KR20000003150A - Process for preparing high-level lubricant base oil by binding hydrocracking, catalytic dewaxing and hydrofinishing process in one loop - Google Patents

Process for preparing high-level lubricant base oil by binding hydrocracking, catalytic dewaxing and hydrofinishing process in one loop Download PDF

Info

Publication number
KR20000003150A
KR20000003150A KR1019980024308A KR19980024308A KR20000003150A KR 20000003150 A KR20000003150 A KR 20000003150A KR 1019980024308 A KR1019980024308 A KR 1019980024308A KR 19980024308 A KR19980024308 A KR 19980024308A KR 20000003150 A KR20000003150 A KR 20000003150A
Authority
KR
South Korea
Prior art keywords
catalyst
base oil
reactor
oil
hydrocracking
Prior art date
Application number
KR1019980024308A
Other languages
Korean (ko)
Other versions
KR100262742B1 (en
Inventor
이용희
이경순
하성기
이창상
장순철
Original Assignee
김선동
쌍용정유 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선동, 쌍용정유 주식회사 filed Critical 김선동
Priority to KR1019980024308A priority Critical patent/KR100262742B1/en
Publication of KR20000003150A publication Critical patent/KR20000003150A/en
Application granted granted Critical
Publication of KR100262742B1 publication Critical patent/KR100262742B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G71/00Treatment by methods not otherwise provided for of hydrocarbon oils or fatty oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: A process for combining a hydrocracking process and a lubricant base oil process(catalytic dewaxing and hydrofinishing) is provided to produce low pour point fuel oil and high viscosity index lubricant base oil at the same time and control the production rate flexibly according to the market circumstances. CONSTITUTION: A conventional manufacturing method of lubricant base oil is as follows. Atmospheric residue(AR) is distilled under reduced pressure at a vacuum tower(VT1) to give vacuum gas oil(VGO), which is hydrotreated at a hydrotreating reactor(R1), hydrocracked at a hydrocracking reactor(R2), distilled with light distillate from a stripper(ST) at an atmospheric tower(AT) to separate fuel and hydrocrackate. Remaining hydrocrackate is hydrocracked at the 2nd step hydrocracking reactor(R3), dewaxed catalytically, hydrofinished, and sent to the stripper(ST). Light distillate is sent to the atmospheric tower(AT), remaining lubricant base oil is sent to a vacuum tower(VT2) to produce lubricant base oil. The new 3rd step hydrocracking reactor(R4) is constructed following behind the 2nd step hydrocracking reactor(R3) to perform a catalytic dewaxing and a hydrofinishing continuously in one reactor and an amine absorption tower is constructed to control the concentration of hydrogen sulfide.

Description

수첨분해, 촉매탈랍 및 수첨안정화공정을 1개의 루프(Loop)로 결합하여 고급윤활기유를 제조하는 방법Combined hydrocracking, catalyst dewaxing, and hydrostable stabilization in one loop

본 발명은 2단계 수첨분해공정과 윤활기유공정(촉매탈랍 및 수첨안정화공정)을 결합시킴으로써 유동점이 낮은 연료유와 고점도지수의 윤활기유를 동시에 생산할 수 있도록 한 공정에 관한 것으로 시장상황에 따라 연료유 또는 윤활기유 생산비율을 탄력적으로 조절할 수 있도록 한 것이다.The present invention relates to a process that enables the simultaneous production of fuel oil with low pour point and lubricating base oil with high viscosity index by combining two-stage hydrolysis process and lubricating base oil process (catalyst dewaxing and hydrogenation stabilization process). Or it is to adjust the lube base oil production rate elastically.

ⅰ) 수첨분해공정 및 윤활기유공정의 이론적 배경이론) Theoretical background of hydrocracking process and lube base oil process

수첨분해(Hydrocracking)공정은 그 목적에 따라 연료유 전환율을 달리함으로써 연료유 생산을 주목적으로 할 수도 있고, 윤활기유 원료 생산을 주목적으로 할 수도 있다.The hydrocracking process may focus on fuel oil production by varying the fuel oil conversion rate depending on the purpose, and may also focus on the production of lubricating base oil raw materials.

편의상 연료유 생산을 주목적으로 하는 수첨분해공정을 연료유 수첨분해 (Fuel Hydrocracking)공정이라 하고 윤활기유 원료생산을 주목적으로 하는 수첨분해공정을 윤활유 수첨분해(Lube Hydrocracking)공정이라 구분한다.For convenience, the hydrocracking process mainly for fuel oil production is referred to as the fuel hydrocracking process, and the hydrocracking process mainly for the production of lubricant base oil is classified as a lubricant hydrocracking process.

연료유 수첨분해공정과 윤활유 수첨분해공정은 서로 독립적으로 개발되어 왔는바, 연료유 생산을 위하여는 감압가스유의 패스당 연료유 전환율이 주로 50∼90% (총괄연료유 전환율 90% 이상)이고, 윤활기유 원료(수첨분해잔사유) 생산을 위하여는 감압가스유의 패스당 연료유 전환율을 주로 20∼30%로 한다. 물론 감압가스유의 패스당 연료유 전환율을 30∼50%로 할 수도 있다.The fuel oil hydrocracking process and the lubricating oil hydrocracking process have been developed independently of each other. For fuel oil production, the fuel oil conversion rate of the reduced pressure gas oil is mainly 50 to 90% (over 90% of the total fuel oil conversion rate). In order to produce lubricating base oil (hydrolysis cracking residue oil), the fuel oil conversion rate per pressure of the reduced-pressure gas oil is mainly 20 to 30%. Of course, the fuel oil conversion per pass of the vacuum gas oil can also be 30 to 50%.

연료유 수첨분해공정에서는 감압가스유등을 분해처리하여 경질유 특히 등유나 경유로 전환시키는바, 많은 양의 감압가스유 등을 처리하면서 분해전환율을 높이기 위하여 여러 종류의 수첨분해촉매들이 개발되었고 사용하는 촉매는 주로 니켈-몰리브덴 등이 담지된 무정형 실리카-알루미나 촉매 등이다.In the fuel oil hydrocracking process, decompression gas oil is decomposed and converted to light oil, especially kerosene or diesel, and various hydrocracking catalysts have been developed and used to increase the decomposition conversion rate while treating a large amount of vacuum gas oil. Is mainly an amorphous silica-alumina catalyst supported on nickel-molybdenum and the like.

한편, 윤활유 수첨분해공정에서는 감압가스유내에 존재하는 방향족 화합물을 분해시킴과 동시에 포화시켜 납센족 화합물로 전환시키는데, 여기에서 사용하는 촉매는 주로 니켈-텅스텐 등이 담지된 무정형 알루미나 또는 무정형 실리카-알루미나 촉매 등이다. 여기서 일부의 황 및 일부의 질소는 황화수소 및 암모니아로 전환하여 제거된다.On the other hand, in the lubricating oil hydrocracking process, the aromatic compounds present in the reduced-pressure gas oil are decomposed and saturated at the same time to be converted into lead-sensing compounds. The catalyst used here is mainly amorphous alumina or amorphous silica-alumina supported with nickel-tungsten or the like. Catalyst and the like. Here some sulfur and some nitrogen are removed by conversion to hydrogen sulfide and ammonia.

연료유만을 생산하는 경우에는 수첨분해공정이 단독공정으로 존재할 수 있으나 윤활기유를 생산하는 경우에는 수첨분해공정에 수반하여 탈랍공정과 수첨안정화공정을 필요로 한다. 즉, 윤활기유는 적당한 비점과 점도, 높은 점도지수(Visco- -sity Index), 낮은 유동점(Pour Point), 우수한 색상 및 안정성(Stability)등의 조건을 요구하는데 이를 달성하기 위하여는 탈랍공정 및 수첨안정화 공정을 필요로 한다.When only fuel oil is produced, the hydrocracking process may exist as a single process, but when producing lube base oil, a dewaxing process and a hydrostable stabilization process are required along with the hydrocracking process. That is, lubricating base oil requires conditions such as proper boiling point and viscosity, high viscosity index, low pour point, excellent color and stability. A stabilization process is required.

수첨분해공정에서 경질유로 전환되고 남은 미전환유인 수첨분해잔사유는 윤활기유 원료로 쓸 수 있는데 이 윤활기유원료는 적당한 비점과 점도 및 높은 점도지수는 가지고 있으나, 유동점이 높고 색상 및 안정성이 나빠 유동점 강하를 위하여 촉매탈랍(Catalytic Dewaxing) 공정을 거치고 색상 및 안정성 향상을 위하여 수첨안정화공정을 거친다.The hydrocracked residue oil, which is converted to light oil in the hydrocracking process, can be used as a raw material for lubricating base oil. The lubricating base oil has a suitable boiling point, viscosity and high viscosity index, but has a high pour point and poor color and stability. It goes through the catalytic dewaxing process for the drop and the hydrogenation stabilization process to improve the color and stability.

촉매탈랍공정에서는 ZSM-5와 같은 제올라이트 촉매를 사용하여 선택적으로 납(臘)성분만을 분해시킴으로써 유동점을 강하시키고 수첨안정화공정에서는 촉매탈랍시 부반응으로 생성되는 올레핀과 앞서의 수첨분해공정에서 미반응으로 잔류된 황, 질소 및 다핵방향족 화합물을 니켈-텅스텐이 담지된 알루미나 촉매 존재하에서 수소화시킴으로써 올레핀과 다핵방향족 화합물을 포화시키고 황 또는 질소는 황화수소 또는 암모니아로 방출시켜 윤활기유의 색상 및 안정성을 향상시킨다.In the catalyst stripping process, a zeolite catalyst such as ZSM-5 is used to selectively decompose only lead components, thereby lowering the pour point, and in the hydrostable stabilization process, olefins formed by side reactions during catalyst stripping and unreacted in the previous hydrocracking process. The residual sulfur, nitrogen and polynuclear aromatic compounds are hydrogenated in the presence of a nickel-tungsten-supported alumina catalyst to saturate the olefin and polynuclear aromatic compounds and release sulfur or nitrogen as hydrogen sulfide or ammonia to improve the color and stability of the lubricant base oil.

연료유 수첨분해공정에서 종래에는 니켈-몰리브덴 등이 담지된 무정형 실리카-알루미나 촉매를 사용하였으나 전환율을 높이는데 활성이 나빠, 니켈-몰리브덴 등이 담지된 Y-제올라이트 촉매로 대체하여 연료유 전환율을 높였다(이하“ 연료유 전환율”을 “전환율”이라 한다).In the fuel oil hydrocracking process, an amorphous silica-alumina catalyst supported with nickel-molybdenum and the like was conventionally used. However, due to poor activity in increasing the conversion rate, the fuel oil conversion rate was increased by replacing the Y-zeolite catalyst with nickel-molybdenum and the like. (Hereinafter the “fuel oil conversion rate” is referred to as the “conversion rate”).

그러나 니켈-몰리브덴 등이 담지된 Y-제올라이트 촉매는 납사의 수율은 높으나 필요로 하는 등유 및 경유의 수율이 낮아 프랑스국 IFP(Institut Francais du Petrole) 사는 새로운 타입의 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 (상품명 : HYC-642) 촉매를 개발, 사용함으로써 납사의 수율을 줄이고 등유나 경유의 수율을 증가시켰다.However, Y-zeolite catalysts containing nickel-molybdenum have high yields of naphtha but low yields of kerosene and diesel required. Institut Francais du Petrole (IFP), a French company, modified Y containing a new type of nickel-molybdenum. Developed and used zeolite (trade name: HYC-642) catalyst to reduce the yield of naphtha and increase the yield of kerosene and diesel.

특히 위의 새로운 타입의 변형된 Y-제올라이트 촉매는 촉매의 활성이 높아 운전가혹도를 변화시킴으로써 전환율을 20∼90%로 광범위하게 변화시킬 수 있어, 연료유 생산을 주목적으로 할 경우(연료유 수첨분해공정) 패스당 전환율을 50∼90%로, 윤활기유 원료생산을 주목적으로 할 경우(윤활유 수첨분해공정) 패스당 전환율을 20∼30%로 조절할 수 있다는 가능성을 발표하였다. (1992년 11월 일본석유협회주관 석유정제회의)In particular, the above new type of modified Y-zeolite catalyst has a high activity of the catalyst and can change the conversion rate to 20-90% by varying the operating severity. Decomposition process) The conversion rate per pass was 50-90%, and if the main purpose of the production of lubricating base oil raw material (lubricating oil hydrocracking process), the conversion rate per pass could be adjusted to 20-30%. (November 1992 Petroleum Refining Meeting organized by Japan Petroleum Association)

윤활기유 원료를 생산할 경우에는 종래의 윤활유 수첨분해공정에서 촉매로 사용한 니켈-텅스텐 등이 담지된 알루미나 또는 니켈-텅스텐 등이 담지된 무정형 실리카-알루미나 촉매를 IFP 촉매로 대체할 수 있게 되었다. 즉, IFP 촉매 1개로 연료유 수첨분해공정의 니켈-몰리브덴 등이 담지된 무정형 실리카-알루미나 촉매와 윤활유 수첨분해공정의 니켈-텅스텐 등이 담지된 알루미나 또는 니켈-텅스텐이 담지된 무정형 실리카-알루미나 촉매의 2개 기능을 할 수 있게 되었다.When producing a base oil for lubricating oil, it is possible to replace an alumina supported with nickel-tungsten or the like or an amorphous silica-alumina supported with nickel-tungsten used as a catalyst in the conventional lubricating oil hydrolysis process with an IFP catalyst. That is, one IFP catalyst is an amorphous silica-alumina catalyst carrying nickel-molybdenum in the fuel oil hydrolysis process and an alumina carrying nickel-tungsten in the lubricating oil hydrolysis process or an amorphous silica-alumina catalyst carrying nickel-tungsten. Can do two functions.

ⅱ) 선행기술Ii) prior art

통상적으로 수첨분해공정에 의하여 경질연료유를 생산하는 방법을 도 1 및 도 2에 나타내었다. 미합중국 쉐브런(Chevron)사의 1967년 미합중국 특허 제 3,308,055호를 보면 도 1과같이 1개의 반응기로 구성된 수첨분해공정을 개시(開示)하고 있음을 알 수 있다. 즉, 도 1에서처럼 감압가스유를 수첨분해 반응기 R1에서 수첨분해시킨후 상압증류탑(Atmospheric Tower)에서 상압증류하여 여러종류의 연료유를 분리하고, 남은 수첨분해잔사유는 윤활기유 원료탱크나 벙커-C유 탱크로 보내거나 수첨분해반응기 R1으로 재순환시켜 다시 분해시키고 있다.Typically, a method of producing light fuel oil by hydrocracking is illustrated in FIGS. 1 and 2. US Chevron 1967 US Patent No. 3,308,055 shows that the hydrocracking process consisting of one reactor is disclosed as shown in FIG. That is, as shown in FIG. 1, the decompression gas oil is hydrocracked in a hydrolysis reactor R1, followed by atmospheric distillation in an atmospheric tower, and various fuel oils are separated. It is sent to the C oil tank or recycled to the hydrocracking reactor R1 for further decomposition.

그러나 도 1의 수첨분해반응기에 사용하는 촉매인 니켈-몰리브덴 등이 담지된 무정형 실리카-알루미나 촉매는 무정형이므로 촉매활성이 낮아, 높은 온도가 요구되어 전환율을 패스당 75%이상 높일 수 없어 감압가스유의 처리량을 약 20,000 B/D (Barrel per Day) 이상으로 높일 수 없으므로 위 무정형 촉매 대신 결정형인 니켈-몰리브덴 등이 담지된 제올라이트 촉매(이하 “Ni-Mo/Y-제올라이트 촉매”라 한다)를 개발하게 되었다.However, the amorphous silica-alumina catalyst loaded with nickel-molybdenum, which is a catalyst used in the hydrocracking reactor of FIG. 1, is amorphous, and thus has low catalytic activity. Therefore, a high temperature is required and the conversion rate cannot be increased by more than 75% per pass. Since the throughput cannot be increased to more than about 20,000 B / D (Barrel per Day), a zeolite catalyst carrying a crystalline nickel-molybdenum or the like instead of the above amorphous catalyst (hereinafter referred to as “Ni-Mo / Y-zeolite catalyst”) will be developed. It became.

도 2에서보면 수첨분해를 위한 Ni-Mo/Y-제올라이트 촉매는 수첨분해반응기 R2에 충전하는데 감압가스유내에는 Ni-Mo/Y-제올라이트 촉매의 촉매독으로 작용하는 질소 및 다핵방향족화합물이 존재하므로 이를 제거하기 위하여 수첨분해반응기 R2 앞에 수첨처리 (Hydrotreating) 반응기 R1을 두고 니켈-몰리브덴이 담지된 무정형 알루미나 촉매를 충전하여 질소는 암모니아로 제거하고, 다핵방향족화합물은 납센족으로 전환시킨다. 여기서 황의 일부도 황화수소로 제거된다.As shown in FIG. 2, the Ni-Mo / Y-zeolite catalyst for hydrocracking is charged to the hydrocracking reactor R2, and nitrogen and polynuclear aromatic compounds serving as catalyst poisons of the Ni-Mo / Y-zeolite catalyst are present in the reduced pressure gas oil. Therefore, in order to remove this, a hydrotreating reactor R1 is placed in front of the hydrolysis reactor R2, and an amorphous alumina catalyst loaded with nickel-molybdenum is charged to remove nitrogen with ammonia and the polynuclear aromatic compound is converted to lead-sensate. Some of the sulfur here is also removed with hydrogen sulfide.

따라서 도 2는 1단계 연속 수첨처리-수첨분해공정을 나타내고 있는바, Ni-Mo/Y-제올라이트 촉매의 촉매독을 수첨처리 반응기 R1에서 제거함으로써 Ni-Mo/Y-제올라이트 촉매의 분해활성을 높여 높은 전환율을 얻을 수 있게 되었고 따라서 35,000 B/D 정도의 감압가스유도 처리할 수 있게 되었다.Therefore, Figure 2 shows a one-step continuous hydrotreating-hydrolysis process, by increasing the decomposition activity of the Ni-Mo / Y-zeolite catalyst by removing the catalyst poison of the Ni-Mo / Y-zeolite catalyst from the hydrogenation reactor R1. A high conversion rate can be achieved and thus can handle 35,000 B / D of reduced pressure gas oil.

그러나 도 2의 공정으로는 유체역학적 한계(Hydraulic Limitation)가 있어 35,000 B/D 이상의 감압가스유 처리가 어려우므로 이를 해결하기 위하여 도 3에서는 2단계 수첨분해반응기 R3를 도입하였다.However, the process of Figure 2 has a hydrodynamic limit (Hydraulic Limitation) it is difficult to process the reduced pressure gas oil of more than 35,000 B / D in order to solve this problem in Figure 3 introduced a two-stage hydrolysis reactor R3.

도 3의 2단계 수첨분해공정은 1단계에서 일괄처리방식(Once Through Mode)으로 감압가스유를 약 50% 경질유로 분해시킨후, 상압증류하고 남은 수첨분해잔사유는 2단계 수첨분해반응기 R3에 투입하여 약 50∼70% 분해시키고 남은 미분해된 수첨분해잔사유는 상압증류탑 AT로 재순환시키는 공정이다. 도 3의 반응기 R1에 충전하는 촉매는 도 2의 R1에 충전하는 촉매와 동일하고 도 3의 반응기 R2 및 R3에 충전하는 촉매는 도 2의 반응기 R2에 충전하는 촉매와 동일하다.In the two-stage hydrocracking process of FIG. 3, after decomposing the reduced-pressure gas oil into about 50% light oil in a batch process (Once Through Mode) in the first stage, the remaining hydrocracked residue oil is subjected to atmospheric distillation in a two-stage hydrolysis reactor R3. 50 to 70% of the residue is added and the remaining undecomposed hydrolysis residue is recycled to the atmospheric distillation column AT. The catalyst charged in the reactor R1 of FIG. 3 is the same as the catalyst charged in the R1 of FIG. 2, and the catalyst charged in the reactors R2 and R3 of FIG. 3 is the same as the catalyst charged in the reactor R2 of FIG. 2.

도 4의 공정은 도 2의 공정에서 생성되는 수첨분해잔사유(Hydrocrackate)를 처리하여 윤활기유를 만드는 공정으로 촉매탈랍반응기 R3에서 탈랍을 하고 수첨안정화반응기 R4에서 안정화시킨후 감압증류탑(Vacuum Tower)을 거쳐 윤활기유를 얻을 수 있도록 한 공정이다.The process of FIG. 4 is a process of making a lubricating base oil by treating the hydrocracked residue oil (Hydrocrackate) generated in the process of FIG. 2 and then de-swapping in a catalytic dewaxing reactor R3 and stabilizing in a hydrogenation stabilizer R4. It is a process to obtain lubricating base oil.

그러나 도 4의 공정은 수첨처리반응기 R1과 수첨분해반응기 R2로 이루어진 수첨분해지역과 촉매탈랍반응기 R3와 수첨안정화반응기 R4로 이루어진 윤활기유지역으로 구분되어 있다.However, the process of FIG. 4 is divided into a hydrolysis zone composed of a hydrotreating reactor R1 and a hydrocracking reactor R2, and a lubricating base oil zone consisting of a catalytic dewaxing reactor R3 and a hydrostable stabilization reactor R4.

따라서 별도의 수첨분해지역과 윤활기유지역이 설치되어야하므로 많은 투자비가 소요되고 공정이 복잡하게 되는 문제가 있는데 구체적으로 윤활기유 원료탱크 추가설치, 감압증류탑 추가설치, 독립된 2개의 재순환수소가스 시스템등으로 투자비, 건설기간, 추가면적 및 운전의 편이성등에서 여러 가지 비효율적인 문제가 있다.Therefore, a separate hydrocracking zone and lubricating base oil area should be installed, which requires a lot of investment cost and complicated process. Specifically, the installation of lubricating base oil tank, addition of a reduced pressure distillation tower, and two independent recirculating hydrogen gas systems There are several inefficient problems in terms of investment cost, construction period, additional area and ease of operation.

또한 연료유와 윤활유의 수요변화에따라 탄력적으로 생산을 조절하기 위해서는 연료유 수첨분해지역과 윤활기유지역이 각각 필요하다는 단점이 있다.In addition, in order to flexibly regulate production according to the change in demand for fuel oil and lubricating oil, a fuel oil hydrolysis zone and a lubricating base oil region are required, respectively.

본 발명은 IFP 사의 2단계 연료유 수첨분해공정(도 3)에서 2단계의 수첨분해반응기 R3 다음에 반응기 R4를 추가하고 이 반응기 R4에 탈랍 및 수첨안정화촉매를 충전함으로써 2단계의 수첨분해공정과 윤활기유공정(촉매탈랍 및 수첨안정화공정)을 결합하여 연료유 생산과 윤활기유 생산을 동시에 할 수 있도록 하였으며 생산비율을 시장상황에 따라 탄력적으로 조절할 수 있도록 한 것이다.The present invention is a two-stage hydrolysis process by adding a reactor R4 followed by a hydrolysis reactor R3 of two stages in the two-stage fuel oil hydrocracking process (FIG. 3) of IFP, and charging the dewaxing and hydrostable catalyst to the reactor R4. The combination of lubricating base oil process (catalyst dewaxing and hydrogenation stabilization process) enables simultaneous production of fuel oil and lubricating base oil, and allows the production rate to be flexibly adjusted according to the market situation.

수첨분해공정과 촉매탈랍공정 및 수첨안정화공정을 결합시켜 수행함에 있어서, 수첨분해공정의 촉매인 Ni-Mo/Y-제올라이트는 금속이 황화물의 상태로 존재하여야하므로 활성의 유지를 위하여 일정농도 이상(0.5%)의 황화수소가 순환수소중에 함유되어 있어야만 하고 역으로 촉매탈랍공정의 촉매인 ZSM-5는 황화수소에 의하여 활성을 잃게되므로 수첨분해지역과 윤활기유지역을 결합시키는데 상당한 어려움이 있었다.In the combination of the hydrocracking process, the catalyst dewaxing process, and the hydrostable stabilization process, Ni-Mo / Y-zeolite, which is a catalyst of the hydrocracking process, must be present at a certain concentration or more to maintain activity because the metal must be present in the state of sulfide. 0.5%) hydrogen sulfide must be contained in the circulating hydrogen, and conversely, ZSM-5, which is a catalyst of the catalytic dewaxing process, loses activity due to hydrogen sulfide, and thus has a considerable difficulty in combining the hydrocracking zone and the lubricating base oil.

그러나 본 발명에서는 순환수소가스중의 황화수소의 농도가 0.5% ∼ 1.5%의 범위내에서는 수첨분해촉매의 활성은 그대로 유지되고 탈랍촉매의 활성은 거의 손상되지 않는 사실을 알게 되었다.However, in the present invention, it has been found that the activity of the hydrocracking catalyst is maintained as it is and the activity of the dewaxing catalyst is hardly impaired when the concentration of hydrogen sulfide in the circulating hydrogen gas is in the range of 0.5% to 1.5%.

즉, 순환수소중에 아민흡수탑을 추가 설치하여(미도시) 황화수소 농도를 조절함으로써 도 5에서와 같이 수첨분해지역과 윤활기유지역을 단일 공정으로 결합시킬 수 있었다.That is, by installing an amine absorption tower in the circulating hydrogen (not shown) to adjust the hydrogen sulfide concentration it was possible to combine the hydrocracking zone and the lubricating base oil region in a single process as shown in FIG.

본 발명은 촉매탈랍공정과 수첨안정화공정을 1개의 반응기에서 수행할 수 있도록 한 것이다.The present invention is to enable the catalyst dewaxing process and the hydrogenation stabilization process in one reactor.

또한 본 발명은 수첨분해공정과 촉매탈랍공정 및 수첨안정화공정을 1개의 반응기에서 수행할 수 있도록 한 것이다.In addition, the present invention is to be able to perform the hydrocracking process, catalyst dewaxing process and hydrogenation stabilization process in one reactor.

도 1은 종래의 1단계 1개 반응기로 구성된 수첨분해 개략공정도.1 is a schematic process diagram of hydrocracking consisting of a conventional one-stage one reactor.

도 2는 종래의 1단계 2개 반응기로 구성된 연속 수첨처리-수첨분해 개략공정 도.Figure 2 is a schematic diagram of a continuous hydrotreatment-hydrolysis of a conventional one-stage two reactor.

도 3은 종래의 2단계 3개 반응기로 구성된 수첨분해 개략공정도. (1단계 :Figure 3 is a hydrocracking schematic process diagram consisting of a conventional two stage three reactor. (Stage 1 :

연속수첨처리-수첨분해공정, 2단계 : 수첨분해공정)Continuous Hydrotreatment-Hydrolysis Process, Step 2: Hydrolysis Process)

도 4는 종래의 1단계 2개 반응기로 구성된 연속 수첨처리/수첨분해공정(수첨 분해지역) 및 상기 지역에서 생산된 윤활기유 원료를 연속적으로 촉 매탈랍 및 수첨안정화하는 윤활기유지역 개략공정도.Figure 4 is a schematic process diagram of a continuous hydrotreatment / hydrocracking process (hydrogen decomposition zone) consisting of two conventional one-stage two reactors and a lubricant base oil zone to continuously catalyst dehydrogenation and hydrogenation of the lubricant base oil produced in the region.

도 5는 본 발명에 따른 연료유 및 윤활기유를 동시에 생산할 수 있는 수첨분 해공정의 개략공정도. (1단계 : 연속 수첨처리 및 수첨분해공정,Figure 5 is a schematic process diagram of the hydrolysis process that can produce fuel oil and lubricating base oil at the same time according to the present invention. (1 step: continuous hydrogenation and hydrocracking process,

2단계 : 수첨분해/윤활기유공정(촉매탈랍 및 수첨안정화 공정))Step 2: Hydrocracking / Lubrication Base Process (Catalyse Delamination and Hydrogenation Stabilization Process)

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

AR(Atmospheric Residue) : 상압잔사유 VR(Vacuum Residue) : 감압잔사유AR (Atmospheric Residue): Atmospheric Residue VR (Vacuum Residue): Decompression Residue

AT(Atmospheric Tower) : 상압증류탑 VT(Vacuum Tower) : 감압증류탑AT (Atmospheric Tower): Atmospheric distillation tower VT (Vacuum Tower): Decompression distillation tower

R(Reactor) : 반응기 ST(Stripper) : 스트리퍼R (Reactor): Reactor ST (Stripper): Stripper

CDW(Catalytic Dewaxing) : 촉매탈랍 HF(Hydrofinishing) : 수첨안정화CDW (Catalytic Dewaxing): Catalytic Dewaxing HF (Hydrofinishing): Hydrogenation Stabilization

LVGO(Light Vacuum Gas Oil) : 경질 감압가스유LVGO (Light Vacuum Gas Oil): Light Pressure Gas Oil

MVGO(Middle Vacuum Gas Oil) : 중간 감압가스유MVGO (Middle Vacuum Gas Oil): Medium Pressure Gas Oil

HVGO(Heavy Vacuum Gas Oil) : 중질 감압가스유HVGO (Heavy Vacuum Gas Oil): Heavy vacuum gas oil

본 발명을 상세히 설명한다.The present invention will be described in detail.

본 발명은 도 5에 나타낸 바와 같이 2개의 반응기 (R1 및 R2)로 구성된 1단계 수첨분해공정 및 1개의 수첨분해반응기 R3로 구성된 2단계 수첨분해공정과 촉매탈랍 및 수첨안정화촉매를 각각의 층으로 충전한 1개의 반응기 R4로 구성된 윤활기유 공정으로 이루어진다.As shown in FIG. 5, the present invention is a one-stage hydrolysis process consisting of two reactors (R1 and R2) and a two-stage hydrolysis process consisting of one hydrocracking reactor R3 and a catalyst dewaxing and a hydrostable catalyst in each layer. It consists of a lube base oil process consisting of one reactor R4 charged.

또한 본 발명은 도 5에 나타낸바와 같이 2개의 반응기 (R1 및 R2)로 구성된 1단계 수첨분해공정 및 1개의 수첨분해반응기 R3로 구성된 2단계 수첨분해공정과 수첨분해, 촉매탈랍 및 수첨안정화촉매를 각각의 층으로 충전한 1개의 반응기 R4로 구성된 윤활기유 공정으로 이루어진다.In addition, the present invention is a two-stage hydrolysis process consisting of two reactors (R1 and R2) and a two-stage hydrolysis process consisting of one hydrocracking reactor R3 and hydrolysis, catalyst dewaxing and hydrostable catalyst as shown in FIG. It consists of a lubricating base oil process consisting of one reactor R4 filled with each bed.

상압잔사유(AR : Atmospheric Residue)를 감압증류탑(VT1 : Vacuum Tower)에서 감압증류하여 감압가스유를 얻고 이 감압가스유(VGO : Vacuum Gas Oil)를 먼저 1단계 수첨분해공정으로 도입한다.Atmospheric Residue (AR: Atmospheric Residue) is distilled under reduced pressure in a vacuum tower (VT1: Vacuum Tower) to obtain a reduced pressure gas oil, and this vacuum gas oil (VGO: Vacuum Gas Oil) is first introduced into a one-step hydrocracking process.

첫번째 수첨처리반응기(R1)에는 니켈-몰리브덴이 담지된 무정형 알루미나 촉매를 충전하여 니켈-몰리브덴이 담지된 변형된 Y-제올라이트의 촉매독인 질소는 암모니아로 전환시켜 제거하고 다핵방향족화합물은 납센족으로 전환시킨다. 이때 황의 일부도 황화수소로 전환되어 제거된다.The first hydrotreating reactor (R1) was charged with an amorphous alumina catalyst loaded with nickel-molybdenum to remove nitrogen, which is a catalyst poison of the modified Y-zeolite loaded with nickel-molybdenum, by converting it into ammonia, and converting the polynuclear aromatic compound into a lead-sen group. Let's do it. Part of the sulfur is also converted to hydrogen sulfide and removed.

다음 두번째 반응기 R2에는 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642)를 충전하여 수첨처리된 감압가스유를 수첨분해시킨 후 상압증류탑(AT : Atmospheric Tower)으로 도입시켜 상압증류함으로써 LPG, 납사, 등유, 경유 등의 연료유성분과 수첨분해잔사유 (윤활기유원료)로 분리한다.The second reactor R2 was charged with a modified Y-zeolite catalyst supported by nickel-molybdenum (trade name HYC-642, manufactured by IFP, France) to hydrocrack the hydrogenated vacuum gas oil, followed by AT (Atmospheric Tower). By distillation under atmospheric pressure, it is separated into fuel oil components such as LPG, naphtha, kerosene, and diesel oil and hydrocracked residue oil (lubricating base oil).

연료유성분은 연료저장탱크로 보내고 수첨분해잔사유는 제 2단계 수첨분해반응기 R3로 보내어 재차 수첨분해한다. R3의 촉매는 R2의 촉매와 동일하다. 수첨분해반응기 R3에서 나온 유출물은 윤활기유공정으로 도입한다.The fuel oil component is sent to the fuel storage tank and the hydrocracked residue oil is sent to the second stage hydrocracking reactor R3 for hydrocracking again. The catalyst of R3 is the same as that of R2. Effluent from the hydrocracking reactor R3 is introduced into the lube base oil process.

윤활기유공정은 2개 또는 3개의 층으로 이루어진 1개의 반응기(R4)로 구성되며 촉매탈랍 및 수첨안정화반응 (2개층인 경우), 또는 수첨분해, 촉매탈랍 및 수첨안정화반응(3개층인 경우)을 수행한다.The lubrication base oil process consists of one reactor (R4) consisting of two or three layers and is characterized by catalyst dewaxing and hydrostable stabilization (two layers), or hydrocracking, catalyst stripping and hydrostable stabilization (three layers). Do this.

2개층인경우에는 위층에는 탈랍촉매인 ZSM-5 촉매를, 아래층에는 수첨안정화촉매인 니켈-텅스텐이 담지된 무정형 알루미나 촉매를 충전하고 3개층인 경우에는 위층에는 수첨분해촉매인 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642)를, 가운데층에는 탈랍촉매인 ZSM-5 촉매를, 아래층에는 수첨안정화촉매인 니켈-텅스텐이 담지된 무정형 알루미나 촉매를 충전한다.In the case of two layers, ZSM-5 catalyst, which is a dewaxing catalyst, is charged in the upper layer, and an amorphous alumina catalyst in which nickel-tungsten, a hydrogenation stability catalyst is supported, in the lower layer; A modified Y-zeolite catalyst (trade name HYC-642 manufactured by IFP, France), a middle layer of the dewaxing catalyst ZSM-5 catalyst, and a bottom layer of the amorphous alumina catalyst carrying nickel-tungsten, a hydrogenation stabilization catalyst.

R4에서나온 유출물은 스트리퍼(Stripper)로 도입하여 일부를 상압증류탑(AT)으로 보내고 나머지는 감압증류탑(Vacuum Tower) VT2로 보내어 여러종류의 윤활기유를 얻는다.The effluent from R4 is introduced into a stripper, part of which is sent to the atmospheric distillation tower (AT) and the remainder to the vacuum tower VT2 to obtain various types of lubricant base oils.

본 발명에서는 모든 공정에 걸쳐 단일 루프(Loop)의 수소순환시스템으로 수소를 순환시키고 아민흡수탑을 조절하여 황화수소 농도를 0.5∼1.5 vol%로 유지한다.In the present invention, the hydrogen sulfide concentration is maintained at 0.5 to 1.5 vol% by circulating hydrogen in a single loop hydrogen circulation system and adjusting the amine absorption tower throughout all processes.

실시예 1Example 1

상압잔사유(AR : Atmospheric Residue)를 감압증류탑 VT1에서 감압증류하여 얻은 감압가스유의 물성은 표 1과 같다.The physical properties of the vacuum gas oil obtained by distilling the atmospheric residual oil (AR: Atmospheric Residue) in the vacuum distillation column VT1 under reduced pressure are shown in Table 1.

감압가스유의 물성Physical properties of vacuum gas oil 물성Properties 감압가스유Reduced pressure gas oil - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 32.2432.24 - 점도지수-Viscosity index 7272 - 황, wt%Sulfur, wt% 2.512.51 - 질소, wtppmNitrogen, wtppm 600600 - 방향족 화합물, wt%Aromatic compounds, wt% 51.351.3

감압가스유를 먼저 1단계 수첨분해공정으로 도입하였다. 첫번째 수첨처리반응기 R1에서 니켈-몰리브덴이 담지된 알루미나 촉매 존재하에 390℃의 온도 및 158 kgf/cm2의 압력과 액체공간속도(Liquid Hourly Space Velocity) 1.5hr-1의 조건하에서 감압가스유를 수첨처리하였다.The vacuum gas oil was first introduced into a one-step hydrocracking process. In the first hydrotreating reactor R1, the reduced-pressure gas oil was carried out in the presence of a nickel-molybdenum-supported alumina catalyst at a temperature of 390 ° C, a pressure of 158 kg f / cm 2 and a liquid hourly space velocity of 1.5hr -1 . Hydrotreated.

R1에서 나온 유출물(수첨처리된 감압가스유)을 수첨분해반응기 R2로 도입하여 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642) 존재하에 383℃의 온도 및 158kgf/cm2의 압력과 액체공간속도 3.0hr-1의 조건하에서 수첨분해하였다.The effluent (hydrogenated reduced pressure gas oil) from R1 was introduced into a hydrocracking reactor R2 to give a temperature of 383 ° C in the presence of a modified Y-zeolite catalyst (HYC-642 from IFP, France) supported by nickel-molybdenum and Hydrolysis was carried out under a pressure of 158 kg f / cm 2 and a liquid space velocity of 3.0 hr -1 .

R2에서 나온 유출물을 스트리퍼에서 나온 경질유출물과 함께 상압증류탑 AT로 도입, 상압증류하여 LPG, 납사, 등유, 경유 등의 연료성분을 분리, 저장탱크로 보내고 수첨분해잔사유(윤활기유 원료)는 수첨분해 반응기 R3로 보냈다.The effluent from R2 is introduced into the atmospheric distillation tower AT together with the light effluent from the stripper, and it is distilled under atmospheric pressure to separate fuel components such as LPG, naphtha, kerosene, and diesel oil into the storage tank, and to add hydrolyzed residue oil (lubricating base oil). Was sent to a hydrolysis reactor R3.

수첨분해잔사유의 물성은 표 2와 같다.Physical properties of the hydrocracked residue oil are shown in Table 2.

수첨분해잔사유의 물성Properties of Hydrocracked Residual Oil 수첨분해잔사유Hydrolysis Residual Oil 전환율, wt%Conversion rate, wt% 65.965.9 물성Properties - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 25.8325.83 - 점도지수-Viscosity index 131131 - 유동점, ℃Pour point, ℃ +38.0+38.0 - 황, wt%Sulfur, wt% 0.00360.0036 - 질소, wtppmNitrogen, wtppm 1One - 방향족 화합물, wt%Aromatic compounds, wt% 5.435.43

이 반응에서 방향족화합물이 납센족으로 전환되어 감압가스유에서 51.3wt% 이던 것이 5.43wt%로 감소함으로써 점도지수가 72에서 131로 증가되었다.In this reaction, the aromatics were converted to lead-sensing compounds, which decreased from 51.3 wt% to 5.43 wt% in reduced pressure gas oil, increasing the viscosity index from 72 to 131.

위 수첨분해잔사유를 2단계 수첨분해반응기 R3에서 335℃의 온도, 158kgf/cm2의 압력, 1.1hr-1의 공간속도하에서 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642)를 312 cc 충전하여 재차 수첨분해하였다.The hydrocracked residue oil was modified in a two-stage hydrocracking reactor R3 with a nickel-molybdenum-modified Y-zeolite catalyst at a temperature of 335 ° C, a pressure of 158kg f / cm 2 , and a space velocity of 1.1hr -1 (French IFP 312 cc of the brand name HYC-642) was hydrogenated again.

위 재차 수첨분해한 R3 유출물을 윗층에 수첨분해촉매인 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642) 188 cc가, 가운데층에는 촉매탈랍촉매인 ZSM-5 촉매 62cc가, 아래층에는 수첨안정화촉매인 니켈-텅스텐이 담지된 알루미나 촉매 125 cc가 충전된 윤활기유반응기 R4로 도입하여 표 3의 운전조건으로 수첨분해, 탈랍 및 수첨안정화를 하였다. 또한 아민흡수탑을 조절하여 순환수소중의 황화수소는 1.5vol%를 유지하도록 하였다.The hydrolyzed R3 effluent was re-hydrogenated on the upper layer of nickel-molybdenum-modified Y-zeolite catalyst (88 HYC-642, manufactured by IFP, France) and in the middle layer, ZSM- 62cc of 5 catalysts and 125cc of alumina catalyst loaded with nickel-tungsten, a hydrogenation stabilization catalyst, were introduced into the lubricating base oil reactor R4 packed with hydrogenation, dewaxing, and hydrogenation under the operating conditions shown in Table 3. In addition, the amine absorption tower was adjusted to maintain 1.5 vol% of hydrogen sulfide in the circulating hydrogen.

2단계 연속 수첨분해 및 수첨분해/촉매탈랍/수첨안정화공정의 운전조건Operating conditions of two-step continuous hydrocracking and hydrocracking / catalytic dewaxing / hydrogenation stabilization 수첨분해촉매(R3)Hydrocracking Catalyst (R3) 수첨분해촉매(R4)Hydrocracking Catalyst (R4) 촉매탈랍촉매(R4)Catalyst Dropping Catalyst (R4) 수첨안정화촉매(R4)Hydrogenation Stabilization Catalyst (R4) 반응압력, kgf/cm2 Reaction pressure, kg f / cm 2 158158 158158 158158 158158 LHSV, hr-1 LHSV, hr -1 1.11.1 1.91.9 5.55.5 2.82.8 WABT, ℃WABT, ℃ 335335 335335 360360 360360

반응기 R4의 수첨분해반응은 단열발열반응이어서 수첨탈랍반응 및 수첨안정화반응에서 온도 상승이 일어났다. 공간속도는 촉매량이 적으면 커지고, 촉매량이 많으면 작아지는 것이어서 각 층의 촉매량에 따라 달라진다.The hydrocracking reaction of the reactor R4 was an adiabatic exothermic reaction and thus a temperature rise occurred in the hydrocracking reaction and the hydrostable stabilization reaction. The space velocity becomes large when the amount of the catalyst is small and becomes small when the amount of the catalyst is large, and depends on the amount of catalyst in each layer.

R4에서 나온 유출물을 스트리퍼에 보내어 경질유출물은 상압증류탑 AT로 보내고 나머지인 윤활기유분(300℃+)을 감압증류탑 VT2로 보내어 60N 및 100N의 윤활기유를 표 4와 같이 얻었다.The effluent from R4 was sent to the stripper, and the light effluent was sent to the atmospheric distillation tower AT, and the rest of the lubricant oil (300 ° C.) was sent to the vacuum distillation tower VT2 to obtain 60N and 100N of lubricating base oil as shown in Table 4.

2단계 연속 수첨분해 및 수첨분해/촉매탈랍/수첨안정화공정으로부터 생산된 윤활기유의 예Examples of Lubricant Base Oils Produced from a Two-stage Continuous Hydrolysis and Hydrolysis / Catalysis Dewaxing / Hydration Stabilization Process 윤활기유분(300℃+ )Lubricant oil (300 ℃ +) 60N60N 100N100N 1. 윤활기유의 수율, wt%1. Yield of lube base oil, wt% 14.814.8 2.92.9 8.98.9 2. 윤활기유의 물성2. Properties of Lubricant Oil - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 22.1022.10 7.3337.333 20.1720.17 - 점도지수-Viscosity index 105105 9090 104104 - 유동점, ℃Pour point, ℃ -20.0-20.0 -40 이하-40 or less -20.0-20.0

위 표들의 물성값들은 공정이 정상상태(Steady State)에 도달했을 때의 값이다.The property values in the above tables are the values when the process reached Steady State.

실시예 2Example 2

상압잔사유(AR : Atmospheric Residue)를 감압증류탑 VT1에서 감압증류하여 얻은 감압가스유의 물성은 표 5와 같다.The physical properties of the vacuum gas oil obtained by distilling the atmospheric residual oil (AR: Atmospheric Residue) in the vacuum distillation column VT1 under reduced pressure are shown in Table 5.

감압가스유의 물성Physical properties of vacuum gas oil 물성Properties 감압가스유Reduced pressure gas oil - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 32.2432.24 - 점도지수-Viscosity index 7272 - 황, wt%Sulfur, wt% 2.512.51 - 질소, wtppmNitrogen, wtppm 600600 - 방향족 화합물, wt%Aromatic compounds, wt% 51.351.3

감압가스유를 먼저 1단계 수첨분해공정으로 도입하였다. 첫번째 수첨처리반응기 R1에서 니켈-몰리브덴이 담지된 알루미나 촉매 존재하에 390℃의 온도 및 158 kgf/cm2의 압력과 액체공간속도(Liquid Hourly Space Velocity) 1.5hr-1의 조건하에서 감압가스유를 수첨처리하였다.The vacuum gas oil was first introduced into a one-step hydrocracking process. In the first hydrotreating reactor R1, the reduced-pressure gas oil was carried out in the presence of a nickel-molybdenum-supported alumina catalyst at a temperature of 390 ° C, a pressure of 158 kg f / cm 2 and a liquid hourly space velocity of 1.5hr -1 . Hydrotreated.

R1에서 나온 유출물(수첨처리된 감압가스유)을 수첨분해반응기 R2로 도입하여 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642) 존재하에 383℃의 온도 및 158kgf/cm2의 압력과 액체공간속도 3.0hr-1의 조건하에서 수첨분해하였다.The effluent (hydrogenated reduced pressure gas oil) from R1 was introduced into a hydrocracking reactor R2 to give a temperature of 383 ° C in the presence of a modified Y-zeolite catalyst (HYC-642 from IFP, France) supported by nickel-molybdenum and Hydrolysis was carried out under a pressure of 158 kg f / cm 2 and a liquid space velocity of 3.0 hr -1 .

R2에서 나온 유출물을 스트리퍼에서 나온 경질유출물과 함께 상압증류탑 AT로 도입, 상압증류하여 LPG, 납사, 등유, 경유 등의 연료성분을 분리, 저장탱크로 보내고 수첨분해잔사유(윤활기유 원료)는 수첨분해 반응기 R3로 보냈다.The effluent from R2 is introduced into the atmospheric distillation tower AT together with the light effluent from the stripper, and it is distilled under atmospheric pressure to separate fuel components such as LPG, naphtha, kerosene, and diesel oil into the storage tank, and to add hydrolyzed residue oil (lubricating base oil). Was sent to a hydrolysis reactor R3.

수첨분해잔사유의 물성은 표 6과 같다.Physical properties of hydrocracked residue oil are shown in Table 6.

수첨분해잔사유의 물성Properties of Hydrocracked Residual Oil 수첨분해잔사유Hydrolysis Residual Oil 전환율, wt%Conversion rate, wt% 65.965.9 물성Properties - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 25.8325.83 - 점도지수-Viscosity index 131131 - 유동점, ℃Pour point, ℃ +38.0+38.0 - 황, wt%Sulfur, wt% 0.00360.0036 - 질소, wtppmNitrogen, wtppm 1One - 방향족 화합물, wt%Aromatic compounds, wt% 5.435.43

이 반응에서 방향족화합물이 납센족으로 전환되어 감압가스유에서 51.3wt% 이던 것이 5.43wt%로 감소함으로써 점도지수가 72에서 131로 증가되었다.In this reaction, the aromatics were converted to lead-sensing compounds, which decreased from 51.3 wt% to 5.43 wt% in reduced pressure gas oil, increasing the viscosity index from 72 to 131.

위 수첨분해잔사유를 2단계 수첨분해반응기 R3에서 371℃의 온도, 158kgf/cm2의 압력, 1.5hr-1의 공간속도하에서 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 촉매(프랑스국 IFP사의 상품명 HYC-642)를 500 cc 충전하여 재차 수첨분해하였다.The above hydrocracked residue oil was modified in a two-stage hydrocracking reactor R3 at a temperature of 371 ° C., a pressure of 158 kg f / cm 2 , and a modified Y-zeolite catalyst supported by nickel-molybdenum at a space velocity of 1.5 hr −1 (French IFP). 500 cc of the brand name HYC-642) was further hydrolyzed.

위 재차 수첨분해한 R3 유출물을 윗층에 촉매탈랍촉매인 ZSM-5 촉매 227 cc가, 아래층에는 수첨안정화촉매인 니켈-텅스텐이 담지된 알루미나 촉매 278 cc가 충전된 윤활기유반응기 R4로 도입하여 표 7의 운전조건으로 탈랍 및 수첨안정화를 수행하였다. 또한 순환수소중의 황화수소는 아민흡수탑을 조절하여 1.5vol%를 유지하도록 하였다.Hydrogenated R3 effluent was introduced again into the lubricating base oil reactor R4 filled with 227 cc of catalyst desorption catalyst ZSM-5 catalyst on the upper layer and alumina catalyst 278 cc loaded with nickel-tungsten, hydrogenation stabilizer on the lower layer. Waxing and hydrogenation stabilization were carried out under the operating conditions of 7. In addition, hydrogen sulfide in circulating hydrogen was maintained at 1.5 vol% by adjusting the amine absorption tower.

2단계 연속 수첨분해 및 촉매탈랍/수첨안정화공정의 운전조건Operating conditions of two-step continuous hydrocracking and catalyst dewaxing / hydrogenation stabilization 수첨분해촉매(R3)Hydrocracking Catalyst (R3) 촉매탈랍촉매(R4)Catalyst Dropping Catalyst (R4) 수첨안정화촉매(R4)Hydrogenation Stabilization Catalyst (R4) 반응압력, kgf/cm2gReaction pressure, kg f / cm 2 g 158158 158158 158158 LHSV, hr-1 LHSV, hr -1 1.51.5 3.33.3 2.72.7 WABT, ℃WABT, ℃ 371371 320320 290290

R4 반응기의 윗층에 탈랍촉매, 아래층에 수첨안정화촉매를 충전하였는바 각 층 사이는 냉각을 위한 수소주입으로 각 촉매층의 온도조절이 가능하였다.The dewaxing catalyst in the upper layer of the R4 reactor and the hydrogenation stabilization catalyst were charged in the lower layer. The temperature of each catalyst layer was controlled by hydrogen injection for cooling between the layers.

R4에서 나온 유출물을 스트리퍼에 보내어 경질유출물은 상압증류탑 AT로 보내고 나머지인 윤활기유분(360℃+)을 감압증류탑 VT2로 보내어 60N 및 150N의 윤활기유를 표 8와 같이 얻었다.The effluent from R4 was sent to the stripper, and the light effluent was sent to the atmospheric distillation tower AT, and the remaining lubricant oil (360 ° C. +) was sent to the vacuum distillation tower VT2 to obtain 60N and 150N of lube base oil as shown in Table 8.

2단계 연속 수첨분해 및 촉매탈랍/수첨안정화공정으로부터 생산된 윤활기유의 예Examples of Lubricant Base Oils Produced from a Two-Stage Continuous Hydrolysis and Catalytic Desorption / Hydration Stabilization Process 윤활기유분(300℃+ )Lubricant oil (300 ℃ +) 60N60N 150N150N 1. 윤활기유의 수율, wt%1. Yield of lube base oil, wt% 10.010.0 3.83.8 3.83.8 2. 윤활기유의 물성2. Properties of Lubricant Oil - 색상, Saybolt-Color, Saybolt +30+30 +30+30 +30+30 - 점도, @40℃, cStViscosity, @ 40 ° C., cSt 9.949.94 6.9626.962 32.0232.02 - 점도지수-Viscosity index 102102 9696 109109 - 유동점, ℃Pour point, ℃ -27.0-27.0 -36.0-36.0 -17.0-17.0 - 방향족, wt%Aromatic, wt% 0.160.16 0.120.12 0.160.16 - 열안정성, 12/24 시간-Thermal stability, 12/24 hours L1.0BC/L1.5BCL1.0BC / L1.5BC L1.0BC/L1.5BCL1.0BC / L1.5BC L1.0BC/L2.0BCL1.0BC / L2.0BC - UV 안정성, 24/48 시간-UV stability, 24/48 hours L0.5BC/L0.5BCL0.5BC / L0.5BC L0.5BC/L0.5FL0.5BC / L0.5F L1.5BC/L1.5BCL1.5BC / L1.5BC

위 표들의 물성값들은 공정이 정상상태(Steady State)에 도달했을 때의 값이다.The property values in the above tables are the values when the process reached Steady State.

본 발명은 IFP사의 2단계 연료유 수첨분해공정(도 3)에서 2단계의 수첨분해반응기 R3 다음에 반응기 R4를 추가하고 이 반응기 R4에 탈랍촉매 및 수첨안정화촉매를 충전함으로써 2단계의 수첨분해공정과 윤활기유공정(촉매탈랍 및 수첨안정화공정)을 결합하여 연료유 생산과 윤활기유 생산을 동시에 할 수 있었고 생산비율을 시장상황에 따라 탄력적으로 조절할 수 있게 되었다.The present invention is a two-stage hydrolysis process by adding a reactor R4 followed by a two-stage hydrolysis reactor R3 in IFP's two-stage fuel oil hydrocracking process (FIG. 3) and filling the reactor R4 with a dewaxing catalyst and a hydrostable catalyst. Combination with the lube base oil process (catalyst dewaxing and hydrogenation stabilization process) was able to produce fuel oil and lube base oil at the same time, and the production ratio could be flexibly adjusted according to the market situation.

한편 2단계 수첨분해공정과 윤활기유공정(탈납/수첨안정화)을 단일공정으로 결합함으로써 윤활기유원료탱크, 상압 및 감압증류탑의 추가설치를 줄이고 독립된 2개의 순환수소시스템을 1개의 순환수소시스템으로 줄여 투자비를 줄일 수 있었고 운전비용의 감소와 운전일수 증가로 생산량을 증가시킬 수 있었다.On the other hand, by combining the two-stage hydrolysis process and the lube base oil process (desoldering / hydrogenation stabilization) in a single process, the additional installation of the lubricating oil raw material tank, atmospheric pressure and reduced pressure distillation tower is reduced, and two independent circulating hydrogen systems are reduced to one circulating hydrogen system. Investment costs could be reduced and production could be increased by reducing operating costs and increasing operating days.

Claims (6)

상압잔사유(AR : Atmospheric Residue)를 감압증류탑 VT1 (Vacuum Tower)에서 감압증류하여 감압가스유(VGO : Vacuum Gas Oil)를 얻고 이를 수첨처리반응기 R1으로 도입, 수첨처리하고 R1에서 나온 유출물을 수첨분해반응기 R2로 도입, 수첨분해시키고 R2에서 나온 유출물을 스트리퍼 ST에서 나온 경질 유출물과 함꼐 상압증류탑 AT (Atmospheric Tower)로 도입, 상압증류하여 AT 유출물중 연료성분을 분리, 저장탱크로 보내고 나머지 수첨분해잔사유(윤활기유 원료)를 2단계 수첨분해반응기 R3로 보내어 2차 수첨분해시키고 R3에서 나온 유출물을 촉매탈랍 및 수첨안정화를 시킨후 이를 스트리퍼 ST로 보내어 경질유출물은 상압증류탑 AT로 보내고 나머지인 윤활기유분을 감압증류탑 VT2로 보내어 윤활기유를 제조하는 방법에 있어서, 2단계 수첨분해반응기 R3 다음에 촉매탈랍 및 수첨안정화를 한 반응기내에서 연속적으로 수행할 수 있는 윤활기유 반응기 R4를 설치하고 또한 황화수소 농도를 조절하기 위하여 아민흡수탑을 추가 설치하여 공정을 수행함을 특징으로 하는 고급 윤활기유의 제조방법.Atmospheric Residue (AR: Atmospheric Residue) was distilled under reduced pressure in VT1 (Vacuum Tower) to obtain vacuum gas oil (VGO), which was introduced into a hydrotreating reactor R1, hydrotreated and the effluent from R1 Hydrolysis is introduced into the hydrocracking reactor R2, and the effluent from R2 is introduced into the AT (Atmospheric Tower) with the light effluent from the stripper ST, and is distilled under atmospheric pressure to separate fuel components from the AT effluent into the storage tank. The remaining hydrocracked residue oil (lubricating base oil) is sent to the second stage hydrocracking reactor R3 for second hydrocracking, and the effluent from R3 is subjected to catalyst dewaxing and hydrostable stabilization and sent to stripper ST. In the method for producing a lubricant base oil by sending to the AT and the remaining lubricant oil fraction to a vacuum distillation column VT2, two stage hydrocracking reactor R3, followed by catalyst dropping and hydrogenation A process for producing an advanced lubricating base oil, characterized in that a lubricating base oil reactor (R4) capable of continuously purifying in one reactor and an amine absorption tower are further installed to control the hydrogen sulfide concentration. 제 1항에 있어서, 윤활기유 반응기 R4의 윗층에는 수첨분해촉매를, 가운데층에는 탈랍촉매를, 아래층에는 수첨안정화 촉매를 충전함을 특징으로 하는 고급윤활기유의 제조방법.The method of claim 1, wherein the upper layer of the lubricating base oil reactor R4 is filled with a hydrolysis catalyst, a middle dewaxing catalyst, and a lower layer with a hydrogenation stabilization catalyst. 제 2항에 있어서, 수첨분해촉매층의 촉매는 니켈-몰리브덴이 담지된 변형된 Y-제올라이트 (프랑스국 IFP사의 상품명 HYC-642) 촉매이고, 탈랍촉매층의 촉매는 ZSM-5 촉매이며 수첨안정화 촉매층의 촉매는 니켈-텅스텐이 담지된 무정형 알루미나 촉매인 것을 특징으로 하는 고급윤활기유의 제조방법.The catalyst of the hydrocracking catalyst layer is a modified Y-zeolite (trade name HYC-642 manufactured by IFP, France) supported by nickel-molybdenum, the catalyst of the dewaxing catalyst layer is a ZSM-5 catalyst and a hydrostable catalyst layer. The catalyst is a method for producing a high lubricating base oil, characterized in that the nickel-tungsten-supported amorphous alumina catalyst. 제 1항에 있어서, 윤활기유 반응기 R4의 윗층에는 탈랍촉매를, 아래층에는 수첨안정화촉매를 충전함을 특징으로 하는 고급윤활기유의 제조방법.The method of claim 1, wherein the upper layer of the lubricant base oil reactor R4 is filled with a dewaxing catalyst, and the lower layer is filled with a hydrogenation stabilized catalyst. 제 4항에 있어서, 탈랍촉매층의 촉매는 ZSM-5 촉매이고 수첨안정화촉매층의 촉매는 니켈-텅스텐이 담지된 무정형 알루미나 촉매인 것을 특징으로 하는 고급윤활기유의 제조방법.The method of claim 4, wherein the catalyst of the dewaxing catalyst layer is a ZSM-5 catalyst and the catalyst of the hydrogenation stabilization catalyst layer is an amorphous alumina catalyst carrying nickel-tungsten. 제 1항, 제 2항, 제 3항, 제 4항 또는 제 5항에 있어서 아민흡수탑을 조절하여 순환수소중의 황화수소 농도를 0.5∼1.5 vol% 로 유지시킴을 특징으로 하는 고급윤활기유의 제조방법.The preparation of the high-grade lubricating base oil according to claim 1, 2, 3, 4 or 5, wherein the amine absorption tower is adjusted to maintain the hydrogen sulfide concentration in the circulating hydrogen at 0.5 to 1.5 vol%. Way.
KR1019980024308A 1998-06-26 1998-06-26 Proocess for the production of high quality lube base oil combining hydofinishing KR100262742B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980024308A KR100262742B1 (en) 1998-06-26 1998-06-26 Proocess for the production of high quality lube base oil combining hydofinishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980024308A KR100262742B1 (en) 1998-06-26 1998-06-26 Proocess for the production of high quality lube base oil combining hydofinishing

Publications (2)

Publication Number Publication Date
KR20000003150A true KR20000003150A (en) 2000-01-15
KR100262742B1 KR100262742B1 (en) 2000-09-01

Family

ID=19540898

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980024308A KR100262742B1 (en) 1998-06-26 1998-06-26 Proocess for the production of high quality lube base oil combining hydofinishing

Country Status (1)

Country Link
KR (1) KR100262742B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401782A (en) * 2018-11-30 2019-03-01 山东齐胜工贸股份有限公司 A kind of technique of addition high-sulfur oils production lube base oil
KR20190062715A (en) * 2017-11-29 2019-06-07 한국에너지기술연구원 Method of hydroconversion for improving heavy oil conversion and distillate yield
KR102442618B1 (en) * 2021-08-17 2022-09-14 에스케이이노베이션 주식회사 High-quality lube base oil manufacturing process using refined waste lubricating oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569109B1 (en) * 1999-09-17 2006-04-07 에스케이 주식회사 A Manufacturing Method for Agricultural Spray Oils
KR101796782B1 (en) 2010-05-07 2017-11-13 에스케이이노베이션 주식회사 Process for Manufacturing high quality naphthenic base oil and heavy base oil simultaneously

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190062715A (en) * 2017-11-29 2019-06-07 한국에너지기술연구원 Method of hydroconversion for improving heavy oil conversion and distillate yield
CN109401782A (en) * 2018-11-30 2019-03-01 山东齐胜工贸股份有限公司 A kind of technique of addition high-sulfur oils production lube base oil
KR102442618B1 (en) * 2021-08-17 2022-09-14 에스케이이노베이션 주식회사 High-quality lube base oil manufacturing process using refined waste lubricating oil
US11873456B2 (en) 2021-08-17 2024-01-16 SK INNOVATION CO., LTD. and SK ENMOVE CO., LTD. Process of producing high-quality lube base oil by using refined oil fraction of waste lubricant

Also Published As

Publication number Publication date
KR100262742B1 (en) 2000-09-01

Similar Documents

Publication Publication Date Title
KR102327288B1 (en) Multistage resid hydrocracking
US5580442A (en) Method for producing feedstocks of high quality lube base oil from unconverted oil of fuels hydrocracker operating in recycle mode
US8110091B2 (en) Process for the conversion of feedstocks resulting from renewable sources for producing gas oil fuel bases with a low sulphur content and with an improved cetane number
US10752848B2 (en) Process integrating two-stage hydrocracking and a hydrotreatment process
EP0093552B1 (en) Hydrocracking process
KR101698596B1 (en) Hydrocracking process including switchable reactors with feedstocks containing 200 ppm by weight - 2% by weight of asphaltenes
US5522983A (en) Hydrocarbon hydroconversion process
US20090159493A1 (en) Targeted hydrogenation hydrocracking
KR20020068369A (en) Process for removing sulfur from a hydrocarbon feed
US3230164A (en) Hydrocracking process to produce gasoline and turbine fuels
KR100939698B1 (en) Multiple hydroprocessing reactors with intermediate flash zones
JP3622771B2 (en) Propulsion fuel and its manufacturing method
CN100425675C (en) Hydrogenation method for producing catalytic reforming raw material
KR100262742B1 (en) Proocess for the production of high quality lube base oil combining hydofinishing
US4404088A (en) Three-stage hydrocracking process
CN114437796B (en) Method for producing high-viscosity index lubricating oil base oil through hydrogenation
KR102444109B1 (en) Process for producing middle distillates
CN101434867B (en) Suspension bed residual oil hydrogenation-catalytic cracking combined technological process
CN109777483B (en) Method for stabilizing quality of hydrocracking product
KR20200144791A (en) Method of hydrotreating heavy oil
US3642612A (en) Process for the catalytic hydrogenation of hydrocarbons for the production of high-viscosity-index lubricating oils
US3970543A (en) Production of lubricating oils
CN1313573C (en) Process for deep desulfating of diesel oil fractional oil
JPH05112785A (en) Treatment of heavy hydrocarbon oil
KR0167732B1 (en) Process for simultaneous production of fuel oils and specialty oils by a single unit hydrocracking process

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 19

EXPY Expiration of term