KR20000013720A - Contact window fabrication method of semiconductor device - Google Patents

Contact window fabrication method of semiconductor device Download PDF

Info

Publication number
KR20000013720A
KR20000013720A KR1019980032753A KR19980032753A KR20000013720A KR 20000013720 A KR20000013720 A KR 20000013720A KR 1019980032753 A KR1019980032753 A KR 1019980032753A KR 19980032753 A KR19980032753 A KR 19980032753A KR 20000013720 A KR20000013720 A KR 20000013720A
Authority
KR
South Korea
Prior art keywords
insulating film
contact window
film
forming
insulating layer
Prior art date
Application number
KR1019980032753A
Other languages
Korean (ko)
Other versions
KR100265773B1 (en
Inventor
봉칠근
진주현
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019980032753A priority Critical patent/KR100265773B1/en
Priority to US09/275,029 priority patent/US6232225B1/en
Priority to JP20377199A priority patent/JP3897934B2/en
Publication of KR20000013720A publication Critical patent/KR20000013720A/en
Application granted granted Critical
Publication of KR100265773B1 publication Critical patent/KR100265773B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76804Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/97Specified etch stop material

Abstract

PURPOSE: A contact window fabrication method of semiconductor device is provided to easily extend a width of lower division for contact window and effectively prevent increase of contact surface resistance using ratio of wet etch for insulator with high density of dopant is bigger than ratio of wet etch for insulator with low density of dopant. CONSTITUTION: The contact window fabrication method of semiconductor device comprises the steps of providing a semiconductor board with a lower conduction member; forming a first insulating film using insulator which is doped with a first density of impurity on the lower conduction member; forming a second insulating film using insulator which is doped with a second density of impurity on the first insulating film; dry etching the first and second insulating film and opening a contact window to expose the lower conduction member; wet etching the first and second insulating film on the contact window and increasing an exposing area of the lower conduction member.

Description

반도체 장치의 접촉창의 제조 방법Method for manufacturing contact window of semiconductor device

본 발명은 반도체 장치의 제조 방법에 관한 것으로, 특히 작고 어스펙트비가 큰 접촉창의 제조 방법에 관한 것이다.TECHNICAL FIELD This invention relates to the manufacturing method of a semiconductor device. Specifically, It is related with the manufacturing method of a contact window with a small aspect ratio.

반도체 장치의 집적도가 증가함에 따라 소자의 디자인 룰의 축소는 불가피하다. 그러나 소자의 디자인 룰의 축소는 모든 디멘젼에 대해 동일 비율로 이루어지지 않는다. 즉 횡방향의 치수중에서 층간절연층의 두께와 배선층의 두께는 각각 내압, 기생용량, 전류용량 및 배선저항등을 고려해야 하기 때문에 디자인 룰의 변화에 비례하여 축소시키는 것은 불가능하다. 이 때문에 작은 접촉창의 최하단 부분의 크기와 깊이의 비율인 어스펙트 비가 점차 커지게 된다.As the degree of integration of semiconductor devices increases, it is inevitable to reduce device design rules. However, reduction of device design rules does not occur at the same rate for all dimensions. In other words, the thickness of the interlayer insulating layer and the thickness of the wiring layer in the transverse dimension must be taken into consideration because the breakdown voltage, parasitic capacitance, current capacity, and wiring resistance must be taken into account, so that it is impossible to reduce the proportionally in accordance with the change of the design rule. Because of this, the aspect ratio, which is a ratio of the size and depth of the lowermost part of the small contact window, is gradually increased.

이렇게 어스펙트 비가 커지면 접촉창을 형성하기 위한 식각 공정시 접촉창이 완전하게 형성되지 않거나 접촉창의 하부로 가면서 크기가 점차 작아지는 구배 현상이 발생한다. 구배 현상이 발생하면 하부 도전막과의 접촉 면적이 작아져서 면저항이 급격히 증가하는 문제점이 발생한다.As the aspect ratio increases, a gradient occurs in that the contact window is not completely formed during the etching process for forming the contact window or the size gradually decreases toward the bottom of the contact window. When the gradient occurs, the contact area with the lower conductive film is small, a problem in which the sheet resistance increases rapidly.

특히, 비트라인을 형성한 후에 커패시터를 형성하는 COB(capacitor over bit line)구조에서 커패시터의 하부 전극을 반도체 기판상에 형성된 활성 영역과 접촉시키기 위하여 형성하는 접촉창의 경우에는 어스펙트 비가 매우 크기 때문에 접촉창의 최하단부의 크기가 매우 작아져서 면저항이 매우 크게 증가한다.Particularly, in the case of the contact window formed to contact the lower electrode of the capacitor with the active region formed on the semiconductor substrate in the capacitor over bit line (COB) structure in which the capacitor is formed after the bit line is formed, the contact ratio is very large. The bottom end of the window is so small that the sheet resistance increases very much.

본 발명이 이루고자 하는 기술적 과제는 접촉창의 하단부의 크기를 증대시켜 접촉 면적을 증가시킬 수 있는 접촉창의 제조 방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a method for manufacturing a contact window that can increase the contact area by increasing the size of the lower end of the contact window.

도 1 내지 도 3은 본 발명의 일실시예에 따라 접촉창을 제조하는 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.1 to 3 are cross-sectional views of process intermediate step structures for explaining a method of manufacturing a contact window according to an embodiment of the present invention.

도 4는 본 발명에 따른 접촉창을 제조하는 방법을 적용하여 형성한 COB(capacitor over bit line) 구조의 DRAM 장치의 레이아웃도이다.4 is a layout diagram of a DRAM device having a capacitor over bit line (COB) structure formed by applying a method of manufacturing a contact window according to the present invention.

도 5 내지 도 12도는 도 4의 V-V'선을 따라 자른 단면도들로서, 본 발명에 따른 접촉창을 제조하는 방법을 적용하여 COB 구조의 스토리지 전극을 형성하는 단계를 나타내는 공정 중간 단계 구조물들의 단면도들이다.5 to 12 are cross-sectional views taken along the line V-V 'of FIG. 4, and a cross-sectional view of intermediate structures in the process showing a step of forming a storage electrode of a COB structure by applying a method of manufacturing a contact window according to the present invention. admit.

상기 기술적 과제를 달성하기 위한 접촉창의 제조 방법에 따르면, 먼저 하부 도전 부재가 형성되어 있는 반도체 기판을 제공한다. 다음에 상기 하부 도전 부재상에 불순물이 제1농도로 도우핑된 절연물을 사용하여 제1절연막을 형성한다 이어서, 상기 하부 절연막상에 상기 불순물이 상기 제1농도보다 낮은 제2농도로 도우핑된 상기 절연물을 사용하여 제2절연막을 형성한 후, 상기 제2절연막 및 제1절연막을 건식 식각하여 상기 하부 도전 부재를 노출시키는 접촉창(contact window)을 개구(opening)한다. 마지막으로, 상기 접촉창이 형성되어 있는 제2절연막 및 제1절연막을 습식 식각하여 상기 하부 도전 부재의 노출 면적을 증가시킨다.According to the method for manufacturing a contact window for achieving the above technical problem, first to provide a semiconductor substrate having a lower conductive member is formed. Next, a first insulating layer is formed on the lower conductive member by using an insulator doped with a first concentration at a first concentration. Then, the impurities are doped at a second concentration lower than the first concentration on the lower insulating layer. After forming the second insulating layer using the insulator, the second insulating layer and the first insulating layer are dry etched to open a contact window for exposing the lower conductive member. Finally, the second insulating layer and the first insulating layer on which the contact window is formed are wet etched to increase the exposed area of the lower conductive member.

그리고, 바람직하기로는 상기 제1절연막을 형성하는 단계 전에 상기 하부 도전막상에 층간 절연막을 형성한다. 이어서, 상기 층간 절연막상에 도전막 패턴을 더 형성한 후, 도전막 패턴상에 상기 제1절연막을 형성한다. 이 때, 상기 제1절연막은 상기 층간 절연막의 두께보다 작은 두께로 형성되는 것이 바람직하다.Preferably, an interlayer insulating film is formed on the lower conductive film before the forming of the first insulating film. Subsequently, a conductive film pattern is further formed on the interlayer insulating film, and then the first insulating film is formed on the conductive film pattern. In this case, the first insulating film is preferably formed to a thickness smaller than the thickness of the interlayer insulating film.

본 발명에 있어서, 상기 불순물은 보론 및/또는 인을 포함하는 불순물이고, 상기 절연물은 상기 불순물이 도우핑된 산화물인 것이 바람직하다. 따라서, 상기 불순물이 도우핑된 산화물로는 BSG, PSG 또는 BPSG가 사용될 수 있다.In the present invention, the impurities are impurities including boron and / or phosphorus, and the insulator is an oxide doped with the impurities. Therefore, BSG, PSG, or BPSG may be used as the oxide doped with the impurity.

본 발명에 따르면, 작고 어스펙트비가 큰 접촉창에 의해 노출되는 면적을 증대시킬 수 있다. 따라서 접촉 면저항의 증가를 효과적으로 방지할 수 있다.According to the present invention, the area exposed by the contact window which is small and has a large aspect ratio can be increased. Therefore, an increase in contact sheet resistance can be effectively prevented.

이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록하며, 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 첨부된 도면에서 여러 막과 영역들의 두께는 명료성을 위해서 강조되었다. 또한 어느 한 막이 다른 막 또는 기판위에 존재하는 것으로 지칭될 때, 다른 막 또는 기판 바로 위에 있을 수도 있고, 층간막이 존재할 수도 있다. 도면에서 동일참조부호는 동일부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. In the accompanying drawings, the thicknesses of the various films and regions are highlighted for clarity. Also, when either film is referred to as being on another film or substrate, it may be directly over the other film or substrate, or an interlayer film may be present. Like reference numerals in the drawings denote like elements.

도1 내지 도4는 본 발명의 일실시예에 따라 작은 크기의 접촉창을 제조하는 방법을 설명하기 위한 공정 중간 단계 구조물들의 단면도들이다.1 through 4 are cross-sectional views of process intermediate stage structures for explaining a method of manufacturing a small size contact window in accordance with one embodiment of the present invention.

도1을 참조하면, 반도체 기판(100)상에 하부 도전 부재(conductive member)(110)를 형성한다. 하부 도전 부재(110)는 불순물이 도우핑된 활성 영역, 패드 구조물 또는 하부 배선층일 수도 있다.Referring to FIG. 1, a lower conductive member 110 is formed on a semiconductor substrate 100. The lower conductive member 110 may be an active region, a pad structure, or a lower wiring layer doped with impurities.

하부 도전 부재(110)가 형성된 결과물상에 불순물이 제1농도로 도우프된 절연물을 사용하여 제1절연막(120)을 형성한다. 제1절연막(120)을 구성하는 절연물은 불순물의 농도와 식각율이 비례하는 특징을 지닌 물질을 사용한다. 불순물의 농도가 높을수록 식각율, 특히 습식 식각율이 증가하는 절연물로는 붕소(boron) 또는 인(phosphorous)이 도우프된 산화물이 있다. 따라서, BSG(borosilicate glass) PSG(phosphosilicate glass) 또는 BPSG (borophosphosilicate glass)등이 사용될 수 있다. 제1절연막(120)은 증착 후, 플로우공정을 더 실시하여 평탄화하는 것이 바람직하다.The first insulating layer 120 is formed by using an insulator doped with impurities at a first concentration on the resultant on which the lower conductive member 110 is formed. As an insulator constituting the first insulating layer 120, a material having a characteristic in which the concentration of an impurity is proportional to an etching rate is used. The higher the concentration of the impurity, the more the etching rate, in particular, the wet etch rate is an insulating material doped with boron (phosphorous). Therefore, BSG (borosilicate glass) PSG (phosphosilicate glass) or BPSG (borophosphosilicate glass) and the like can be used. After deposition, the first insulating layer 120 may be further flattened by further performing a flow process.

이어서 제1절연막(120)상에 제1농도보다 낮은 제2농도로 불순물이 도우핑된 절연물로 제2절연막(130)을 형성한후, 제1절연막(120)과 마찬가지로 평탄화시킨다.Subsequently, the second insulating layer 130 is formed of an insulating material doped with impurities at a second concentration lower than the first concentration on the first insulating layer 120, and then planarized similarly to the first insulating layer 120.

제1절연막(120)은 상기 제2절연막(130) 두께의 1/10 내지 1/4 두께로 형성하는 것이 바람직하다.The first insulating layer 120 may be formed to have a thickness of 1/10 to 1/4 of the thickness of the second insulating layer 130.

도2를 참조하면, 제2절연막(130)상에 도전부재(110)를 일부 노출시키는 작은 크기의 접촉창을 정의하는 포토레지스트 패턴(140)을 형성한다.Referring to FIG. 2, a photoresist pattern 140 is formed on the second insulating layer 130 to define a contact window having a small size to partially expose the conductive member 110.

다음에 포토레지스트 패턴(140)을 식각마스크로 사용하여 제2절연막(130) 및 제1절연막(120)을 건식 식각하여 하부 도전 부재(110)를 노출시키는 접촉창(150A)을 형성한다. 이 때 형성되는 접촉창(150A)은 구배 현상에 의해 중앙부의 폭(w1)에 비해 접촉창(150A) 하단부의 폭(W1)이 좁게 형성된다.Next, the second insulating layer 130 and the first insulating layer 120 are dry-etched using the photoresist pattern 140 as an etching mask to form a contact window 150A exposing the lower conductive member 110. The contact window 150A formed at this time has a narrower width W1 of the lower end of the contact window 150A than the width w1 of the center part due to the gradient phenomenon.

도3을 참고하면, 도2의 결과물을 습식 식각액에 처리하여 중앙부의 폭(w2)보다 하단부의 폭(W2)이 큰 작은 크기의 접촉창(150B)을 완성한다. 하단부의 폭(W2)을 중앙부의 폭(w2)보다 크게 형성할 수 있는 이유는 불순물의 농도가 높은 제1절연막(120)이 불순물의 농도가 낮은 제2절연막(130)에 비해 습식 식각율이 높기 때문이다. 따라서 형성하고자 하는 접촉창의 하단부 폭(W2), 즉 하부 도전 부재(110)를 노출시키는 면적에 따라 습식 식각 시간 및 제1절연막(120)의 두께를 조절하는 것이 바람직하다.Referring to FIG. 3, the resultant of FIG. 2 is treated with a wet etchant to complete a contact window 150B having a smaller size W2 having a lower width W2 than the width w2 of the central portion. The width W2 of the lower portion may be larger than the width w2 of the center portion. The wet etching rate of the first insulating layer 120 having a higher concentration of impurities may be higher than that of the second insulating layer 130 having a lower concentration of impurities. Because it is high. Therefore, it is preferable to adjust the wet etching time and the thickness of the first insulating layer 120 according to the width W2 of the contact window to be formed, that is, the area exposing the lower conductive member 110.

이렇게 하단부의 폭(W2)을 증대시킴으로써 접촉창(150B)내에 형성될 도전 물질과 하부 도전 부재(110)간의 접촉 면적을 증대 시킬 수 있다. 따라서 접촉 면저항의 증가를 방지할 수 있다.By increasing the width W2 of the lower end portion, the contact area between the conductive material to be formed in the contact window 150B and the lower conductive member 110 may be increased. Therefore, an increase in the contact sheet resistance can be prevented.

도4는 본 발명에 따른 작은 크기의 접촉창을 제조하는 방법을 적용하여 형성한 COB(capacitor over bit line) 구조의 DRAM 장치의 레이아웃도이다.4 is a layout diagram of a DRAM device having a capacitor over bit line (COB) structure formed by applying a method for manufacturing a small contact window according to the present invention.

참조 부호 410은 활성 영역 패턴을, 420은 워드 라인 패턴을, 430은 비트 라인용 접촉창 패턴을, 440은 비트 라인 패턴을, 460은 스토리지 전극용 접촉창 패턴을, 470은 스토리지 전극 패턴을 각각 나타낸다. 이하에서는 도4의 V-V'선을 따라 자른 단면도들인 도5 내지 도12를 참고하여, 본 발명에 따른 작은 크기의 접촉창을 제조하는 방법을 적용하여 COB 구조의 스토리지 전극을 소오스 영역과 접촉시키는 접촉창(도4의 460)을 형성하는 방법을 설명한다.Reference numeral 410 denotes an active region pattern, 420 denotes a word line pattern, 430 denotes a contact window pattern for a bit line, 440 denotes a bit line pattern, 460 denotes a contact window pattern for a storage electrode, and 470 denotes a storage electrode pattern. Indicates. Hereinafter, referring to FIGS. 5 through 12, which are cross-sectional views taken along the line V-V ′ of FIG. 4, a storage electrode of a COB structure is contacted with a source region by applying a method of manufacturing a small contact window according to the present invention. A method of forming a contact window (460 in FIG. 4) is described.

도5를 참조하면, 반도체 기판(400)상에 국부적 산화 방식(LOCal Oxide of Silicon)등과 같은 방법을 사용하여 활성 영역(410)을 한정하는 필드 산화막(405)을 형성한다. 다음에, 도5에는 도시되어 있지 않지만, 활성 영역(410)상에 도4의 워드 라인 패턴(420)을 형성한다. 이어서, 불순물을 기판 전면에 주입하여 도전 영역, 예컨대 소오스 영역(412)및 드레인 영역(미도시)을 형성한다. 소오스 영역(412) 및 드레인 영역은 필요에 따라서 LDD(lightly doped drain) 구조로도 형성될 수 있다.Referring to FIG. 5, a field oxide film 405 is formed on the semiconductor substrate 400 to define the active region 410 using a method such as a local oxide (LOCal oxide of Silicon) method. Next, although not shown in FIG. 5, the word line pattern 420 of FIG. 4 is formed on the active region 410. Subsequently, impurities are implanted into the entire surface of the substrate to form a conductive region such as a source region 412 and a drain region (not shown). The source region 412 and the drain region may also be formed as a lightly doped drain (LDD) structure as needed.

이어서, 결과물 전면에 절연막, 예컨대 산화막(415)을 형성한후 이를 식각하여 소오스 영역(407) 및 드레인 영역(미도시)을 노출시키는 셀 패드 콘택영역을 형성한 후, 도전 물질을 매립하여 셀 패드(417)를 형성한다. 셀 패드(417)는 접촉창의 어스펙트 비를 감소시키기 위하여 접촉창이 형성될 영역에 형성하는 것이다. 따라서 셀 패드(417)는 접촉창의 어스펙트 비를 고려하여 형성 공정을 생략할 수도 있다.Subsequently, an insulating film, for example, an oxide film 415 is formed on the entire surface of the resultant and then etched to form a cell pad contact region exposing a source region 407 and a drain region (not shown). 417 is formed. The cell pad 417 is formed in the area where the contact window is to be formed in order to reduce the aspect ratio of the contact window. Therefore, the cell pad 417 may omit the forming process in consideration of the aspect ratio of the contact window.

셀 패드(417)가 형성된 결과물 전면에 층간 절연막(425), 예컨대 산화막을 재증착한 후, 층간 절연막(425)을 식각하여 드레인 영역에 형성된 셀 패드(417)를 노출시키는 비트라인 접촉창(미도시, 도4의 430 참고)을 형성한다. 계속해서 비트라인 접촉창을 매립하는 다결정 실리콘막(442)을 층간 절연막(425)상에 형성한다. 다결정 실리콘막은 저압 화학 기상 증착 방법(Low Pressure Chemical Vapor Deposition : 이하 LPCVD)으로 500℃ 내지 700℃의 온도에서 1000 내지 3000Å 두께로 형성한다. 다결정 실리콘막은 불순물이 도우프되지 않은 상태로 형성된 후, 비소(arsenic) 또는 인(phosphorous)을 이온 주입으로 도우핑시켜 도전성을 띠도록 할 수도 있고, 증착시 인-시츄로 불순물을 도우프하여 불순물이 도우프된 다결정 실리콘막 상태로 형성할 수도 있다. 다결정 실리콘막(442)상에는 전도성을 향상시키기 위하여 텅스텐막(444)을 더 형성하는 것이 바람직하다.After re-depositing the interlayer insulating film 425, for example, an oxide film, on the entire surface of the resultant cell pad 417, the bit line contact window exposing the cell pad 417 formed in the drain region by etching the interlayer insulating film 425. (See 430 of FIG. 4). Subsequently, a polycrystalline silicon film 442 filling the bit line contact window is formed on the interlayer insulating film 425. The polycrystalline silicon film is formed to a thickness of 1000 to 3000 Pa at a temperature of 500 ° C to 700 ° C by Low Pressure Chemical Vapor Deposition (LPCVD). After the polycrystalline silicon film is formed in a non-doped state, the polycrystalline silicon film may be doped with arsenic or phosphorous by ion implantation to be conductive, and the impurities may be doped by in-situ during deposition. It may be formed in the doped polycrystalline silicon film state. It is preferable to further form a tungsten film 444 on the polycrystalline silicon film 442 to improve conductivity.

도6을 참고하면, 반응성 이온 식각 공정등을 실시하여 텅스텐막(444), 다결정 실리콘막(442) 및 층간 절연막(425)을 식각하여 다결정 실리콘막 패턴(442P) 및 텅스텐막 패턴(444P)로 이루어진 비트 라인(440)을 완성하고, 비트 라인(440) 하부에 층간 절연막 패턴(425P)도 형성한다.Referring to FIG. 6, a tungsten film 444, a polycrystalline silicon film 442, and an interlayer insulating film 425 are etched by performing a reactive ion etching process to a polycrystalline silicon film pattern 442P and a tungsten film pattern 444P. The formed bit line 440 is completed, and an interlayer insulating layer pattern 425P is formed under the bit line 440.

이어서, 비트 라인(440)이 형성된 결과물 전면에 산화방지막(446)을 형성한다. 산화방지막(446)은 LPCVD 또는 PECVD(Plasma Enhanced Chemical Vapor Deposition)법으로 500℃ 내지 850℃의 온도에서 질화막을 증착함으로써 형성한다. 산화방지막(446)은 유전체막의 산화 공정과 같은 후속의 산화 공정에 의해 비트 라인(440)이 산화되는 것을 방지하기 위하여 형성하는 것으로, 50Å 내지 500Å 정도의 두께로 형성한다.Next, an anti-oxidation film 446 is formed on the entire surface of the resultant bit line 440. The antioxidant film 446 is formed by depositing a nitride film at a temperature of 500 ° C to 850 ° C by LPCVD or Plasma Enhanced Chemical Vapor Deposition (PECVD). The antioxidant film 446 is formed to prevent the bit line 440 from being oxidized by a subsequent oxidation process such as an oxidation process of the dielectric film.

도7을 참조하면, 산화 방지막(446)상에 불순물이 제1농도로 도우프된 절연물을 사용하여 제1절연막(450)을 형성한다. 앞서 설명한 바와 같이, 제1절연막(450)을 구성하는 절연물로는 불순물의 농도와 식각율이 비례하는 특징을 지닌 물질, 예컨대 붕소(boron) 또는 인(phosphorous)이 도우프된 산화물을 사용한다. 따라서, BSG, PSG 또는 BPSG등을 사용한다. 예컨대, BPSG를 사용하여 제1절연막(450)을 형성할 경우에는 APCVD(atmospheric Pressure Chemical Vapor Deposition), LPCVD 또는 PECVD법으로 300Å 내지 2000Å 두께로 증착한다. 이 때, 보론과 인의 도핑 농도인 제1농도는 가능한한 높게 하여 플로우가 용이하며, 후속 공정에서 실시하는 습식 식각 공정시 식각률이 크도록 한다.Referring to FIG. 7, the first insulating layer 450 is formed on the anti-oxidation layer 446 by using an insulator doped with impurities at a first concentration. As described above, a material having a characteristic in which the concentration of the impurity is proportional to the etching rate is used as the insulator constituting the first insulating layer 450, for example, boron or phosphorous-doped oxide. Therefore, BSG, PSG or BPSG is used. For example, when the first insulating layer 450 is formed using BPSG, the first insulating layer 450 is deposited to have a thickness of 300 GPa to 2000 GPa by an atmospheric pressure chemical vapor deposition (APCVD), LPCVD, or PECVD method. At this time, the first concentration, which is the doping concentration of boron and phosphorus, is as high as possible to facilitate the flow, so that the etching rate during the wet etching process performed in the subsequent process is large.

증착후, 질소 분위기 또는 질소와 산소 분위기하에서 750℃ 내지 900℃의 고온으로 플로우시킨다. 플로우 공정에 의해 형성된 제1층간 절연막(450)의 두께는 비트라인 콘택홀(도4의 430)이 형성되는 층간 절연막(425)의 두께보다 낮게 형성하는 것이 바람직하다. 그 이유는 제1절연막(450)내에 접촉창을 형성한 후, 접촉창의 하단부의 크기를 증가시키기 위하여 실시하는 습식 식각 공정시 제1절연막(450)이 과도하게 식각될 경우 비트라인(440)과 접촉창간에 단락이 일어나는 문제점을 방지하기 위해서이다.After the deposition, the mixture was flowed at a high temperature of 750 ° C to 900 ° C under nitrogen atmosphere or nitrogen and oxygen atmosphere. The thickness of the first interlayer insulating layer 450 formed by the flow process is preferably lower than the thickness of the interlayer insulating layer 425 in which the bit line contact hole 430 of FIG. 4 is formed. The reason is that after forming the contact window in the first insulating film 450, the bit line 440 and the bit line 440 when the first insulating film 450 is excessively etched during the wet etching process performed to increase the size of the lower end of the contact window. This is to prevent the problem of short circuit between contact windows.

도7을 참조하면, 제1절연막(450)이 형성된 결과물 전면에 제1농도보다 낮은 제2농도로 불순물이 도우핑된 절연물을 사용하여 제2절연막(452)을 형성한다.Referring to FIG. 7, a second insulating layer 452 is formed on the entire surface of the resultant on which the first insulating layer 450 is formed by using an insulator doped with impurities at a second concentration lower than the first concentration.

제2절연막(452)을 BPSG로 형성할 경우, APCVD, LPCVD 또는 PECVD법으로 3000Å 내지 9000Å두께로 증착한다. 증착 후, 통상의 고온 열처리에 의한 플로우 공정, 에치 백(etch-back)공정 또는 화학 기계적 폴리싱 공정을 실시하여 제2절연막(452)을 평탄화시킨다.When the second insulating film 452 is formed of BPSG, the second insulating film 452 is deposited to have a thickness of 3000 kV to 9000 kV by APCVD, LPCVD, or PECVD. After deposition, the second insulating film 452 is planarized by performing a flow process, an etch-back process, or a chemical mechanical polishing process by normal high temperature heat treatment.

도8을 참고하면, 평탄화된 제2절연막(452)상에 식각저지막(454)을 형성한다. 식각 저지막(454)은 실리콘 질화막(Si3N4) 또는 실리콘 산화 질화막(SiON)과 같은 질화막(454)을 50Å 내지 500Å 두께로 증착하여 형성한다. 이어서, 후속 공정에서 스토리지 전극의 하단부에 언더컷(undercut)을 형성하기 위한 층간 절연막(456)을 형성한다. 언더컷은 스토리지 전극의 유효 표면적을 증대시키기 위해 형성하는 것이다. 언더컷을 형성하기 위한 층간 절연막(456)은 고온 산화막과 같은 산화막을 500Å 내지 2000Å 두께로 증착하여 형성한다. 그리고 식각저지막(454)는 언더컷을 형성하기 위한 층간 절연막(456) 제거시 하부의 제2절연막(452)이 식각되는 것을 방지하고 유전체막의 산화 공정등과 같은 산화 공정시 비트 라인(440)이 산화되는 것을 방지하기 위해서 형성하는 것이다.Referring to FIG. 8, an etch stop layer 454 is formed on the planarized second insulating layer 452. The etch stop layer 454 is formed by depositing a nitride layer 454 such as a silicon nitride layer (Si 3 N 4 ) or a silicon oxynitride layer (SiON) to a thickness of 50 kV to 500 kV. Subsequently, an interlayer insulating layer 456 is formed on the lower end of the storage electrode in a subsequent process to form an undercut. Undercut is to form to increase the effective surface area of the storage electrode. The interlayer insulating film 456 for forming the undercut is formed by depositing an oxide film such as a high temperature oxide film to a thickness of 500 kPa to 2000 kPa. The etch stop layer 454 may prevent the lower second insulating layer 452 from being etched when the interlayer insulating layer 456 is removed to form the undercut, and the bit line 440 may be removed during an oxidation process such as an oxidation process of the dielectric layer. It is formed to prevent oxidation.

따라서, 언더컷 공정을 실시하지 않거나 비트라인위에 산화 방지막(446)을 형성한 경우에는 식각 저지막(454) 및 언더컷 형성용 층간 절연막(456)은 형성하지 않아도 무방하다.Therefore, when the undercut process is not performed or the antioxidant film 446 is formed on the bit line, the etch stop film 454 and the undercut insulating interlayer 456 may not be formed.

도9를 참고하면, 제3층간 절연막(456)상에 포토레지스트막을 형성한 후, 사진 식각 공정을 거쳐 소오스 영역(412)과 접촉하고 있는 셀 패드(417)를 노출시키는 접촉창을 정의하는 포토레지스트 패턴(458)을 형성한다. 이어서 포토레지스트 패턴(458)을 식각마스크로 사용하여 반응성 이온 식각과 같은 건식 식각 공정을 실시하여 층간 절연막(456), 식각 저지막(454), 불순물이 제2농도로 도핑된 제2절연막(452), 불순물이 제2농도보다 높은 제1농도로 도핑된 제1절연막(450) 및 산화 방지막(446)을 차례대로 식각하여 셀 패드(417)를 노출시키는 접촉창(460A)을 형성한다. 이렇게 형성된 접촉창(460A)은 다층의 절연층(456, 454, 452, 450)내에 형성되어 어스펙트 비가 크기 때문에 접촉창(460A)의 중앙부의 폭(w1)보다 하단부의 폭(W1)이 좁게 형성된다.Referring to FIG. 9, after forming a photoresist film on the third interlayer insulating film 456, a photo defining a contact window for exposing the cell pad 417 in contact with the source region 412 through a photolithography process is performed. The resist pattern 458 is formed. Subsequently, a dry etching process such as reactive ion etching is performed using the photoresist pattern 458 as an etching mask, thereby performing an interlayer insulating film 456, an etching blocking film 454, and a second insulating film 452 doped with impurities at a second concentration. ), The first insulating layer 450 and the anti-oxidation layer 446 doped at a first concentration higher than the second concentration are sequentially etched to form a contact window 460A exposing the cell pads 417. The contact window 460A thus formed is formed in the multi-layered insulating layers 456, 454, 452, and 450, and the width W1 of the lower end portion is narrower than the width w1 of the center portion of the contact window 460A because the aspect ratio is large. Is formed.

도10을 참고하면, 접촉창(460A)이 형성된 반도체 기판(400)을 암모니아(NH4OH), 과산화수소(H2O2), 및 순수(DIW)의 혼합 용액 또는 불화 수소산 용액등으로 처리하는 습식 식각 공정을 실시한다.Referring to FIG. 10, the semiconductor substrate 400 on which the contact window 460A is formed is treated with a mixed solution of ammonia (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and pure water (DIW) or a hydrofluoric acid solution. Wet etching process is performed.

제1절연막(450)은 제2절연막(452)보다 불순물 도핑 농도가 높기 때문에 제1층간 절연막(450)의 습식 식각율이 제2층간 절연막(452)보다 크다. 따라서 접촉창(460A)을 열기 위한 건식 식각 공정을 실시한 후, 습식 식각을 실시하면, 하단부의 폭(W2)이 중앙부의 폭(w2)보다 넓어진 접촉창(460B)을 완성할 수 있다.Since the first insulating layer 450 has a higher impurity doping concentration than the second insulating layer 452, the wet etch rate of the first interlayer insulating layer 450 is greater than that of the second interlayer insulating layer 452. Therefore, after performing a dry etching process for opening the contact window 460A and performing wet etching, the contact window 460B having a width W2 of the lower end portion wider than the width w2 of the center part can be completed.

즉, 하부의 도전부재, 예컨대 셀 패드(417) 또는 소오스 영역(412)등과 접촉하는 접촉면적이 넓어진다. 이 때, 접촉창(460B) 하단부의 폭(W2)이 너무 넓어져서 인접한 비트라인(440)과의 단락이 발생하지 않도록 습식 식각 시간을 조절한다.That is, the contact area in contact with the lower conductive member, for example, the cell pad 417 or the source region 412, is widened. At this time, the wet etching time is adjusted so that the width W2 of the lower end of the contact window 460B becomes too wide so that a short circuit with an adjacent bit line 440 does not occur.

그리고, 습식 식각은 접촉창(460B) 하단부의 폭을 넓히기 위한 목적뿐만 아니라 접촉창(460B)내를 세정하기 위한 목적으로도 사용된다.In addition, the wet etching is used not only for widening the bottom portion of the contact window 460B but also for cleaning the inside of the contact window 460B.

도11을 참고하면, 포토레지스트 패턴(458)을 제거한 후, 접촉창(460B)이 형성되어 있는 결과물 전면에 절연막, 예컨대 질화막을 100Å 내지 500Å 두께로 형성한 후, 에치백하여 접촉창(460B)의 측벽에 절연 스페이서(462)를 형성한다. 다음에 접촉창(460B)을 매립하고 산화막(456)위에 일정두께가 되도록 도전막, 예컨대 불순물이 도우핑된 다결정 실리콘막을 형성한다. 도전막은 5000Å 내지 12000Å 정도의 두께로 형성한다. 다음에 도전막을 패터닝하여 스토리지 전극(470)을 형성한다.Referring to FIG. 11, after the photoresist pattern 458 is removed, an insulating film, such as a nitride film, is formed on the entire surface of the resultant in which the contact window 460B is formed, and then is etched back to form a contact window 460B. An insulating spacer 462 is formed on the side wall of the insulating spacer 462. Next, the contact window 460B is embedded and a conductive film such as a polycrystalline silicon film doped with impurities is formed on the oxide film 456 to have a predetermined thickness. The conductive film is formed to a thickness of about 5000 kPa to 12000 kPa. Next, the conductive film is patterned to form the storage electrode 470.

도12를 참고하면, 층간 절연막(456)을 선택적으로 제거하여 언더컷을 형성하여 스토리지 전극 구조를 완성한다. 이 때, 식각 저지막(454)이 제2절연막(452)이 손상되는 것을 방지한다.Referring to FIG. 12, the interlayer insulating layer 456 is selectively removed to form an undercut to complete the storage electrode structure. At this time, the etch stop layer 454 prevents the second insulating layer 452 from being damaged.

본 발명에 따라 형성된 스토리지 전극은 어스펙트비가 큰 접촉창(460B)을 통해 셀 패드(417)와 접촉한다. 그러나, 종래 기술과는 달리, 접촉면의 폭(W2)이 넓기 때문에, 접촉 면저항의 증가에 따른 소자의 불량 발생 확률이 현저하게 감소한다.The storage electrode formed according to the present invention contacts the cell pad 417 through the contact window 460B having a large aspect ratio. However, unlike the prior art, since the width W2 of the contact surface is wide, the probability of failure of the device due to the increase of the contact surface resistance is significantly reduced.

본 발명은 불순물이 고농도로 도핑된 절연물의 습식 식각률이 저농도로 도핑된 절연물의 습식 식각률에 비해 크다는 점을 이용한다. 따라서, 불순물이 고농도로 도핑된 하부 절연막과 불순물이 저농도로 도핑된 상부 절연막으로 이루어진 절연막을 건식 식각 및 습식 식각 공정으로 식각하여 접촉창을 형성한다. 그 결과 접촉창 하단부의 폭을 종래의 접촉창에 비해 용이하게 넓힐 수 있어서, 접촉 면저항의 증가를 효과적으로 방지할 수 있다.The present invention takes advantage of the fact that the wet etch rate of the insulator doped with a high concentration of impurities is larger than the wet etch rate of the insulator doped with a low concentration. Accordingly, an insulating layer including a lower insulating layer doped with a high concentration of impurities and an upper insulating layer doped with a low concentration of impurities is etched by dry etching and wet etching to form a contact window. As a result, the width of the lower portion of the contact window can be easily widened as compared with the conventional contact window, so that an increase in contact surface resistance can be effectively prevented.

Claims (13)

하부 도전 부재가 형성되어 있는 반도체 기판을 제공하는 단계;Providing a semiconductor substrate having a lower conductive member formed thereon; 상기 하부 도전 부재상에 불순물이 제1농도로 도우핑된 절연물을 사용하여 제1절연막을 형성하는 단계;Forming a first insulating film on the lower conductive member by using an insulating material doped with impurities at a first concentration; 상기 제1절연막상에 상기 불순물이 상기 제1농도보다 낮은 제2농도로 도우핑된 상기 절연물을 사용하여 제2절연막을 형성하는 단계;Forming a second insulating film on the first insulating film using the insulating material doped with a second concentration less than the first concentration; 상기 제2절연막 및 제1절연막을 건식 식각하여 상기 하부 도전 부재를 노출시키는 접촉창(contact window)을 개구(opening)하는 단계;Dry etching the second insulating film and the first insulating film to open a contact window exposing the lower conductive member; 상기 접촉창이 형성되어 있는 상기 제2절연막 및 제1절연막을 습식 식각하여 상기 하부 도전 부재의 노출 면적을 증가시키는 단계를 구비하는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.And wet-etching the second insulating film and the first insulating film on which the contact window is formed to increase the exposed area of the lower conductive member. 제1항에 있어서, 상기 불순물은 보론 및/또는 인을 포함하는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of claim 1, wherein the impurity comprises boron and / or phosphorus. 제2항에 있어서, 상기 절연물은 상기 불순물이 도우핑된 산화물인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of claim 2, wherein the insulator is an oxide doped with the impurity. 제2항에 있어서, 상기 불순물이 도우핑된 산화물은 BSG, PSG 또는 BPSG인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of claim 2, wherein the oxide doped with impurities is BSG, PSG, or BPSG. 제1항에 있어서, 상기 습식 식각 단계는 상기 제2절연막보다 상기 제1절연막의 습식 식각율이 커서, 상기 제1절연막내에 형성된 상기 접촉창의 폭이 상기 제2절연막내에 형성된 상기 접촉창의 폭보다 커지도록 하여 상기 하부 도전 부재의 노출 면적을 증가시키는 단계인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The wet etching step of claim 1, wherein the wet etching rate of the first insulating layer is greater than that of the second insulating layer, and the width of the contact window formed in the first insulating layer is greater than the width of the contact window formed in the second insulating layer. Increasing the exposed area of the lower conductive member. 하부 도전 부재가 형성되어 있는 반도체 기판을 제공하는 단계;Providing a semiconductor substrate having a lower conductive member formed thereon; 상기 반도체 기판상에 층간 절연막을 형성하는 단계;Forming an interlayer insulating film on the semiconductor substrate; 상기 층간 절연막상에 도전막 패턴을 형성하는 단계;Forming a conductive film pattern on the interlayer insulating film; 상기 도전막 패턴이 형성된 결과물 전면에 불순물이 제1농도로 도우핑된 절연물을 사용하여 제1절연막을 형성하는 단계;Forming a first insulating film using an insulating material doped with impurities at a first concentration on the entire surface of the resultant product on which the conductive film pattern is formed; 상기 제1절연막상에 상기 불순물이 상기 제1농도보다 낮은 제2농도로 도우핑된 상기 절연물을 사용하여 제2절연막을 형성하는 단계;Forming a second insulating film on the first insulating film using the insulating material doped with a second concentration less than the first concentration; 상기 제2절연막 및 제1절연막을 건식 식각하여 상기 하부 도전 부재를 노출시키는 접촉창(contact window)을 개구(opening)하는 단계;Dry etching the second insulating film and the first insulating film to open a contact window exposing the lower conductive member; 상기 접촉창이 형성되어 있는 상기 제2절연막 및 제1절연막을 습식 식각하여 상기 하부 도전 부재의 노출 면적을 증가시키는 단계를 구비하는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.And wet-etching the second insulating film and the first insulating film on which the contact window is formed to increase the exposed area of the lower conductive member. 제6항에 있어서, 상기 불순물은 보론 및/또는 인을 포함하는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of manufacturing a contact window of a semiconductor device according to claim 6, wherein said impurities comprise boron and / or phosphorus. 제6항에 있어서, 상기 절연물은 상기 불순물이 도우핑된 산화물인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of claim 6, wherein the insulator is an oxide doped with the impurity. 제8항에 있어서, 상기 불순물이 도우핑된 산화물은 BSG, PSG 또는 BPSG인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of claim 8, wherein the doped oxide is BSG, PSG, or BPSG. 제6항에 있어서, 상기 제1절연막은 상기 층간 절연막의 두께보다 작은 두께로 형성되는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of manufacturing a contact window of a semiconductor device according to claim 6, wherein the first insulating film has a thickness smaller than the thickness of the interlayer insulating film. 제6항에 있어서, 습식 식각 단계는 상기 제2절연막보다 제1절연막의 습식 식각율이 커서, 상기 제1절연막내에 형성된 상기 접촉창의 폭이 상기 제2절연막내에 형성된 상기 접촉창의 폭보다 커지도록 하여 상기 하부 도전 부재의 노출 면적을 증가시키는 단계인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The wet etching step of claim 6, wherein the wet etching rate of the first insulating layer is greater than that of the second insulating layer so that the width of the contact window formed in the first insulating layer is greater than the width of the contact window formed in the second insulating layer. And increasing the exposed area of the lower conductive member. 제6항에 있어서, 상기 제1절연막을 형성하는 단계전에 상기 도전막 패턴의 전면에 산화 방지막을 형성하는 단계를 더 구비하는 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.The method of manufacturing a contact window of a semiconductor device according to claim 6, further comprising forming an anti-oxidation film on the entire surface of the conductive film pattern before forming the first insulating film. 제6항에 있어서, 상기 접촉창을 개구하는 단계전에 상기 제2절연막상에 식각 저지막 및 상기 접촉창을 매립하는 도전막 패턴에 언더컷을 형성하기 위한 층간 절연막을 형성하는 단계를 더 구비하고,The method of claim 6, further comprising: forming an interlayer insulating film for forming an undercut on the second insulating film and the conductive film pattern for filling the contact window before the opening of the contact window. 상기 접촉창을 개구하는 단계는 상기 언더컷을 형성하기 위한 층간 절연막, 식각 저지막, 제2절연막, 및 제1절연막을 건식 식각하는 단계인 것을 특징으로 하는 반도체 장치의 접촉창의 제조 방법.And the step of opening the contact window comprises dry etching the interlayer insulating film, the etch stop film, the second insulating film, and the first insulating film for forming the undercut.
KR1019980032753A 1998-08-12 1998-08-12 Fabrication method for contact window of semiconductor device KR100265773B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019980032753A KR100265773B1 (en) 1998-08-12 1998-08-12 Fabrication method for contact window of semiconductor device
US09/275,029 US6232225B1 (en) 1998-08-12 1999-03-24 Method of fabricating contact window of semiconductor device
JP20377199A JP3897934B2 (en) 1998-08-12 1999-07-16 Contact hole manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980032753A KR100265773B1 (en) 1998-08-12 1998-08-12 Fabrication method for contact window of semiconductor device

Publications (2)

Publication Number Publication Date
KR20000013720A true KR20000013720A (en) 2000-03-06
KR100265773B1 KR100265773B1 (en) 2000-09-15

Family

ID=19547058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980032753A KR100265773B1 (en) 1998-08-12 1998-08-12 Fabrication method for contact window of semiconductor device

Country Status (3)

Country Link
US (1) US6232225B1 (en)
JP (1) JP3897934B2 (en)
KR (1) KR100265773B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604555B1 (en) * 2001-06-21 2006-07-28 주식회사 하이닉스반도체 Method of forming a capacitor in a semiconductor device
KR100745071B1 (en) * 2005-06-30 2007-08-01 주식회사 하이닉스반도체 Method for fabricating semiconductor device
KR100791326B1 (en) * 2004-09-02 2008-01-03 삼성전자주식회사 Method for making contact-hole of semiconductor chip
KR101129922B1 (en) * 2010-07-15 2012-03-23 주식회사 하이닉스반도체 Semiconductor device and method for forming the same
US8378734B2 (en) 2002-08-29 2013-02-19 Lg Display Co., Ltd. Method and system for reduction of off-current in field effect transistors
KR20160025278A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Semiconductor device and method of fabricating the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365642B1 (en) * 2000-10-30 2002-12-26 삼성전자 주식회사 Method for fabricating a semiconductor device with contact window
KR100564429B1 (en) * 2003-06-30 2006-03-28 주식회사 하이닉스반도체 Method for manufacturing landing plug
KR101033986B1 (en) * 2003-10-27 2011-05-11 주식회사 하이닉스반도체 Method of Fabricating a Contact of a Semiconductor Device
US7238620B1 (en) * 2004-02-18 2007-07-03 National Semiconductor Corporation System and method for providing a uniform oxide layer over a laser trimmed fuse with a differential wet etch stop technique
KR100675895B1 (en) * 2005-06-29 2007-02-02 주식회사 하이닉스반도체 Metal interconnection of semiconductor device and method of fabricating the same
JP2008226989A (en) * 2007-03-09 2008-09-25 Elpida Memory Inc Semiconductor device and its manufacturing method
JP5277628B2 (en) * 2007-12-21 2013-08-28 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US9905509B2 (en) * 2014-07-25 2018-02-27 Macronix International Co., Ltd. Inverted-T shaped via for reducing adverse stress-migration effects
US10157780B2 (en) * 2016-11-29 2018-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a device having a doping layer and device formed
US10727178B2 (en) * 2017-11-14 2020-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Via structure and methods thereof
EP4002437B1 (en) * 2020-09-22 2023-08-02 Changxin Memory Technologies, Inc. Method of forming a contact window structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792703A (en) * 1996-03-20 1998-08-11 International Business Machines Corporation Self-aligned contact wiring process for SI devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604555B1 (en) * 2001-06-21 2006-07-28 주식회사 하이닉스반도체 Method of forming a capacitor in a semiconductor device
US8378734B2 (en) 2002-08-29 2013-02-19 Lg Display Co., Ltd. Method and system for reduction of off-current in field effect transistors
US8729953B2 (en) 2002-08-29 2014-05-20 Lg Display Co., Ltd. Method and system for reduction of off-current in field effect transistors
KR100791326B1 (en) * 2004-09-02 2008-01-03 삼성전자주식회사 Method for making contact-hole of semiconductor chip
KR100745071B1 (en) * 2005-06-30 2007-08-01 주식회사 하이닉스반도체 Method for fabricating semiconductor device
KR101129922B1 (en) * 2010-07-15 2012-03-23 주식회사 하이닉스반도체 Semiconductor device and method for forming the same
US9287395B2 (en) 2010-07-15 2016-03-15 SK Hynix Inc. Semiconductor device and a bit line and the whole of a bit line contact plug having a vertically uniform profile
KR20160025278A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Semiconductor device and method of fabricating the same

Also Published As

Publication number Publication date
JP3897934B2 (en) 2007-03-28
JP2000058652A (en) 2000-02-25
KR100265773B1 (en) 2000-09-15
US6232225B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
EP1122772B1 (en) Method of forming self-aligned contact structures in semiconductor integrated circuit devices
US6759704B2 (en) Method for fabricating semiconductor device, and semiconductor device, having storage node contact plugs
US5780339A (en) Method for fabricating a semiconductor memory cell in a DRAM
KR100265773B1 (en) Fabrication method for contact window of semiconductor device
KR100299594B1 (en) Manufacturing method of DRAM device
US20020024093A1 (en) Semiconductor device with self-aligned contact structure employing dual spacers and method of manufacturing the same
US6037211A (en) Method of fabricating contact holes in high density integrated circuits using polysilicon landing plug and self-aligned etching processes
KR100666387B1 (en) Method of manufacturing a conductive pattern and semiconductor device using the same
JP2002280452A (en) Integrated circuit device preventing short circuit effectively and its fabricating method
US5668039A (en) Method for forming crown-shape capacitor node with tapered etching
US6238968B1 (en) Methods of forming integrated circuit capacitors having protected layers of HSG silicon therein
US6818505B2 (en) Non-volatile semiconductor memory device and manufacturing method thereof
US5681774A (en) Method of fabricating a toothed-shape capacitor node using a thin oxide as a mask
US6458680B2 (en) Method of fabricating contact pads of a semiconductor device
US6404020B1 (en) Method of forming contact pads in a semiconductor device and a semiconductor device formed using the method
US5670407A (en) Method of fabricating a toothed-shape capacitor node in a semiconductor DRAM circuit
KR20000027444A (en) Method for forming contact hole of semiconductor device
KR100292941B1 (en) Method for fabricating dram cell capacitor
KR100576083B1 (en) Semiconductor device and method of manufacturing semiconductor device
JPH1197529A (en) Manufacture of semiconductor device
KR100691484B1 (en) Method for fabricating plug in semiconductor device
KR100589498B1 (en) Method of manufacturing semiconductor device
KR20010006944A (en) Semiconductor integrated circuit device and process for fabricating thereof
KR20020084480A (en) Method of manufacturing semiconductor device using self-aligned contact process
KR20020049346A (en) Method for Fabricating of Semiconductor Device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120531

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee