각 2.149 및 3.316이었고, 코팅 후 코팅층에 나타난 Ca/P비가 1.496과 1.724였다. 그리고 이를 생리 식염수 내에 8시간 담가 두었을 때 용해 정도는 각각 70Å과 1350Å정도로 나타났다. 즉, Ca/P비가 변화됨에 따라 코팅층의 용해속도도 다양하게 변화됨을 확인할 수 있었다. 따라서 본 발명과 같이 수산화아파타이트에 CaO를 첨가한 증발원을 사용하여 코팅함으로써 박막의 Ca/P비 변화가 가능하게 되어, 인체내에서의 용해도를 조절할 수 있게 된다.Next, the Ca / P ratio formed in the coating layer and solubility in physiological saline were measured for each of the above cases. As a result, as shown in FIGS. 4 and 5, when pure apatite hydroxide was coated, the Ca / P ratio of the evaporation source of the apatite hydroxide was 1.626, and the Ca / P ratio appeared in the coating layer after the coating was 1.124. And when it was left in physiological saline for 8 hours, about 6000 Å dissolved. However, in the case of the apatite hydroxide added with CaO 12.5wt% and 25wt%, the Ca / P ratio of the evaporation source itself was 2.149 and 3.316, respectively, and the Ca / P ratio appeared in the coating layer after coating was 1.496 and 1.724. When soaked in physiological saline for 8 hours, the degree of dissolution was about 70Å and 1350Å, respectively. That is, as the Ca / P ratio is changed it was confirmed that the dissolution rate of the coating layer is also variously changed. Therefore, by coating using an evaporation source to which CaO is added to the apatite hydroxide as in the present invention, it becomes possible to change the Ca / P ratio of the thin film, it is possible to control the solubility in the human body.

상술한 바와 같이 본 발명의 수산화아파타이트 박막 코팅방법에 따라 제조된 복합체를 사용하게 되면, 코팅층과 베이스 재료간의 밀착력이 증가되고, 또한 Ca/P비를 조절하여 인체내에서 재료의 용해속도를 조절할 수 있다.As described above, when using the composite prepared according to the method for coating the apatite hydroxide thin film of the present invention, the adhesion between the coating layer and the base material is increased, and the Ca / P ratio can be adjusted to control the dissolution rate of the material in the human body. have.

본 발명은 상기에 설명되고 도면에 예시된 것에 의해 한정되는 것은 아니며, 다음에 기재되는 청구의 범위 내에서 더 많은 변형 및 변용예가 가능한 것임은 물론이다.It is to be understood that the invention is not limited to that described above and illustrated in the drawings, and that more modifications and variations are possible within the scope of the following claims.

Claims (4)

수산화아파타이트에 소정량의 Ca계 화합물을 첨가하는 첨가단계;An addition step of adding a predetermined amount of Ca-based compound to the apatite hydroxide; 전자총 및 이온총이 구비된 챔버내에 상기 수산화아파타이트 및 그 수산화아파타이트가 코팅될 재료를 각각 설치하는 준비단계;Preparing steps of installing the apatite hydroxide and a material to be coated with the apatite hydroxide in a chamber equipped with an electron gun and an ion gun; 상기 챔버내를 진공화시키는 진공화단계;Evacuating the chamber; 상기 이온총으로 상기 재료 표면에 이온을 주사하여 그 재료 표면층의 산화막을 제거하는 이온총 주사단계; 및,An ion gun scanning step of scanning ions onto the material surface with the ion gun to remove an oxide film of the material surface layer; And, 상기 전자총으로 상기 수산화아파타이트에 전자빔을 주사하여, 그 수산화아파타이트가 증발되면서 상기 재료 표면에 증착되도록 하는 증착단계;를 포함하는 것을 특징으로 하는 수산화아파타이트 박막 코팅방법.And depositing an electron beam on the apatite hydroxide with the electron gun to deposit it on the surface of the material while the apatite hydroxide is evaporated. 제1항에 있어서,The method of claim 1, 상기 재료는 티타늄 합금인 것을 특징으로 하는 수산화아파타이트 박막 코팅방법.Wherein said material is a titanium alloy. 제1항에 있어서,The method of claim 1, 상기 재료는 고분자재료인 것을 특징으로 하는 수산화아파타이트 박막 코팅방법.The material is an apatite hydroxide thin film coating method, characterized in that the polymer material. 베이스재료 위에 수산화아파타이트 박막이 코팅되어 형성된 복합체에 있어서,In the composite formed by coating a thin layer of apatite hydroxide on the base material, 상기 수산화아파타이트 박막에는 소정량의 Ca계 화합물이 첨가되어 이루어진 것을 특징으로 하는 복합체.The composite is characterized in that a predetermined amount of Ca-based compound is added to the apatite hydroxide thin film.
KR1019980036733A 1998-09-07 1998-09-07 Method for coating hydroxyapatite thin film and complex having thin film formed thereby KR20000018897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980036733A KR20000018897A (en) 1998-09-07 1998-09-07 Method for coating hydroxyapatite thin film and complex having thin film formed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980036733A KR20000018897A (en) 1998-09-07 1998-09-07 Method for coating hydroxyapatite thin film and complex having thin film formed thereby

Publications (1)

Publication Number Publication Date
KR20000018897A true KR20000018897A (en) 2000-04-06

Family

ID=19549761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980036733A KR20000018897A (en) 1998-09-07 1998-09-07 Method for coating hydroxyapatite thin film and complex having thin film formed thereby

Country Status (1)

Country Link
KR (1) KR20000018897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073801A (en) * 2000-01-20 2001-08-03 김현이 Manufacturing method of composite implant material
US7416564B2 (en) 2003-11-26 2008-08-26 Seoul National University Industry Foundation Porous bioceramics for bone scaffold and method for manufacturing the same
KR100855017B1 (en) * 2006-12-06 2008-08-28 연세대학교 산학협력단 Implantable biomaterials coated bioglass thin film and preparation method of the same
KR100913009B1 (en) * 2007-12-26 2009-08-20 주식회사 포스코 Implant being harmony with a living body and the manufacturing Method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073801A (en) * 2000-01-20 2001-08-03 김현이 Manufacturing method of composite implant material
US7416564B2 (en) 2003-11-26 2008-08-26 Seoul National University Industry Foundation Porous bioceramics for bone scaffold and method for manufacturing the same
KR100855017B1 (en) * 2006-12-06 2008-08-28 연세대학교 산학협력단 Implantable biomaterials coated bioglass thin film and preparation method of the same
KR100913009B1 (en) * 2007-12-26 2009-08-20 주식회사 포스코 Implant being harmony with a living body and the manufacturing Method thereof

Similar Documents

Publication Publication Date Title
Liu et al. Surface modification of titanium, titanium alloys, and related materials for biomedical applications
US6846853B2 (en) Calcium phosphate bone graft material, process for making same and osteoimplant fabricated from same
Surmenev A review of plasma-assisted methods for calcium phosphate-based coatings fabrication
Gu et al. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF)
Dinda et al. Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: Effect of heat treatment on structure and properties
Ong et al. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition
Choi et al. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate
Lee et al. Various Ca/P ratios of thin calcium phosphate films
US20090012611A1 (en) Plasma sprayed porous coating for medical implants
Chu et al. Surface design of biodegradable magnesium alloys for biomedical applications
US6974532B2 (en) Method for producing adherent coatings of calcium phosphate phases on titanium and titanium alloy substrates by electrochemical deposition
Choi et al. Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition
Choudhury et al. Hydroxyapatite (HA) coatings for biomaterials
KR20070063114A (en) Metal implants and manufacturing method thereof
Kim et al. Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion-beam assisted deposition
TW486374B (en) Non-dissolvable hydroxyapatite/titanium coating for implant application
Peraire et al. Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coatings
KR20000018897A (en) Method for coating hydroxyapatite thin film and complex having thin film formed thereby
Thian et al. Processing of HA-coated Ti–6Al–4V by a ceramic slurry approach: an in vitro study
EP2491161B1 (en) Surface coatings for medical implants
KR20070029912A (en) Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same
JPH0223179B2 (en)
KR102179122B1 (en) Fabrication method of bioactive polymer-implant and bioacitve polymer-implant fabricated by the same
KR100431159B1 (en) Method for producing Ti-based implant having bioactive surface as substitute for bone tissue
KR102331708B1 (en) PEEK substrate with HA coating layer of porous nanocomposite structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application