KR20000017719A - anti-cancerous bamboo salt - Google Patents

anti-cancerous bamboo salt Download PDF

Info

Publication number
KR20000017719A
KR20000017719A KR1019990036372A KR19990036372A KR20000017719A KR 20000017719 A KR20000017719 A KR 20000017719A KR 1019990036372 A KR1019990036372 A KR 1019990036372A KR 19990036372 A KR19990036372 A KR 19990036372A KR 20000017719 A KR20000017719 A KR 20000017719A
Authority
KR
South Korea
Prior art keywords
salt
salts
effect
nacl
bamboo
Prior art date
Application number
KR1019990036372A
Other languages
Korean (ko)
Inventor
박건영
하정옥
Original Assignee
박건영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박건영 filed Critical 박건영
Priority to KR1019990036372A priority Critical patent/KR20000017719A/en
Publication of KR20000017719A publication Critical patent/KR20000017719A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention

Abstract

PURPOSE: An anticancer bamboo salt with relatively-rich potassium content in comparison with sodium content of general salts is provided which shows excellent anticancer effect in that its has no peroxidative facilitating effectiveness and low reinforcing mutation effect by a carcinogen. CONSTITUTION: The overall process is followed by the next steps of: (1) Finding out inorganic contents for processed salt including bamboo salt, mechanic salt and sun-dried salt respectively; (2) Measuring peroxidative numerical values for the salts to examine mechanism to reinforcing carcinogenic effect; (3) and Examining reinforcing mutation effect of the salts by Ames' mutation induction test and SOS chromotest.

Description

항암성 죽염{anti-cancerous bamboo salt}Anti-cancerous bamboo salt

본 발명은 항암성 죽염에 관한 것이다. 더욱 상세하게는, 본 발명은 K의 함량이 높아 과산화 촉진능이 없고 발암물질에 대해 항돌연변이 효과를 나타내는 항암성 죽염에 관한 것이다.The present invention relates to anticancer bambooitis. More specifically, the present invention relates to an anticancer bamboo salt having a high K content, which does not promote peroxidation and exhibits an antimutagenic effect on carcinogens.

소금은 거의 모든 식품의 조리에 사용되어 저장성과 풍미에 영향을 주거나 식탁염으로 사용되어 가장 일상적으로 섭취되고 있는 조미료이다. 소금의 종류는 다양한데 KS 규격에 따라 정제염의 규격을 원용하면 소금은 크게 천일염과 정제염으로 나누어지고 정제염은 기계염과 가공염으로 분류되고 있다. 천일염은 서해안의 해수를 모아 태양열과 바람에 의해 수분을 증발시켜 염으 결정을 얻은 것이다. 최근에는 해수오염과 쓴맛이 있는 간수를 제거한 천일염(생소금)이 나오는 데 이것은 서해안의 천일염을 분쇄한 후 물세척을 하여 불순물과 간수를 제거한 후 원심분리한 것을 말한다. 이에 비해 고도로 정제된 기계염은 바닷물을 끌여 들여 이온교환막을 이용하여 염화나트륨만을 추출한 소금(시약용 NaCl 및 한주소금)으로 기계적인 대량생산을 한다. 최근에 시중에 나와 있는 가공염은 가열공정을 거쳐 가공하는 방법이 공통적인데 천일염을 세라믹 반응로에서 800℃ 이상 고온으로 2번 구워 불순물과 간수, 유해성분을 제거한 것(구운소금)과 이보다 높은 온도인 1300℃이상 고온에서 3번 구운(생금)것이 있다. 죽염은 우리나라의 사찰 등지에서 제조되어 오던 것으로 천일염을 대나무 속에 다져 넣고 대나무 입구는 진흙을 반죽하여 봉한 후 가마에서 8번 1000 ~ 1300℃로 가열한 후 9번째 송진가루를 장작 위에 뿌려 1300 ~ 1700℃로 가열하면 소금이 용융되었다가 식으면서 죽염 결정이 된다.Salt is the most commonly consumed seasoning used to cook almost any food, affecting shelf life and flavor, or as a table salt. There are various kinds of salts. According to KS standard, if you use the specification of refined salt, salt is divided into natural salt and refined salt, and refined salt is classified into mechanical salt and processed salt. Solar salt is a salt crystal obtained by collecting seawater from the west coast and evaporating moisture by solar heat and wind. Recently, sea salt (fresh salt) comes out of sea water and bitter salt water, which means that the sea salt on the west coast is crushed, washed with water to remove impurities and water, and then centrifuged. On the other hand, highly purified mechanical salts are mechanically mass-produced with salt (reagent NaCl and Hanjugeum) extracted with sodium chloride only by using seawater and using ion exchange membranes. In recent years, processed salts commonly used in the market are commonly processed by heating process. Natural salts are baked twice in a ceramic reactor at a high temperature of 800 ° C. or higher to remove impurities, water, and harmful components (baked salt) and higher temperatures. It is baked three times at high temperature over 1300 ℃. Bamboo salt has been manufactured in Korean temples, etc. Chopped sun-dried salt into bamboo, and the bamboo inlet was kneaded and sealed in mud and heated to 1000 ~ 1300 ℃ 8 times in a kiln, and then sprinkled with ninth pine nuts on firewood 1300 ~ 1700 ℃ When heated, the salt melts and cools to form bamboo salt crystals.

상기와 같은 소금은 생리적으로 산과 알칼리의 균형을 이루며 신경과 근육의 흥분성을 유지시키는 중요한 무기질중 하나이다. 그러나 짠음식 및 염장된 식품의 다량 섭취가 위암 및 뇌졸중 발생의 원인이 될 수 있다고 알려져 있을 뿐만 아니라 소금은 암발생을 돕는 역할을 한다고 알려져 있다. NaCl의 발암을 돕는 역할에 대한 기작은 먼저 NaCl이 침투성이 큰 계면활성제로 작용해 발암물질의 매개체가 되어 N-메틸-N'-니트로-N-니트로소구아니딘(N-methyl-N'-nitro-N-nitrosoguanidine;Such salts are one of the important minerals that keep the nerves and muscles excited while physiologically balancing acid and alkali. However, it is known that ingestion of salty foods and salted foods may cause gastric cancer and stroke, and salt is known to help cancer development. The mechanism behind the role of NaCl in carcinogenesis is that NCl acts as a highly permeable surfactant and is a mediator of carcinogens, resulting in N-methyl-N'-nitro-N-nitrosoguanidine (N-methyl-N'-nitro). -N-nitrosoguanidine;

MNNG)과 같은 발암물질이 점막안으로 침투해 들어 가는 것을 높여 표적세포에 유효농도로 증가시키는 작용을 한다는 것이다. 그리고 NaCl은 세포증식(cell proliferation)에 관여한다는 것으로 세포증식설로 추측되는 기작은 첫째, NaCl의 세포독성에 의해 세포증식이 촉진된다는 것으로 고농도의 NaCl은 위의 표면점막세포를 균일하게 파괴시켜 위점막에 계속적인 손상을 주어 세포를 증식시킨다. 둘째, 소금이 위점막에서 지질과산화에 영향을 끼쳐 세포증식에 관여한다는 것이다. 2 ~ 4% NaCl 첨가 식이를 5주 행한 결과 위의 분문부에서 지질과산화가 증가함에 따라 점막세포가 증식되었으며 Takahashi 등은 NaCl이 표적세포(target tissue)에서 지질과산화를 유도하여 위점막과 뇨에서 NaCl의 농도가 증가함에 따라 말론디알데하이드(malondialdehyde;MDA)가 증가되었다고 보고하였다. 그리고 셋째로 소금이 ODC(ornithine decarboxylase)활성을 증가시킨다는 것인데, 고농도의 NaCl은 위장점막의 ODC 활성을 증가시켜 결과적으로 DNA 합성을 증가시키는 것으로 알려져 있다.Carcinogens such as MNNG) increase the penetration into mucous membranes and increase the effective concentration to target cells. In addition, NaCl is involved in cell proliferation, and the mechanism of cell proliferation is suggested. First, cell proliferation is promoted by cytotoxicity of NaCl. High concentration of NaCl destroys gastric mucosa of gastric mucosa uniformly. Prolongs damage to cells to multiply. Second, salt affects lipid peroxidation in gastric mucosa and is involved in cell proliferation. After 5 weeks of dietary supplementation with 2-4% NaCl, mucosal cells proliferated as lipid peroxidation was increased in the stomach, and Takahashi et al. Reported that NaCl induced lipid peroxidation in target tissues in gastric mucosa and urine. Malondialdehyde (MDA) was reported to increase with increasing NaCl concentration. And thirdly, salt increases ODC (ornithine decarboxylase) activity. High concentrations of NaCl are known to increase ODC activity of gastrointestinal mucosa, resulting in increased DNA synthesis.

한편, 식품 속에서 NaCl의 산화촉진효과는 소금을 염장하지 않은 고기에 첨가할 경우 지질산화를 촉진하여 향미와 색의 손실을 유발시킨다. 그러나 Rhee 등의 보고에 의하면 NaCl을 KCl로 대체할 경우 염(Salts)에 의한 지질산화가 촉진되는 것을 감소시켰다. 또한 NaCl과 MgCl2는 생고기와 조리된 시료를 모두 산패시켰으나 KCl은 생고기에서만 산패를 증가시켰다. 그러므로 KCl로 NaCl을 대체하는 것은 시료의 산패를 감소시키는데 가장 효과적이라고 하였다. Watts와 Peng는 NaCl, MgCl2, Na2NO3, NaCH3COO, K2NO3가 동결 중에 가열하지 않은 돼지고기에 산패를 촉진시키는 효과가 있으나 KCl은 그러한 효과가 없었으며 Zipser 등도 KCl이 산패진행을 다소 저해한다고 보고하였다. 따라서 소금중 NaCl이 가장 강한 과산화 촉진작용을 하며 KCl의 그러한 효과가 적은 것으로 나타나 있다.On the other hand, the oxidation-promoting effect of NaCl in food promotes lipid oxidation when added to salt-free meat, causing loss of flavor and color. However, Rhee et al. Reported that the substitution of NaCl with KCl reduced the promotion of lipid oxidation by salts. NaCl and MgCl 2 rancid both raw and cooked samples, whereas KCl increased rancid only in raw meat. Therefore, replacing NaCl with KCl was the most effective in reducing the rancidity of the sample. Watts and Peng have the effect of promoting rancidity in pork that was not heated during the freezing of NaCl, MgCl 2 , Na 2 NO 3 , NaCH 3 COO, and K 2 NO 3 , but KCl had no such effect and Zipser et al. Reported to be somewhat inhibited. Therefore, NaCl in salt has the strongest peroxidation promoting effect and KCl is shown to have little such effect.

Jacobs는 DMH(1,2-dimethylhydrazine)에 의해 흰쥐 소장의 종양을 유도시켰을 때 KCl(0.5%) 보충급수로 인해서 종양생성을 40%에서 KCl을 함께 처리시 5% 로 유의적(p<0.05)으로 감소시켰으며 K 보충급수의 농도는 혈액검사에서 전혀 독성을 나타내지 않았다고 하였다. 이와같이 K는 항암효과를 나타낸다.Jacobs induced tumor formation in rat small intestine by DMH (1,2-dimethylhydrazine) due to KCl (0.5%) supplementation, resulting in tumor formation from 40% to 5% when treated with KCl (p <0.05). The concentration of K supplementation was not toxic at all. Thus K exhibits anticancer effect.

따라서 본 발명자들은 죽염을 포함하는 가공염과 기계염 및 천일염에 포함된 무기질 함량을 조사한 결과 기계염은 다른 소금에 비해 Na의 함량이 높았으며 K나 Mg, Ca 등의 무기질은 거의 함유하고 있지 않음을 알았고 이 결과를 토대로 연구를 거듭한 결과 K가 다량 함유된 죽염은 Na가 주요 성분인 천일염 및 기계염에 비해 과산화촉진능이 낮으며 또 살모넬라 타이피무리움 TA100(Salmonella typhimurium TA100) 균주와 발암물질인 MNNG에 대한 보돌연변이성을 현저히 낮추어 항암성을 나타내는 탁월한 효과가 있음을 확인하고 본 발명을 완성하였다.Therefore, the inventors of the present invention examined the mineral content of processed salts including bamboo salt, and mechanical salts and sun salt, and found that mechanical salts had higher Na content than other salts and contained almost no minerals such as K, Mg, and Ca. Based on the results of the study, bamboo salts containing a large amount of K have lower peroxide-promoting ability than natural salts and mechanical salts of which Na is the main ingredient, and Salmonella typhimurium TA100 strain and carcinogen MNNG Significantly lowered the mutagenicity was confirmed that there is an excellent effect showing anticancer properties and completed the present invention.

따라서 본 발명의 목적은 과산화촉진능이 없고 발암물질에 의한 돌연변이 억제능이 있어 항암성을 나타내는 죽염을 제공함에 있다.Therefore, an object of the present invention is to provide a bamboo salt exhibiting anti-cancer properties due to the ability to inhibit peroxidation and to inhibit mutations caused by carcinogens.

본 발명의 상기 목적은 죽염을 포함하는 가공염과 기계염 및 천일염의 무기질 함량을 조사한 후 상기 소금시료의 과산화물가를 측정하여 소금의 보발암효과에 대한 기전을 조사하고 Ames의 돌연변이 유발성 시험과 SOS 크로모테스트(SOS chromotest)에 의해 역시 상기 소금들의 보돌연변이 효과를 조사하므로써 달성하였다.The object of the present invention is to examine the mineral content of the salt and the salts of the processed salt, including the bamboo salt and the mechanical salt and sun salt, and then to investigate the mechanism of the salt-to-carcinogenic effect of the salt sample and the mutagenicity test of Ames and SOS chromo A test (SOS chromotest) was also achieved by investigating the mutagenic effect of the salts.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1은 리놀레산(linoleic acid)의 자동산화(Autoxidation)에 미치는 NaCl의 영향을 나타낸 그래프이다.1 is a graph showing the effect of NaCl on the autoxidation of linoleic acid.

도 2는 N-메틸-N'-니트로-N-니트로소구아니딘(N-methyle-N'-nitro-N- nitrosoguanidine;MNNG)에 의한 살모넬라 타이피무리움 TA100(Salmonella typhimurium TA100) 균주의 보돌연변이 유도능에 미치는 여러 소금의 영향을 나타낸 그래프이다.Figure 2 is a mutation of the Salmonella typhimurium TA100 strain (N-methyle-N'-nitro-N-nitrosoguanidine; MNNG) strain N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) It is a graph showing the effect of various salts on induction capacity.

본 발명은 유지에 기계염, 천일염 및 죽염을 포함하는 가공염 각각의 무기질 함량을 유도결합 플라스마 방출 분광기(Inductively CoupledPlasma Atomic Emission Spectrumeter: ThermoJarrell Ash ICP-AES-IRIA. USA)을 이용하여 측정하는 단계; 상기 각 소금시료를 유지에 첨가하고 자동산화시킨 후 물과 클로로포름으로 추출한 추출물에 아세트산을 가하고 포화 KI 용액을 가해 진탕한 후 지시약으로 전분용액을 사용하여 0.01N-티오황산나트륨으로 적정하므로써 과산화물가를 구하는 단계; 쥐간의 마이크로좀 효소화합물인 S9 혼합물에 균주와 기계염, 천일염 및 죽염을 포함하는 가공염 각각과 돌연변이 유발물질 MNNG을 넣고 배양한 후 다시 최소 글루코스아가 플레이트에 도말하여 배양한 다음 복귀돌연변이 숫자를 계수하여 보돌연변이 효과를 조사하는 단계 및; E.coli PQ37/plasmid 101(PQ37) 균액을 배양하여 희석한 후 별도로 기계염, 천일염, 죽염을 포함하는 가공염 및 돌연변이원을 분주한 96웰 플레이트에 상기 균희석액을 분주하여 SOS 반응을 유도한 후 β-갈락토시다아제(β-galactosicase) 활성과 알카라인 포스페타아제(alkaline phosphatase 활성을 측정하여 보돌연변이 효과를 조사하는 단계로 구성된다.The present invention comprises the steps of measuring the mineral content of each of the processed salts, including mechanical salts, sun salts and bamboo salts in oil and fat using an Inductively Coupled Plasma Atomic Emission Spectrumeter: ThermoJarrell Ash ICP-AES-IRIA.USA; After adding each salt sample to fats and oils and autooxidizing, adding acetic acid to the extract extracted with water and chloroform, shaking with adding saturated KI solution, and titrating with 0.01 N sodium thiosulfate using starch solution as an indicator to obtain peroxide value. ; Inoculate S9 mixture of microsomal enzyme compounds of rat liver with processed strains including strains, mechanical salts, sun salts and bamboo salts, and mutagen MNNG. Incubate with a minimum glucose agar plate and incubate again. Investigating the effects of mutations; After incubating and diluting the E. coli PQ37 / plasmid 101 (PQ37) microbial solution, the fungal diluent was inoculated into 96-well plates in which the processed salt and the mutagen, including the mechanical salt, sun salt and bamboo salt, were separately injected to induce the SOS reaction. It is composed of the step of investigating the effect of mutation by measuring the galactosidase (β-galactosicase) activity and alkaline phosphatase activity.

상기 구성에 의하면 뇨의 MDA 함량은 in vivo의 다른 기관이나 위점막에서 지질과산화상태의 직접적인 측도로 인식되는데 NaCl이 표적조직에서 지질과산화를 증가시켜 위점막과 뇨에서 NaCl의 농도가 증가함에 따라 말론디알데하이드(malondialdehyde;MDA)가 증가되었으며 NaCl을 2 ~ 4% 첨가한 식이를 5주 동안 행한 결과 분문부에서 지질과산화의 증가와 평행하여 점막세포의 증식이 증가되었다는 Takahashi M. 등의 보고에 따라 식이 중 소금은 위점막에서 지질과산화에 영향을 끼쳐 세포증식에 관여한다는 것을 알 수 있므로 소금의 보발암효과에 대한 기전을 추정하기 위한 하나의 방법으로 소금의 과산화 촉진효과를 비교 실험하였다.According to the above composition, the MDA content of urine is recognized as a direct measure of lipid peroxidation status in other organs or gastric mucosa in vivo. As NaCl increases lipid peroxidation in target tissue, the concentration of NaCl in gastric mucosa and urine increases. According to Takahashi M. et al., Report that an increase in malondialdehyde (MDA) and a diet containing 2 to 4% of NaCl for 5 weeks resulted in an increase in the proliferation of mucosal cells in parallel with the increase in lipid peroxidation. Since salt in the diet affects lipid peroxidation in gastric mucosa and is involved in cell proliferation, we compared salt peroxidation promoting effect as one method to estimate the mechanism of salt's carcinogenic effect.

본 발명에서 사용한 소금 시료는 시중에 판매되고 있는 정제과정을 거친 기계염 2종[NaCl 시약용(Junsei Chemical Co., Ltd)과 한주소금)]과 천일염 2종[(주)산내들에서 구입한 서해안 천일염, 생소금(주) 산내들] 그리고 가열처리 공정을 거친 가공염 3종[구운소금(주) 산내들. 생금(주)산내들, 죽염(개암죽염)을 각각 사용하였다.Salt samples used in the present invention are two kinds of purified mechanical salts commercially available (NaCl reagent (Junsei Chemical Co., Ltd) and Hanjugeum)] and two kinds of natural salts [west coast sun salts purchased from Sansan Co., Ltd.] , Raw salt Co., Ltd.] and three kinds of processed salts (baked salt Co., Ltd.). Mountain salts, bamboo salt (hazelnut) were used, respectively.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만Hereinafter, the specific method of the present invention will be described in detail with reference to Examples.

본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.The scope of the present invention is not limited only to these examples.

실시예 1 : 소금시료의 무기질 함량측정Example 1 Measurement of Mineral Content in Salt Samples

소금시료로 기계염 2종[NaCl 시약용(Junsei Chemical Co., Ltd)과 한주소금)]과 천일염 2종[(주)산내들에서 구입한 서해안 천일염, 생소금(주) 산내들] 그리고 가공염 3종[구운소금(주) 산내들. 생금(주)산내들, 죽염(개암죽염) 각각 1g을 1% 질산용액에 녹여 가열관에서 3시간 가열시킨 후 Na은 1,200배 희석, 다른 무기질은 600배 희석하여 시료로 사용하였다. 유도결합 플라스마 방출분광기(Inductively Coupled Plasma Atomic Emission Spectrometer:Thermo Jarrell Ash ICP-AES-IRIS. USA)를 이용하여 시료의 무기질 함량을 측정하였다. 소금내의 Na 함량은 원자흡수분광기(Atomic Absorption Spectromerer; Thermo Jarrell Ash AA Spectrometer 1000/4000, USA)로 측정하고, Cl은 Mohr법에 따랐는데 0.1N AgNO3를 이용한 적정법으로 NaCl 양을 측정하였다. 실험결과, 표 1에 나타낸 바와 같이 시약용 NaCl은 99.8%이며 다른 무기질원소들 즉, Ca, K, S 등은 미량검출되었고 역시 기계적으로 추출된 기계염인 한주소금도 NaCl은 99.8%였으나 Ca, K, Ge 양이 시약용 NaCl 보다 다소 많았다. 그리고 특정적인 것은 기계염의 NaCl 함량은 시약용 NaCl 시료와 같았으나(99.8%) Na 함량(33.6%)이 시약용 NaCl 시료(39.4%)보다 낮아 상대적으로 Cl 함량이 높은데 이는 NaCl 정량법을 Cl을 측정하여 NaCl로 환산하는 방법을 사용하였기 때문인 것으로 보인다. 기계염과는 대조적으로 천일염은 Ca(1,037ppm), K(3,701ppm), Mg(10,266ppm) 그리고 S(7,456ppm)이 많았으나 천일염에서 불순물과 간수를 제거한 생소금은 Mg(5,883ppm)이 반으로 줄었고 Ca(579ppm), K(1,661ppm), S(4,708ppm) 등 대부분의 무기질이 반 정도 감소되었다. 간수는 천일염을 장기간 보관할 때 물과 함께 빠지는 액으로 쓴맛이 많으며 일반적으로 식품제조시 맛의 증진을 위해 제거하여 사용하는데 소금중량의 30 ~ 40% 정도된다. 본 실험에서는 간수내에 있는 성분을 측정하기 위해 천일염을 원심분리하여 하층액을 시료로 상대적인 무기질 함량을 측정하였다. 표 2에서 보는 바와 같이 간수는 많은 Mg(53,618ppm)을 함유하고 있었고 간수속에는 Mg이외에도 많은 양의 K(10,030ppm), S(24,299ppm), Zn(9,332ppm)이 함유되어 있었으며 Na은 5.1%로 매우 낮았다. 그의 간수에는 중금속으로 Pb, Al, Cr 등이 소량 검출되었고 Co, Hg, Ni, Se 등도 미량 검출되었다. 또 구운소금은 Ca(926ppm), K(2,729ppm), Mg(8,750ppm)이 많았고 Fe는 9.9ppm이었다. 생금은 Ca(1,952ppm), K(4,255ppm), Mg(12,628ppm)이 많았고 Fe(12.7ppm)도 가열온도가 높아짐에 따라 이들의 농도가 상대적으로 구운소금보다 증가된 것으로 나타났다(표 1). 특히 죽염은 K이 11,136ppm으로 천일염 또는 다른 가공염보다 함량이 월등이 많았다.2 kinds of mechanical salts [for NaCl reagent (Junsei Chemical Co., Ltd. and Hanjugeum)] and 2 kinds of sun salt [West coast salt, west salt purchased from Sansan Co., Ltd.] and 3 processed salts [ Baked salt Co. 1 g of each of the salts and the bamboo salt (harmonic porridge) were dissolved in 1% nitric acid solution and heated in a heating tube for 3 hours, followed by diluting Na by 1,200 times and other minerals by 600 times. The mineral content of the samples was measured using an Inductively Coupled Plasma Atomic Emission Spectrometer (Thermo Jarrell Ash ICP-AES-IRIS.USA). The Na content in the salt was measured by an atomic absorption spectrometer (Atomic Absorption Spectromerer; Thermo Jarrell Ash AA Spectrometer 1000/4000, USA), and the Cl was followed by the Mohr method, and the amount of NaCl was determined by titration using 0.1 N AgNO 3 . As a result, as shown in Table 1, the reagent NaCl was 99.8%, and other inorganic elements such as Ca, K, and S were detected in a small amount, and the mechanical salt extracted was 99.8%. , Ge was somewhat higher than reagent NaCl. Specifically, the NaCl content of the mechanical salt was the same as that of the reagent NaCl sample (99.8%), but the Na content (33.6%) was lower than that of the reagent NaCl sample (39.4%). It seems to be because the method to convert to NaCl. In contrast to mechanical salts, natural salts had a lot of Ca (1,037ppm), K (3,701ppm), Mg (10,266ppm), and S (7,456ppm), but Mg (5,883ppm) of fresh salt which removed impurities and water from sea salt. Most minerals such as Ca (579 ppm), K (1,661 ppm), and S (4,708 ppm) were reduced by half. Gansu is a liquid that falls out with water when it is stored for a long time, and has a bitter taste. In general, it is used to remove the salt to improve the taste. In this experiment, the relative mineral content was measured by centrifugation of the salt of the sea salt to measure the components in the liver. As shown in Table 2, the water contained a lot of Mg (53,618ppm), and the water contained a large amount of K (10,030ppm), S (24,299ppm), Zn (9,332ppm) in addition to Mg. As was very low. A small amount of Pb, Al, Cr, and the like was detected as a heavy metal, and trace amounts of Co, Hg, Ni, Se, and the like were also detected. Baked salt had Ca (926ppm), K (2,729ppm) and Mg (8,750ppm), and Fe was 9.9ppm. The salts of Ca (1,952ppm), K (4,255ppm), and Mg (12,628ppm) were high, and Fe (12.7ppm) also showed that their concentrations were higher than that of roasted salt (Table 1). . In particular, bamboo salt was 11,136ppm, which was higher than natural salt or other processed salt.

ICP-AES로 분석한 여러 소금의 미네랄 함량Mineral content of various salts analyzed by ICP-AES 소금종류미네랄Salt Type Mineral 정제염Refined salt 천일염Sun salt 기계염Mechanical salt NaCl(시약용)NaCl (for reagents) 한주소금One address 천일염Sun salt 생소금Fresh salt 구운소금Baked Salt 생금Salary 죽염Bamboo salt ASAS 6.06.0 1.41.4 NDND NDND NDND NDND NDND CaCa 3636 161161 10371037 579579 926926 19521952 390390 CuCu 4.54.5 1.21.2 4.14.1 3.23.2 1.51.5 2.12.1 6.86.8 KK 2121 870870 37013701 16621662 27292729 42554255 1113611136 MgMg NDND 1010 1026610266 58835883 87508750 1262812628 35523552 MnMn 0.10.1 0.10.1 4.54.5 2.12.1 3.43.4 3.13.1 4.14.1 PP 1.31.3 0.30.3 8989 6666 8282 100100 809809 PbPb 5.35.3 7.77.7 11.711.7 NDND 1.21.2 NDND NDND SS 2424 3333 74597459 47084708 53855385 78737873 15251525 ZnZn 9.39.3 2.82.8 4.34.3 4.64.6 1.61.6 3.03.0 3.13.1 FeFe 1.41.4 0.40.4 2.62.6 0.60.6 9.99.9 12.712.7 99.599.5 GeGe NDND 9393 7878 2323 1414 NDND 256256 SiSi 99 44 2222 99 258258 423423 478478 Na(%)1) Na (%) 1) 39.439.4 33.633.6 36.236.2 38.138.1 35.035.0 31.931.9 31.631.6 NaCl(%)2) NaCl (%) 2) 99.899.8 99.899.8 94.494.4 97.997.9 93.093.0 92.492.4 93.693.6 [주] 단위: ppm1)Na(%): AAS로 분석2)NaCl(%): 0.1N AgNO3로 적정하여 분석ND: 검출되지 않음[Note] Unit: ppm 1) Na (%): Assay by AAS 2) NaCl (%): Assay by titration with 0.1N AgNO 3 ND: Not detected

ICP-AES로 분석된 천일염으로부터 얻은 간수의 미네랄 함량Mineral Content of Grafts from Sea Salts Analyzed by ICP-AES 미네랄mineral 함량(ppm)Content (ppm) 미네랄mineral 함량(ppm)Content (ppm) ASAS NDND GeGe 37.837.8 CaCa 193.0193.0 SiSi 27.427.4 CuCu 4.24.2 AlAl 1135.01135.0 KK 10030.010030.0 BaBa NDND MgMg 53618.053618.0 CoCo 1.11.1 MnMn 1.41.4 CrCr 771.3771.3 PP NDND HgHg 22.822.8 PbPb 280.8280.8 NiNi 3.23.2 SS 24299.024299.0 SeSe 2.32.3 ZnZn 9332.09332.0 Na1) Na 1) 5.15.1 FeFe 4.74.7 NaCl2) NaCl 2) 29.829.8 [주]1)Na(%): AAS로 분석2)NaCl(%): 0.1N AgNO3적정으로 분석ND: 검출되지 않음 1) Na (%): analyzed by AAS 2) NaCl (%): analyzed by 0.1N AgNO 3 titration ND: not detected

실시예 2 : 과산화물가 분석에 의한 소금시료의 과산화촉진 효과Example 2 Peroxide Promoting Effect of Salt Samples by Peroxide Value Analysis

유지(linoleic acid) 1.0g을 에탄올 20mL를 가해 용해한 후 포스페이트 버퍼(0.2M, pH 7.0) 25mL을 가하여 혼합하였다. 그리고 소금시료를 포스페이트 버퍼(phosphate buffer)에 용해시켜 해당농도로 만든 다음 각각 1mL를 첨가하였다. 50℃에서 24시간 동안 자동산화시킨 후, 이들 반응용액을 분액여두에 옮긴 다음 소량의 물과 클로로포름 25mL를 사용해 3회 추출한 다음 하층을 모았다. 여기에 아세트산 25mL를 사용하여 3회 추출한 다음 하층을 모으고 여기에 다시 아세트산 25mL를 가하고 포화 KI 용액 1mL를 가해 1분간 진탕한 후 암소에서 10분간 방치하여 증류수 50mL를 가하고 1% 전분 용액을 지시약으로 하여 0.01N-티오황산나트륨 용액으로 적정하여 POV를 다음과 같이 구하였다.After dissolving 1.0 g of linoleic acid in 20 mL of ethanol, 25 mL of phosphate buffer (0.2M, pH 7.0) was added and mixed. And the salt sample was dissolved in phosphate buffer (phosphate buffer) to make the corresponding concentration and 1mL each was added. After 24 hours of automatic oxidation at 50 ° C., these reaction solutions were transferred to a separatory funnel, and then extracted three times using a small amount of water and 25 mL of chloroform, and the lower layers were collected. The mixture was extracted three times with 25 mL of acetic acid, and then the lower layer was collected, and 25 mL of acetic acid was added thereto. Then, 1 mL of saturated KI solution was added, shaken for 1 minute, and left for 10 minutes in the dark, 50 mL of distilled water was added as an indicator. POV was determined as follows by titration with 0.01 N sodium thiosulfate solution.

S: 0.01N-Na2S2O3적정치(mL)S: 0.01 N-Na 2 S 2 O 3 titration (mL)

N: Na2S2O3의 규정농도N: prescribed concentration of Na 2 S 2 O 3

L: 유지의 중량(g)L: weight of fat or oil (g)

실험결과, 도 1에 나타낸 바와 같이 0.2 ~ 2%의 NaCl을 처리하여 리놀레산(linoeic acid)의 자동산화에 관여하는 소금의 영향은 0.4%에서 과산화를 촉진하여 0.6%에서 최대를 보이나 그보다 높은 농도에서는 다시 낮아졌다. 그러므로 소금의 상대적인 차이를 보기 위해 POV가 급격히 증가하는 0.4%농도에서 기계염 2종(NaCl 시약용, 기계염)과 천일염 2종(서해안 염전, 생소금) 그리고 가열처리 공정을 거친 가공염 3종(구운소금, 생금, 죽염)을 각각 실험에 이용하여 과산화효과를 측정하였다. 표 3에서 보는 바와 같이 소금을 넣지 않은 처리군에서 632±64meq/kg이었으나 죽염이 727±112meq/kg으로 과산화 효과가 가장 낮았고 대조군과 차이가 없는 것으로 나타났다(p<0.05). 그 다음이 천일염(764±90meq/kg)과 간수를 제거한 생소금(767±7meq/kg) 그리고 가공염인 구운소금(817±75meq/kg)과 생금(823±76meq/kg) 등이 비슷한 효과를 나타냈는데 대조군보다는 과산화촉진능이 증가되었다(p<0.05). 그러나 기계염(NaCl;840±15meq/kg 한주소금;948±38meq/kg) 보다는 과산화효과가 낮았다. 이 실험에서 기계염이 과산화촉진능이 가장 컸는데 그 중 한주소금이 가장 촉진능이 크게 나타났다(p<0.05).As a result, as shown in FIG. 1, the effect of salts involved in the automatic oxidation of linoleic acid by treating 0.2 to 2% of NaCl promoted peroxidation at 0.4%, the maximum at 0.6%, but at higher concentrations. Lowered again. Therefore, two mechanical salts (for NaCl reagent, mechanical salt) and two natural salts (west coast salt, fresh salt) and three processed salts (baked salt) at 0.4% concentration with a sharp increase in POV to see the relative difference in salt. , Livestock, bamboo salt) were used in the experiments to determine the peroxidation effect. As shown in Table 3, 632 ± 64 meq / kg in the salt-free treatment group was the lowest peroxidation effect was 727 ± 112 meq / kg, and there was no difference from the control group (p <0.05). Next, natural salt (764 ± 90meq / kg), fresh salt (767 ± 7meq / kg) without salt and raw salt (817 ± 75meq / kg) and fresh salt (823 ± 76meq / kg) were processed. Peroxidation promoting activity was higher than that of the control group (p <0.05). However, peroxidation effect was lower than that of mechanical salt (NaCl; 840 ± 15meq / kg Hanju Geum; 948 ± 38meq / kg). In this experiment, mechanical salts showed the highest peroxide-promoting capacity, and among them, Hangeum showed the highest promoting capacity (p <0.05).

50℃에서 24시간 동안 배양된 리놀레산의 자동산화에 있어서 여러 소금시료의 영향Effect of Various Salt Samples on the Automatic Oxidation of Linoleic Acid incubated at 50 ° C for 24 Hours 샘플(0.4%)Sample (0.4%) POV(meq/kg)POV (meq / kg) 대조군Control 632±64a 632 ± 64 a NaClNaCl 840±15bc 840 ± 15 bc 기계염Mechanical salt 948±38c 948 ± 38 c 천일염Sun salt 764±90b 764 ± 90 b 생소금Fresh salt 767±7b 767 ± 7 b 구운소금Baked Salt 817±75b 817 ± 75 b 생금Salary 823±76b 823 ± 76 b 죽염Bamboo salt 727±112ab 727 ± 112 ab [주]a ~ c: 컬럼내의 삽입된 데아타 옆의 문자의 의미는 Duncan's multiple rangetest에 의해 측정된 바와 같이 0.05수준의 유의성 있는 차이를 나타낸다.[Note] a ~ c : The meaning of the letters next to inserted data in the column indicates a significant difference of 0.05 level as measured by Duncan's multiple rangetest.

실시예 3 : 소금시료의 보돌연변이 효과Example 3 Mutation Effect of Salt Samples

본 실시예에서 사용한 화학약품중 아플라톡신 B1(Aflatoxin B1;AFB1)은 미국 Sigma 회사에서 구입하였고 돌연변이제 N-메틸-N'-니트로-N-니트로소구아니딘(N-methyl-N'-nitro-N-nitrosoguanidine;MNNG)는 미국 Aldrich 회사로부터 구입하여 사용하였다. AFB1은 디메틸 설폭사이드(dimethyl sulfoxide:DMSO)에, MNNG는 증류수에 녹여 실험에 사용하였다. O-니트로페닐-D-갈락토-피라노사이드(O-nitrophenyl -D-galacto-pyranoside;ONPG)와 p-니트로페닐 포스페이트 디소듐(p-nitrophenyl posphate disodium;PNPP), 포스페이트 버퍼 사린(phosphate bufferd saline;PBS)는 Sigma Chemical Co. (USA)에서 구입하였다.Among the chemicals used in this example, Aflatoxin B1 (AFB1) was purchased from Sigma, USA and the mutant N-methyl-N'-nitro-N-nitrosoguanidine (N-methyl-N'-nitro-N). -nitrosoguanidine (MNNG) was purchased from Aldrich, USA. AFB1 was dissolved in dimethyl sulfoxide (DMSO), and MNNG was dissolved in distilled water. O-nitrophenyl-D-galacto-pyranoside (ONPG), p-nitrophenyl posphate disodium (PNPP), phosphate buffered sardine saline; PBS) is manufactured by Sigma Chemical Co. (USA).

이하, 보돌연변이효과는 하기 실험예에서 구체적으로 설명한다.Hereinafter, the mutagenic effect will be described in detail in the following experimental example.

실험예 1 : 아메스 돌연변이유도능 시험Experimental Example 1: Ames mutation induction test

본 실험예에서는 소금을 종류별, 즉 기계염 2종(NaCl 시약용, 기계염(한주소금)), 천일염 2종(서해안 염전(천일염), 생소금), 가공염 3종(구운소금, 생금, 죽염)을 각각 3 ~ 25%로 처리하여 Ames실험계에서 보돌연변이 유발실험을 실시하였다. 본 실험예에서 사용한 살모넬라 타이피무리움 LT-2(Salmonella typhimurium LT-2)의 히스티딘 영양요구성인 살모넬라 타이피무리움 TA100(Salmonella typhimurium TA100)은 미국 캘리포니아 대학의 B.N Ames 박사로부터 제공 받아 실험에 사용하였다. 그리고 이들 실험균주들은 새로운 동결 퍼먼넌트(frozen permanent)가 준비되었을때나 매 실험적인 히스티딘(histidine) 요구성, deep rough(rfa) 돌연변이, uvrB 돌연변이, R factor 등의 유전형질을 확인하여 사용하였다. 간접 돌연변이원(AFB1)을 활성화시키기 위하여 Maron과 Ames의 방법에 따라 간의 마이크로좀(microsomal) 효소화합물인 S9 혼합물을 조제하였다. 약 200g의 웅성 Sprague-Dawley rat를 이용하여 해부 5일전 Aroclor 1254로 1회 복강 주사하여 유도시킨 간의 마이크로좀 효소 분획(micromal enzyme fraction)으로 S9 혼합물을 조제하였다. 돌연변이 및 보돌연변이 효과실험에서 사용된 시료와 돌연변이 유발물질의 농도는 예비실험(dose response 및 독성실험)을 통하여 결정하였다. 본 실험에서 주로 이용하였던 전배양 시험(preincubation test)은 S9 mix 0.5mL(간접 돌연변이인 경우) 혹은 인산 완충액 0.5mL(직접돌연변이인 경우), 하룻밤 배양된 균주(1 ~ 2 ×109cells/mL) 0.1mL, 시료(50㎕)와 돌연변이 유발물질(50㎕)을 아이스 배스(ice bath)에 담긴 캡 튜브에 넣고 가볍게 볼덱스(vortex)한 후 37℃에서 30분간 예비배양하였다. 45℃의 탑 아가 2mL씩을 각 튜브에 붓고 3초간 볼텍스하여 최소 글루코스 아가 플레이트에 도말하여 37℃에서 48시간 배양한 후 복귀돌연변이 숫자를 계수하였다. 실험결과, 모든 처리군에서 MNNG에 대해 보돌연변이성이 관찰되었으나 가공염인 구운소금, 생금, 죽염에서는 다소 낮은 돌연변이수를 나타내었다(도2). 3% 농도에서 시약용 NaCl이 1445±136개, 기계염(PS)이 1837±694개, 천일염(CS)이 1404±198개, 생소금(SS)이 1224±130개이었으나 가공염인 구운소금(GS)은 938±26개, 생금(SK)은 948±17개, 죽염(BS)은 985±122개로 보돌연변이 효과가 다소 낮은 결과를 보였다. 또한 25%의 고염농도에서도 NaCl과 다른 소금은 1671 ~ 2084로 큰 보돌연변이성을 보였으나 죽염은 1254±17개의 낮은 복귀돌연변이수를 나타내었다. 이는 죽염에 K의 함량이 높고 이 K 성분이 항암효과를 나타낸다는 점을 감안할 때 죽염의 보돌연변이성이 낮은 것은 다른 소금과는 다르게 K 함량이 높은 데서 유도되는 것이라 사료된다.In this experimental example, salts were classified by type, namely two kinds of mechanical salts (for NaCl reagent, mechanical salts (Hanjugeum)), two kinds of sun salts (west coast salt salts (natural salt), fresh salt), and three processed salts (baked salt, fresh salt, bamboo salt). Each was treated with 3-25%, and the mutagenicity test was performed in the Ames test system. Salmonella typhimurium TA100, a histidine nutrient composition of Salmonella typhimurium LT-2, used in this experiment was provided by Dr. BN Ames of the University of California, USA. It was. These experimental strains were used to identify genotypes such as histidine requirements, deep rough (rfa) mutations, uvrB mutations, and R factor when new frozen permanents were prepared. In order to activate the indirect mutagen (AFB1), a mixture of S9, a microsomal enzyme compound of liver, was prepared according to the method of Maron and Ames. A S9 mixture was prepared with a micromal enzyme fraction of livers induced by intraperitoneal injection of Aroclor 1254 5 days prior to dissection using about 200 g of male Sprague-Dawley rats. The concentrations of samples and mutagens used in mutation and mutagenic effects experiments were determined through preliminary experiments (dose response and toxicity experiments). The preincubation test used mainly in this experiment was 0.5 mL of S9 mix (for indirect mutations) or 0.5 mL of phosphate buffer (for direct mutations), strains cultured overnight (1 to 2 × 10 9 cells / mL). A) 0.1 mL, a sample (50 μl) and a mutagen (50 μl) were put in a cap tube in an ice bath, lightly vortexed, and preincubated at 37 ° C. for 30 minutes. 2 mL of each top agar at 45 ° C. was poured into each tube, vortexed for 3 seconds, plated on a minimal glucose agar plate, incubated for 48 hours at 37 ° C., and the number of return mutations was counted. As a result, the mutagenicity was observed for MNNG in all treatment groups, but showed a slightly lower number of mutations in processed salts such as roasted salt, salt, and bamboo salt (Fig. 2). At 3% concentration, 1445 ± 136 NaCl for reagent, 1837 ± 694 mechanical salt (PS), 1404 ± 198 natural salt (CS), and 1224 ± 130 raw salt (SS), but the processed salt (GS) ), 938 ± 26 dogs, 948 ± 17 dogs (SK) and 985 ± 122 dogs (BS) showed slightly lower mutagenic effects. In addition, NaCl and other salts showed high mutants of 1671 to 2084 at 25% high salt concentration, but bamboo salt showed 1254 ± 17 low mutants. Considering that the high K content in bamboo salt and this K component has anti-cancer effects, the low mutagenicity of bamboo salt may be derived from the high K content unlike other salts.

실험예 2 : SOS 크로모테스트Experimental Example 2 SOS Chromotest

본 실험예에서는 SOS 크로모테스트(SOS chromotest)에서 보돌연변이 효과를 살펴 보기 위해 E.coli의 변이주인 PQ37를 이용하였는데 PQ37은 정상적인 lacZ gene이 제거되고 sfiA gene이 삽입하여 리프레서 단백질(repressor protein)에 의해 잠금상태(lock)되어 있다. 유전적 독성이 있는(Genotoxic) 물질이 들어오면 스필라이팅(spiliting)되어 lacz gene이 발현되어 β-갈락토시다아제의 활성을 띄게 되는데 발색제로는 ONPG와 PNPP를 이용한다. NaCl에 대한 도스 리스펀스(dose response)를 행한 후 MNNG를 well당 20㎍ 처리하고 NaCl의 농도를 0.1 ~ 600㎍까지 처리하였다. 즉, E.coli GC4436으로부터 유래되어 lac Z gene에 sfiA 유전자가 함입된 E.coli PQ37/플라스미드 101(PQ37)을 사용하였으며 이 균주는 강원대학교 식품공학과 함승시 교수로부터 분양받은 균주로 6개월마다 uvrA mutation, rfa mutation 과 PHOc유전자의 구성 및 sfiA::lacZ 융합의 유도성을 검사하여 실험에 이용하였다. 보돌연변이 효과실험은 Quillard 등 방법을 변형시킨 방법을 이용하였다. 냉동 보관된 PQ37균액 50㎕를 5mL 배양액에 접종하고 37℃에서 하룻밤 진탕배양한 후 이를 다시 5mL L배양액에 접종하고 37℃에서 2시간 정도(A660 0.3 ~ 0.4) 진탕배양하였다. 얻어진 균액을 L배양액에 1/10로 희석하여 각 시료와 돌연변이원을 각 10㎕씩 미리 분주하여 둔 96웰 플레이트의 각 웰에 100㎕씩 분주하고 90분간 37℃에서 진탕하여 SOS 반응을 유도한 후 한쪽에는 β-갈락토시다아제(β-G)의 활성 측정을 위하여 ONPG 100㎕, 다른 쪽에는 알카라인 포스파타아제(A-P)의 활성 측정을 위해 PNPP 100㎕를 첨가하였다. 발색시간은 5분으로 하였으며 β-갈락토시다아제는 1.5M Na2CO3100㎕로 S-P는 1M HCl 50㎕로서 효소에 의한 발색 반응을 정지시키고 5분 후 A-P쪽에 50㎕dml 2M 트리스 버퍼를 첨가하여 HCl을 중화하고 분광광도계로 420nm에서 흡광도를 측정하였다. 측정한 O.D 420nm 측정치는 Miller의 공식에 의해 enzyme unit(Eu)값을 구하였다.In this experiment, we used PQ37, a variant of E. coli, to examine the effects of mutations in SOS chromotest. In PQ37, the normal lacZ gene was removed and the sfiA gene was inserted to repressor protein. It is locked by. When genotoxic substances come in, they are splitted and lacz gene is expressed, resulting in β-galactosidase activity. ONPG and PNPP are used as colorants. After a dose response to NaCl, MNNG was treated with 20 µg per well and the concentration of NaCl was treated with 0.1 ~ 600 µg. In other words, E.coli PQ37 / plasmid 101 (PQ37) derived from E.coli GC4436 and containing the sfiA gene in the lac Z gene was used. , rfa mutation and the composition of PHO c gene and induction of sfiA :: lacZ fusion were used in the experiment. The mutagenic effect test was a method modified from Quillard et al. 50 µl of frozen-stored PQ37 bacteria solution was inoculated into 5 mL culture, shaken overnight at 37 ° C., and then inoculated in 5 mL L culture medium and incubated at 37 ° C. for 2 hours (A660 0.3 to 0.4). The obtained bacterial solution was diluted 1/10 in L culture medium, and 100 µl of each well of each 96-well plate in which 10 µl of each sample and mutagen were previously dispensed, and shaken at 37 ° C for 90 minutes to induce SOS reaction. Later, 100 μl of ONPG was used to measure the activity of β-galactosidase (β-G), and 100 μl of PNPP was measured to measure the activity of alkaline phosphatase (AP). The color development time was 5 minutes, β-galactosidase was 100M of 1.5M Na 2 CO 3 , SP was 50L of 1M HCl. HCl was neutralized by addition and the absorbance was measured at 420 nm with a spectrophotometer. The measured OD 420nm measured enzyme value (Eu) by Miller's formula.

Eu=(1000 × A420)÷ t(min)Eu = (1000 × A 420 ) ÷ t (min)

실험결과, β-갈락토시다아제의 활성은 0.1 ~ 100㎍ 처리시까지 증가하여 웰당 10 ~ 100㎍ 처리시에 보돌연변이 효과를 나타냄을 확인하였으며 알카라인 포스파타아제의 활성은 대조군과 비슷하게 나타나 시험 첨가농도에서 독성은 없었다. 이 실험계를 이용하여 소금증류별 각 웰당 20 ~ 100㎍을 처리한 결과는 표 4, 5과 같다. 표 4에서 20㎍ 처리시에 한주소금이 유일하게 MNNG에 대해 보돌연변이 효과를 보였다. 100㎍처리시 한주소금, 천일염, 생소금은 약한 보돌연변이 효과가 있었으나 구운소금, 생금은 없었고 반면에 죽염은 항돌연변이 효과를 보였다. 표 5에서 AFB1에 대한 보돌연변이 효과를 검토한 결과 웰당 100㎍ 처리시 시약용 NaCl, 한주소금, 천일염, 생소금, 구운소금에서 약한 보돌연변이 효과를 보였다. 생금과 죽염은 20, 100㎍에서 각각 항돌연변이 효과를 보였다. 따라서 기계염 보다는 천일염, 생소금이 또 천일염 보다는 가공한 구운소금, 생금 및 죽염이 보돌연변이 효과가 낮았으며 죽염은 SOS 실험계에서 항돌연변이 효과를 나타내었다. 결국 돌연변이 실험계에 따라 그 효과가 다소 다르게 나타났으나 죽염이 가장 안전하며 소금의 처리농도에 따라 보돌연변이 활성은 영향을 받았다.As a result, it was confirmed that β-galactosidase activity was increased up to 0.1 ~ 100㎍ treatment, showing a mutated effect at 10 ~ 100㎍ treatment per well, and the activity of alkaline phosphatase was similar to that of the control group. There was no toxicity at the concentration. The results of treatment of 20 ~ 100 ㎍ per well by salt distillation using this experimental system are shown in Tables 4 and 5. In Table 4, Han-geum showed the mutagenic effect on MNNG when treated with 20 ㎍. Hanjugeum, sun-dried salt, and fresh salt had weak mutagenic effect at 100㎍ treatment, but there was no baked salt and salt, whereas bamboo salt showed antimutagenic effect. As a result of examining the effect of mutation on AFB1 in Table 5, the effect of weak mutation on NaCl, Hanju Gold, Sea Salt, Fresh Salt, and Baked Salt was shown at 100 μg per well. Antigens and bamboo salts showed antimutagenic effects at 20 and 100 ㎍, respectively. Therefore, natural salt, raw salt and processed salt, salt and bamboo salt had lower mutagenic effect than mechanical salt, and bamboo salt showed antimutagenic effect in SOS experimental system. Eventually, the effect was somewhat different according to the mutant experimental system, but bamboo salt was the safest, and mutagenic activity was affected by salt concentration.

E.coli PQ37을 MNNG 처리하여 SOS 기능을 유도함에 있어서 농도차에 따른 여러 소금의 보돌연변이효과Mutation Effect of Various Salts According to Concentration Difference in Inducing SOS Function by MNNG Treatment of E.coli PQ37 샘플농도Sample concentration β-갈락토시다아제(β)β-galactosidase (β) 알카라인 포스파테아제(ρ)Alkaline phosphatase (ρ) (β)/(ρ)(β) / (ρ) SOS유도인자SOS Inducer OD420 OD 420 UnitUnit OD420 OD 420 UnitUnit 자연복귀돌연변이구Natural Return Mutations 0.60±0.040.60 ± 0.04 29.929.9 0.29±0.040.29 ± 0.04 14.514.5 2.12.1 1.01.0 1.30±0.071.30 ± 0.07 66.566.5 0.28±0.050.28 ± 0.05 13.913.9 4.84.8 2.32.3 20㎍/플레이트20 μg / plate 시약용NaClNaCl for reagents 1.56±0.041.56 ± 0.04 78.078.0 0.34±0.010.34 ± 0.01 17.017.0 4.64.6 2.22.2 한주소금One address 1.48±0.071.48 ± 0.07 74.274.2 0.29±0.040.29 ± 0.04 14.614.6 5.15.1 2.42.4 천일염Sun salt 1.41±0.161.41 ± 0.16 70.770.7 0.32±0.080.32 ± 0.08 16.216.2 3.53.5 1.71.7 생소금Fresh salt 1.42±0.141.42 ± 0.14 71.071.0 0.43±0.090.43 ± 0.09 21.621.6 3.33.3 1.61.6 구운소금Baked Salt 1.49±0.131.49 ± 0.13 72.172.1 0.38±0.000.38 ± 0.00 18.918.9 3.83.8 1.51.5 생금Salary 1.36±0.101.36 ± 0.10 68.268.2 0.39±0.130.39 ± 0.13 23.023.0 3.03.0 1.41.4 죽염Bamboo salt 1.32±0.161.32 ± 0.16 66.266.2 0.43±0.090.43 ± 0.09 22.622.6 2.92.9 1.41.4 100㎍/플레이트100 μg / plate 시약용NaClNaCl for reagents 1.65±0.061.65 ± 0.06 82.582.5 0.30±0.050.30 ± 0.05 16.816.8 4.94.9 2.32.3 한주소금One address 1.80±0.091.80 ± 0.09 90.190.1 0.36±0.070.36 ± 0.07 17.817.8 5.15.1 2.42.4 천일염Sun salt 1.60±0.071.60 ± 0.07 80.280.2 0.32±0.030.32 ± 0.03 16.016.0 5.05.0 2.42.4 생소금Fresh salt 1.62±0.051.62 ± 0.05 81.081.0 0.30±0.060.30 ± 0.06 15.215.2 5.35.3 2.52.5 구운소금Baked Salt 1.59±0.011.59 ± 0.01 79.379.3 0.33±0.060.33 ± 0.06 16.616.6 4.84.8 2.32.3 생금Salary 1.56±0.201.56 ± 0.20 77.977.9 0.36±0.000.36 ± 0.00 16.816.8 4.64.6 2.22.2 죽염Bamboo salt 1.51±0.201.51 ± 0.20 75.475.4 0.30±0.060.30 ± 0.06 22.322.3 3.43.4 1.61.6

E.coli PQ37내에서 아플라톡신(AFB1, 10ng/assay)에 의해 SOS 기능을 유도함에 있어서, 농도차가 있는 여러 소금의 보돌연변이 효과Mutational Effects of Different Salts with Different Concentrations in Inducing SOS Function by Aflatoxin (AFB1, 10ng / assay) in E. coli PQ37 샘플농도Sample concentration β-갈락토시다아제(β)β-galactosidase (β) 알카라인 포스파타아제(ρ)Alkaline phosphatase (ρ) (β)/(ρ)(β) / (ρ) SOS유도인자SOS Inducer OD420 OD 420 UnitUnit OD420 OD 420 UnitUnit 자연복귀돌연변이구Natural Return Mutations 0.71±0.050.71 ± 0.05 35.535.5 0.84±0.030.84 ± 0.03 42.242.2 0.80.8 1.01.0 1.88±0.031.88 ± 0.03 94.094.0 0.85±0.010.85 ± 0.01 42.642.6 2.22.2 2.82.8 20㎍/플레이트20 μg / plate 시약용NaClNaCl for reagents 1.63±0.051.63 ± 0.05 81.681.6 0.86±0.070.86 ± 0.07 43.143.1 1.91.9 2.42.4 한주소금One address 2.07±0.102.07 ± 0.10 103.4103.4 0.97±0.130.97 ± 0.13 48.548.5 2.12.1 2.62.6 천일염Sun salt 1.96±0.291.96 ± 0.29 97.897.8 0.96±0.000.96 ± 0.00 47.947.9 2.02.0 2.52.5 생소금Fresh salt 1.86±0.071.86 ± 0.07 93.293.2 0.85±0.090.85 ± 0.09 42.542.5 2.12.1 2.52.5 구운소금Baked Salt 1.69±0.031.69 ± 0.03 84.484.4 0.83±0.020.83 ± 0.02 41.341.3 2.02.0 2.62.6 생금Salary 1.66±0.121.66 ± 0.12 83.183.1 0.86±0.170.86 ± 0.17 42.842.8 1.91.9 2.52.5 죽염Bamboo salt 1.78±0.011.78 ± 0.01 89.089.0 0.88±0.050.88 ± 0.05 43.943.9 2.02.0 2.52.5 100㎍/플레이트100 μg / plate 시약용NaClNaCl for reagents 2.14±0.262.14 ± 0.26 106.8106.8 0.90±0.100.90 ± 0.10 45.045.0 2.42.4 3.03.0 한주소금One address 2.13±0.082.13 ± 0.08 106.5106.5 0.85±0.050.85 ± 0.05 42.742.7 2.52.5 3.13.1 천일염Sun salt 2.02±0.122.02 ± 0.12 101.2101.2 0.81±0.000.81 ± 0.00 40.740.7 2.52.5 3.13.1 생소금Fresh salt 2.18±0.102.18 ± 0.10 109.0109.0 0.86±0.030.86 ± 0.03 42.842.8 2.52.5 3.13.1 구운소금Baked Salt 1.89±0.001.89 ± 0.00 94.794.7 0.87±0.030.87 ± 0.03 43.343.3 2.12.1 3.13.1 생금Salary 1.71±0.091.71 ± 0.09 85.485.4 0.85±0.020.85 ± 0.02 42.742.7 2.02.0 2.62.6 죽염Bamboo salt 1.83±0.111.83 ± 0.11 91.591.5 0.91±0.160.91 ± 0.16 45.445.4 2.02.0 2.52.5

이상, 상기 실시예와 실험예를 통하여 설명한 바와 같이 K의 함량이 풍부한 죽염은 Na 함량이 높은 소금에 비해 과산화촉진능이 없고 발암물질에 의한 보돌연변이 효과가 낮아 항암성을 나타내는 뛰어난 효과가 있으므로 건강식품산업상 매우 유용한 발명인 것이다.As described above through the above examples and experimental examples, bamboo salts rich in K have no peroxidation promoting ability and low antimutagenic effects due to carcinogens compared to salts with high Na content. It is an industrially useful invention.

Claims (1)

과산화촉진능이 없고 발암물질에 의한 보돌연변이 억제능이 있는 항암성 죽염.Anticancer bamboo salt that does not have peroxidation promoting ability and inhibits mutations caused by carcinogens.
KR1019990036372A 1999-08-30 1999-08-30 anti-cancerous bamboo salt KR20000017719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990036372A KR20000017719A (en) 1999-08-30 1999-08-30 anti-cancerous bamboo salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990036372A KR20000017719A (en) 1999-08-30 1999-08-30 anti-cancerous bamboo salt

Publications (1)

Publication Number Publication Date
KR20000017719A true KR20000017719A (en) 2000-04-06

Family

ID=19609284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990036372A KR20000017719A (en) 1999-08-30 1999-08-30 anti-cancerous bamboo salt

Country Status (1)

Country Link
KR (1) KR20000017719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016612A (en) * 2000-12-27 2001-03-05 박건영 Anticancer bamboo salt substituted KCl for NaCl and anicancer kimchi using thereof
WO2006019272A1 (en) * 2004-08-20 2006-02-23 Damyanggun Use of bamboo smoke distillate for enhancing bioavailability of taxane family drug
WO2010076937A1 (en) * 2008-12-30 2010-07-08 Choi Eun A Compositions for preventing and treating cancer containing egg whites combined with blue vitriol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016612A (en) * 2000-12-27 2001-03-05 박건영 Anticancer bamboo salt substituted KCl for NaCl and anicancer kimchi using thereof
WO2006019272A1 (en) * 2004-08-20 2006-02-23 Damyanggun Use of bamboo smoke distillate for enhancing bioavailability of taxane family drug
WO2010076937A1 (en) * 2008-12-30 2010-07-08 Choi Eun A Compositions for preventing and treating cancer containing egg whites combined with blue vitriol
CN102271690A (en) * 2008-12-30 2011-12-07 崔恩儿 Compositions for preventing and treating cancer containing egg whites combined with blue vitriol
US9446128B2 (en) 2008-12-30 2016-09-20 Eun A. Choi Composition comprising egg white combined chalcanthite for preventing or treating cancer

Similar Documents

Publication Publication Date Title
Gwiazdowska et al. The impact of polyphenols on Bifidobacterium growth.
Nishino et al. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus casei strain Shirota fermentation through the hamster intestine
Barros‐Velázquez et al. Impact of icing systems with aqueous, ethanolic and ethanolic‐aqueous extracts of alga Fucus spiralis on microbial and biochemical quality of chilled hake (Merluccius merluccius)
KR101381547B1 (en) Novel Leuconostoc mesenteroides from kimchi with inhibiting activities on pathogenic microorganism and use thereof
Abdelali et al. Antimutagenicity of components of dairy products
CN110602950A (en) Feed composition for preventing or treating acute hepatopancreatic necrosis disease (AHPND) or White Spot Syndrome (WSS) comprising Bacillus subtilis strain as active ingredient
KR20000017719A (en) anti-cancerous bamboo salt
Haghparast et al. A comparative study on antioxidative properties of carameled reducing sugars; inhibitory effect on lipid oxidative and sensory improvement of glucose carameled products in shrimp flesh.
Nagib Hypolipidemic effect of sumac (Rhus coriaria L) fruit powder and extract on rats fed high cholesterol diet
KR100431277B1 (en) functional Chungkookjang and process for preparation thereof
Sorio et al. Development and quality evaluation of small rock oyster sauce from Saccostrea spp
KR20010016612A (en) Anticancer bamboo salt substituted KCl for NaCl and anicancer kimchi using thereof
KR101070382B1 (en) Soap containing the extracts of Zizyphus jujube seed and manufacturing method of it
Kuda et al. Population of halophilic bacteria in salted fish products made in the Loochoo Islands, Okinawa and the Noto Peninsula, Ishikawa, Japan
Adebayo-Tayo et al. Microbiological, proximate and heavy metal concentration in Penaeus sp.(shrimp) and Calllinectes sp.(crab) from creeks in Niger Delta Nigeria.
Minh Effect of Brine fermented Pickling to Physicochemical, Anti-nutritional, and Microbiological Attributes of Pickled gboma Eggplant (Solanum macrocarpon).
KR20000000375A (en) Anticancer activities of chinese cabbage Kimchi and process for preparation thereof
Patel et al. Evaluation of traditional fish preservation method of Masmin from skipjack tuna (Katsuwonus pelamis) in Lakshadweep, India, with respect to nutritional and environmental perspectives
KR100364430B1 (en) Anticancer activities of chinese cabbage kimchi containing KCl and process for preparation thereof
Lombardi et al. Effect of different storage conditions on the shelf life of natural green table olives
Susmiati et al. Nutritional and therapeutic aspects of fermented buffalo milk produced by Lactiplantibacillus pentosus HBUAS53657
Parvathy et al. Green coffee extract as a natural antioxidant in chill stored Indian mackerel (Rastrelliger kanagurta) mince
KR100494745B1 (en) Functional Doenjang for preventing carcinogenesis and process for preparation thereof
KR20040096260A (en) Doenjang using Bamboo salts which prevents cancer and has anti-cancer activity
Sridhar et al. Evaluation of carvacrol in ameliorating aflatoxin induced changes with reference to growth and oxidative stress in broiler chickens

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application